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Mathematics of Countour Classes 

Ilhan M. Izmirli1 

Abstract 

Regardless of their degree of musical sophistication and their cultural differences, all who listen to music have an 
innate feel for proximity (distance between consecutive notes, or what note is expected to follow the other), and 
direction (whether the melody is ascending or descending). In [7], I had looked into the mathematics of pitch spaces 
where proximity was the distinguishing characteristic.  In this paper, I will investigate the properties of pitch spaces 
where only the direction counts, that is, spaces where we are not interested in the distance between the pitches, but 
only in whether a pitch is higher than, lower than, or the same as another pitch.  The resulting constructs, the so called 
contour classes, are used as sequences in fugues, as leitmotifs in operas, and as changes of mode from major to 
minor in variations. 
 

1. Basic Definitions 

There are numerous papers and books ([1], [2], [4], [5], [6], [7], [8], [9], [10], [11]) that emphasize the connection 
between mathematics and music based on (and mostly confined to) theories of harmony and temperaments, and more 
than a few that deal with the specific aspects of  twentieth century music ([3], [12], [13], and [14]) which is, in fact, 
quite mathematics-based.    

Let us, here, review the basic terminology that will be used throughout this paper.  Since music is an art form 
that deals with the permutation of tones in time, we start with the definition of a tone.  A tone is defined as a sound 
that has a definite pitch (frequency), duration, timbre (tone color), and dynamics (loudness).  

A pitch space is any collection of tones.  For example, if we let 𝐹𝑄(𝑠)denote the fundamental frequency of a pitch 𝑠, 
we can define a pitch space  

𝑆 =  2𝑎3𝑏5𝑐𝐹𝑄 𝑠 | 𝑠 is any fixed pitch, and 𝑎, 𝑏, 𝑐 ∈ 𝑍  

This space is called space of just intonation.  We can also talk about the pitch space 

𝑆 ={ C,  C#, D, D#, E, F, F#, G, G#, A, A#, B, …} 

called the 𝒑-space (the space of chromatic pitches).  A closely related pitch space is the 𝒖-space (the space of 
diatonic pitches) 

𝑆 ={C, D, E, F, G, A, B, C, ...} 

In this paper, we will work with a different type of space, called the contour space:
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Definition 1.1 A contour space (𝒄-space) of order 𝒏 is a pitch space of 𝑛 elements called 𝒄-pitches (cps), numbered 

in order from low to high, beginning with 0. 

Obviously, there are 2𝑛  subsets of a 𝑐-space of order 𝑛.  Each such subset is called a cpset.  One can establish an 
equivalence relation by letting cp sets that have the same cardinality to belong to the same equivalence class.  Note 

that in a 𝑐-space of order 𝑛, the class of sets with cardinality 𝑘, with 0 ≤ 𝑘 ≤ 𝑛, will have  𝑛
𝑘
  members. 

The most important subsets of a 𝑐-space are the ordered subsets. 

Definition 1.2Any ordered subsets of a 𝑐-space is called a segment or a contour, and is denoted as 𝑥 𝑦  𝑧 . .  . 

Thus, although the cp sets {0, 1, 3} and {1, 3, 0} are equivalent, the contours   0 1 3   and   1  3  0  are different.  

Contours are denoted by capital letters, 𝑄, ...   The notation 𝑄𝑗  stands for the(𝑗 + 1)st element from the left of 

contour𝑄.  

A useful depiction of a contour is a graphical one, a scatter plot, which is really a cross between a 

mathematical graph and musical notation. On the horizontal axis, we put  0, 1, . . . , 𝑘 − 1, where 𝑘 is the cardinality of 

the contour, and on the vertical axis we put 0, 1, … , 𝑛 − 1, where 𝑛 is the order of the 𝑐-space and plot the points. 

For example, let us assume we have a 𝑐-space of order 5, and we want to graph contour  0 1 4  3  

 

On the other hand, the contour  3  1  0  4  will have the graph 

 

Definition 1.3Let a sequence of pitches be called the prime and be denoted as 𝑃.Then, the retrograde 𝑅 is defined 

as the prime in reverse order, the inversion𝐼 as the prime with inverted intervals, and the retrograde inversion 𝑅𝐼 as 

the retrograde of the inversion of the prime. The prime sequence itself is usually denoted by 𝑃. 

So, for example, 
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Definition 1.4 Let 𝑝, 𝑞be two 𝑐-pitches in a 𝑐-space.  We define a function 𝐶(𝑝, 𝑞), called a comparison function as 

𝐶 𝑝, 𝑞 =  

1   if 𝑞 is higher than 𝑝
0   if 𝑞 is the same as 𝑝
−1 if 𝑞 is lower than 𝑝

  

Thus, 𝐶 1, 3 = 1, 𝐶 2,2 = 0, and 𝐶 4, 2 = −1. 

The following lemma follows immediately from Definition 1.4: 

Lemma 1.1 𝐶 𝑝, 𝑞 = −𝐶 𝑞, 𝑝  

Given any contour, we would like to have the entire comparisons of all the pitches in that contour.  This is given by 

the following comparison matrix where the segment is written as a row and a column, and 𝐶 𝑝, 𝑞  is calculated for 

each 𝑝 in the row and each 𝑞 in the column.Obviously,  

 The comparison matrix has symmetry of inverse signs (by Lemma 1.1) 

 Its diagonal elements are 0 (by Definition 1.4).   

For instance, for the contour  2  1  4  5 , we have the comparison matrix 

2       1      4     5 

 

20 − 111 

 

110 1    1 

 

4 − 1 − 101 

 

5 − 1 − 1  − 1    

Clearly, there are several contours that give rise to the same comparison matrix.  For example, the contour  2  1  4  5  
given above, and the contour  6  4  7  9  are easily seen to have this property.   

Definition 1.5 Two contours are said to be equivalent (or contour equivalent) if and only if they generate the same 
comparison matrix.  Contour equivalence is sometimes called contour preservation.   

Using this equivalence relation, one might partition contours into contour classes. It can easily be shown that 
equivalent contours will have the same graphical pattern. 

Let us look at some examples. 
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(i) In a c-space of order one, there is one contour class,  0 .    

(ii) In a c-space of order two, that is, the c-space consisting of {0 , 1}, we have three contour classes;  0 , 
 0 1  and  1  0 .   

(iii) Now in case of c-spaces of order three, namely, the space {0 , 1 , 2} since the comparison matrices for 

contours   0  1  ,  0  2 , and  1  2  

                                          0      1                  0       2                     1      2 

 

                                  0      0      1           0     0       1              1     0      1  

 

                                  1    -1      0            2    -1      0               2    -1     0 

are the same, these contours are equivalent, and we take  0  1 as their representative.  Similarly, the comparison 

matrices for the contours  1  0 ,  2  0 ,  2  1  are the same, and we take  1  0 as the representative of these 
equivalent contours.  Direct construction shows that each one of the contours  

 0  1  2 ,  0  2  1 ,  1  0  2 ,  1  2  0 ,  2  0  1 , and   2  1  0  

give rise to different comparison matrices.  Thus, for a c-space of order three, we have the following 9 contour 
classes: 

 0 ,  0  1 ,  1  0 ,  0  1  2 ,  0  2  1 ,  1  0  2 ,  1  2  0 ,  2  0  1 , and   2  1  0  

(iv) Proceeding likewise, one can easily see that the contour classes of a c-space of order 4 to be  

 0 ,  0  1 ,  1  0 ,  0  1  2 ,  0  2  1 ,  1  0  2 ,  1  2  0 ,  2  0  1 ,  2  1  0 ,  0 1  2  3 , 

 0  1  3  2 ,  0  2  1  3 ,  0  2  3  1 ,  0  3  1 2 ,  0  3  2  1 ,  1  0  2  3 ,  1  0  3  2 , 

 1  2  0  3 ,  1  2  3  0 ,  1  3  0  2  ,  1  3  2  0  ,  2  0  1  3 ,  2  0  3  1 ,  2  1  0  3 , 

 2  1  3  0 ,  2  3  0  1 ,  2  3  1  0 ,  3  0  1  2 ,  3  0  2  1 ,  3  1  0  2 ,  3  1  2  0 , 

 3  2  0  1 ,  3  2  1  0 

i.e., we have thirty-three contour classes.   

It is easy to see inductively that as we pass from a 𝑐-space of order 𝑚 − 1 to a one of order 𝑚, we increase the 

number of contour classes by 𝑚!.  This proves 

Theorem 1.1 Number of contour classes in a 𝑐-space of order 𝑛 is 𝑛! + 𝑛 − 1.  

2. Operations on Contours 

In this section we will explore some properties of the operators 𝐼, 𝑅, and 𝐼𝑅 on 𝑐-spaces. 

Definition 2.1 Let 𝑄 be a contour in a 𝑐-space of order 𝑛.  Then, for any 𝑗 = 0. 1, … , 𝑛 − 1, 

𝐼𝑄𝑗 = (𝑛 − 1) − 𝑄𝑗  

So if we have a contour space of order six, the inverse of the contour 𝑄 =  0  2  4  5 will be the contour 𝐼𝑄 =
 5  3  1  0  

Lemma 2.1.Let 𝑄 be a contour in a 𝑐-space of order 𝑛.  Then  

𝐼(𝐼 𝑄 = 𝑄 
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Proof.   For each 𝑗 = 0. 1, … , 𝑛 − 1,𝐼(𝐼 𝑄𝑗  =  𝑛 − 1 −   𝑛 − 1 − 𝑄𝑗  = 𝑄𝑗  

Theorem 2.1 Let 𝑄 be a contour in a 𝑐-space of order 𝑛.  Then 

𝐶 𝐼𝑄𝑗 , 𝐼𝑄𝑘 = −𝐶(𝑄𝑗 , 𝑄𝑘) 

for all 𝑗, 𝑘 0. 1, … , 𝑛 − 1. 

Proof.  If 𝑗 = 𝑘, then the above equality holds since both sides are equal to zero.   If 𝑄𝑗 < 𝑄𝑘 ,  then  

𝐼𝑄𝑗 =  𝑛 − 1 − 𝑄𝑗 >  𝑛 − 1 − 𝑄𝑘 = 𝐼𝑄𝑘  

Corollary 2.1Let 𝑄 be a contour in a 𝑐-space of order 𝑛.  Let 𝐴 be comparison matrix for 𝑄, and 𝐵 the comparison 

matrix for 𝐼𝑄.  Then 

a) 𝐴 = 𝐵𝑇  

b) 𝐴 + 𝐵 = 0 

Proof. Follows directly from Theorem 2.1. 

For example, in a 𝑐-space of order six, if 𝑄 =   2  3  4  0 , its inverse 𝐼𝑄will be  3  2   1  5 , and Theorem 2.1 and 
Corollary 2.1 can easily be verified.   

If we plot graphs of these contours, we notice an interesting property: graphs are symmetric with respect to the 

horizontal line drawn at 
𝑛−1

2
.  In the graph below, o’s denote the elements of 𝑄, and *’s denote the elements of 𝐼𝑄.    

 

Definition 2.2 Let 𝑄 be contour of cardinality 𝑘 in a 𝑐-space of order 𝑛.  Then, its retrograde by 𝑅𝑄 is defined as  

𝑅𝑄𝑗 = 𝑄𝑘−1−𝑗  

for 𝑗 = 0, 1, … , 𝑘. 

Note that the operators 𝑅and 𝐼 commute. 

Lemma 2.2Let 𝑄 be a contour in a 𝑐-space of order 𝑛.  Then,  𝑅 𝑅 𝑄  = 𝑄 

 

Proof. This follows since for each 𝑗 = 0, 1, … , 𝑘,   𝑘 − 1 −   𝑘 − 1 − 𝑗 = 𝑗 

For any matrix 𝐴, let us let 𝐴𝑇′denote the matrix 𝐴 transposed with respect to its second diagonal.  Then we have the 
following 

Corollary 2.2 Let 𝑄 be a contour in a 𝑐-space of order 𝑛, and let 𝐴 be comparison matrix for 𝑄.  Then the 
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comparison matrix for 𝑅𝑄 is −𝐴𝑇′  

Proof.  Follows directly from Definition 2.2. 

Let 𝑄 be a contour in a 𝑐-space of order 𝑛 with cardinality 𝑘.  We note the following interesting property: the graphs 

of 𝑄 and 𝑅𝑄 are symmetric with respect to the vertical line drawn at 
𝑘−1

2
.   For example, if 𝑄 =  0  2  1  3 ,  then 

𝑅𝑄 =   3  1  2  0 , and if we show elements of contour 𝑄 by x’s, and elements of contour 𝑅𝑄 by o’s,  

 

Lemma 2.3Let 𝑄 be a contour in a 𝑐-space of order 𝑛.   Then 

𝐶 𝑅𝑄𝑗 , 𝑅𝑄𝑘 = −𝐶(𝑄𝑗 , 𝑄𝑘) 

Proof.  Follows directly from Definition 2.2. 

The following theorem follows easily from Theorem 2.1 and Lemma 2.3: 

Theorem 2.2Let 𝑄 be a contour in a 𝑐-space of order 𝑛. Then, for all 𝑗, 𝑘 0. 1, … , 𝑛 − 1. 

𝐶 𝐼𝑅𝑄𝑗 , 𝐼𝑅𝑄𝑘 = 𝐶(𝑄𝑗 , 𝑄𝑘 ) 

Now, Theorem 2.2 implies that some contours will be 𝐼𝑅 invariant. 

Theorem 2.3 Let 𝑄 be a contour of cardinality 𝑘 in a 𝑐-space of order 𝑛.  Then, 𝑄 will be 𝐼𝑅 invariant if for all 

𝑗 = 0, 1, . . , 𝑘,  

𝑄𝑗 + 𝑄𝑘−1−𝑗 = 𝑛 − 1 

Proof.   By Definition 2.2,  

𝑅𝑄𝑗 = 𝑄𝑘−1−𝑗  

and by Definition 2.1 

𝐼𝑅𝑄𝑗 = 𝑛 − 1 − 𝑄𝑘−1−𝑗  

 

Since 𝐼𝑅invariance means that 𝐼𝑅𝑄𝑗 = 𝑄𝑗 , the result follows.  

So for example, if n = 6, the contour𝑄 =  1  2  3  4 will be 𝑅𝐼 invariant.  A contour class is 𝑅𝐼invariant if all its 

members are 𝑅𝐼 invariant.   

Definition 2.3 Two contours are 𝑅-related (or similarly, 𝐼𝑅-related) if one is the retrograde (or retrograde inverse) of 
the other. 
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The following theorem is a direct consequence of Definition 2.3: 

Theorem 2.4 Let 𝑄 be a contour in a 𝑐-space of order 𝑛, and let 𝑄 and 𝑄′ be 𝑅𝐼-related.  Let the comparison matrix 

of 𝑄 be 𝐴.  Then the comparison matrix of 𝑄′ is 𝐴𝑇′  

The graphs of such contours will be symmetric with respect to the diagonal.  For example, if we observe the graphs of 

two 𝑅𝐼-related contours  3  4  6  0  1  and  5  6  0  2  3  

 

A contour class is R-related (or IR-related) if every member of one is the retrograde (or retrograde inverse) of a 
member of the other.  

Obviously, in any contour space, some of the non-replicative contours can be obtained from others by the operations 
I, R, and IR.  This partitioning of contours is called segment classes.  Now, of all the 33 contour classes  

<0>,  <0  1>, <1  0>, <0  1  2>, <0  2  1>, <1  0  2>, <1  2  0>, <2  0  1>, <2  1  0>, <0  1  2  3>, 

<0  1  3  2>, <0  2  1  3>, <0  2  3  1>, <0  3  1  2>, <0  3  2  1>, <1  0  2  3>, <1  0  3  2>, 

<1  2  0  3>, < 1  2  3  0>, <1  3  0  2>, <1  3  2  0>, <2  0  1  3>, <2  0  3  1>, <2  1  0  3>, 

<2  1  3  0>, <2  3  0  1>, <2  3  1  0>, <3  0  1  2>, <3  0  2  1>, <3  1  0  2>, <3  1  2  0>, 

<3  2  0  1>, <3  2  1  0> 

in a contour class of order 4, we have the following 12 segment classes: 

<0>,  <0  1>,  <0  1  2>, <0  2  1>, <0  1  2  3>, <0  1  3  2>, <0  2  1  3>, <0  2  3  1>, <0  3  1  2>, <0  3  2  1>, 
<1  0  3  2>, <1  3  0  2> 

3. Group Theory and 𝒄-spaces 

There is also an interesting connection between group theory and 𝑐-spaces. 

Let us consider, for a given integer 𝑛 the set of symbols 

𝐷 =  𝑥𝑗𝑦𝑘 | 𝑗 = 0, 1; 𝑘 = 0, 1, … , 𝑛 − 1  

with the following rules: 

1. 𝑥𝑗𝑦𝑘 = 𝑥𝑗 ′𝑦𝑘′  if and only if 𝑖 = 𝑖′ and 𝑗 = 𝑗′ 

2. 𝑥2 = 𝑒 

3. 𝑦𝑛 = 𝑒 

4. 𝑥𝑦 =  𝑦−1𝑥 

where𝑒 denotes 𝑥0𝑦0 and 𝑦−1 is defined by the formula 
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𝑦𝑦−1 = 𝑦−1𝑦 = 𝑒 

It is easy to show that 𝐷 is a non-abelian group of order 2𝑛.  It is called the dihedral group. By interpreting 𝑦 as a 

rotation of the Euclidean plane about the origin through an angle of 
2𝜋

𝑛
, and 𝑥 as a reflection about the vertical axis, 

the dihedral group can be interpreted as the group of rigid motions that leave a regular 𝑛-gon invariant. 

An interesting special case is the dihedral group of order 4 (rigid motions that leave a square invariant).  Here 𝑥 is 

reflection about the vertical axis, and 𝑦 is a rotation through 90°.  The group elements are 𝑒, 𝑥, 𝑦, and 𝑥𝑦, and the 
group table is 

 𝑒 𝑥 𝑦 𝑥𝑦 

𝑒 𝑒 𝑥 𝑦 𝑥𝑦 

𝑥 𝑥 𝑒 𝑥𝑦 𝑦 

𝑦 𝑦 𝑥𝑦 𝑒 𝑥 

𝑥𝑦 𝑥𝑦 𝑦 𝑥 𝑒 

This is an abelian group called the Klein four group. 

Theorem 3.1The four operators 𝑃, 𝐼, 𝑅, and𝑅𝐼form a Klein four group. 

Proof. Result follows by replacing𝑒 by 𝑃, 𝑥 by 𝑅, 𝑦 by 𝐼, and 𝑥𝑦 by 𝑅𝐼. 

The following corollary is obvious: 

Corollary 3.1 The subgroups of the above group are 𝑃 ,  𝑃, 𝑅 ,  𝑃, 𝑅𝐼 , and  𝑃, 𝐼  
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