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Abstract

We consider a five-electron system in the Hubbard model with a coupling between nearest-neighbors. The structure of
essential spectrum and discrete spectrum of the systems in the sextet, and first, second, and third quartet states in a
v-dimensional lattice are investigated.

Keywords: essential spectrum, discrete spectrum, five-electron system, bound state, anti-bound state, Hubbard model,
doublet state, sextet state, quartet state.

2010 Mathematics Subject Classification: 62M15, 46L60, 47L.90, 70H06, 70F05.

1. Introduction

In the early 1970s, three papers [1]-[3], where a simple model of a metal was proposed that has become a
fundamental model in the theory of strongly correlated electron systems, appeared almost simultaneously and
independently. In that model, a single nondegenerate electron band with a local Coulomb interaction is considered. The
model Hamiltonian contains only two parameters: the matrix element t of electron hopping from a lattice site to a
neighboring site and the parameter U of the on-site Coulomb repulsion of two electrons. In the secondary quantization
representation, the Hamiltonian can be written as

H= th,y artl,y am,y + UZm a;'r—l,T am,Ta;'r—l,lam,l’ (1)

where aj,, and a,,, denote Fermi operators of creation and annihilation of an electron with spin y on a site m
and the summation over T means summation over the nearest neighbors on the lattice.
The model proposed in [1]-[3] was called the Hubbard model after John Hubbard, who made a fundamental contribution
to studying the statistical mechanics of that system, although the local form of Coulomb interaction was first introduced
for an impurity model in a metal by Anderson [4]. We also recall that the Hubbard model is a particular case of the
Shubin-Wonsowsky polaron model [5], which had appeared 30 years before [1]-[3]. In the Shubin-Wonsowsky model,
along with the on-site Coulomb interaction, the interaction of electrons on neighboring sites is also taken into account.
The Hubbard model is an approximation used in solid state physics to describe the transition between conducting and
insulating states. It is the simplest model describing particle interaction on a lattice. Its Hamiltonian contains only two
terms: the Kinetic term corresponding to the tunneling (hopping) of particles between lattice sites and a term
corresponding to the on-site interaction. Particles can be fermions, as in Hubbard’s original work, and also bosons. The
simplicity and sufficiency of Hamiltonian (1) have made the Hubbard model very popular and effective for describing
strongly correlated electron systems.

The Hubbard model well describes the behavior of particles in a periodic potential at sufficiently low temperatures such
that all particles are in the lower Bloch band and long-range interactions can be neglected. If the interaction between
particles on different sites is taken into account, then the model is often called the extended Hubbard model. It was
proposed for describing electrons in solids, and it remains especially interesting since then for studying high-temperature
superconductivity. Later, the extended Hubbard model also found applications in describing the behavior of ultracold
atoms in optical lattices. In considering electrons in solids, the Hubbard model can be considered a sophisticated version
of the model of strongly bound electrons, involving only the electron hopping term in the Hamiltonian. In the case of
strong interactions, these two models can give essentially different results. The Hubbard model exactly predicts the
existence of so-called Mott insulators, where conductance is absent due to strong repulsion between particles. The
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Hubbard model is based on the approximation of strongly coupled electrons. In the strongcoupling approximation,
electrons initially occupy orbitals in atoms (lattice sites) and then hop over to other atoms, thus conducting the current.
Mathematically, this is represented by the so-called hopping integral. This process can be considered the physical
phenomenon underlying the occurrence of electron bands in crystal materials. But the interaction between electrons is not
considered in more general band theories. In addition to the hopping integral, which explains the conductance of the
material, the Hubbard model contains the so-called on-site repulsion, corresponding to the Coulomb repulsion between
electrons. This leads to a competition between the hopping integral, which depends on the mutual position of lattice sites,
and the on-site repulsion, which is independent of the atom positions. As a result, the Hubbard model explains the
metal—insulator transition in oxides of some transition metals. When such a material is heated, the distance between
nearest-neighbor sites increases, the hopping integral decreases, and on-site repulsion becomes dominant.

The Hubbard model is currently one of the most extensively studied multielectron models of metals [6]-[10]. Therefore,
obtaining exact results for the spectrum and wave functions of the crystal described by the Hubbard model is of great
interest. The spectrum and wave functions of the system of two electrons in a crystal described by the Hubbard
Hamiltonian were studied in [6]. It is known that two-electron systems can be in two states, triplet and singlet [6]-[10]. It
was proved in [6] that the spectrum of the system Hamiltonian H* in the triplet state is purely continuous and coincides
with a segment [m, M] = [2A — 4Bv, 2A + 4Bv], and the operator H* of the system in the singlet state, in addition to
the continuous spectrum [m, M], has a unique antibound state for some values of the quasimomentum. For the antibound
state, correlated motion of the electrons is realized under which the contribution of binary states is large. Because the
system is closed, the energy must remain constant and large. This prevents the electrons from being separated by long
distances. Next, an essential point is that bound states (sometimes called scattering-type states) do not form below the
continuous spectrum. This can be easily understood because the interaction is repulsive. We note that a converse situation
is realized for U < 0: below the continuous spectrum, there is a bound state (antibound states are absent) because the
electrons are then attracted to one another. For the first band, the spectrum is independent of the parameter U of the
on-site Coulomb interaction of two electrons and corresponds to the energy of two noninteracting electrons, being exactly
equal to the triplet band. The second band is determined by Coulomb interaction to a much greater degree: both the
amplitudes and the energy of two electrons depend on U, and the band itself disappears as U — 0 and increases without
bound as U — oo. The second band largely corresponds to a one-particle state, namely, the motion of the doublet, i.e.,
two-electron bound states.

The spectrum and wave functions of the system of three electrons in a crystal described by the Hubbard Hamiltonian were
studied in [11]. In the three-electron systems are exists quartet state, and two type doublet states. The quartet state
corresponds to the free motion of three electrons over the lattice with the basic functions qfn/ fw = ay 1@y 1Ayt @o. IN
the work [11] is proved that the essential spectrum of the system in a quartet state consists of a single segment and the
three-electron bound state or the three-electron antibound state is absent. The doublet state corresponds to the basic
functions  'd,/2, = ah al atip, and 2d)/2  =at i atial i@ 1fv=1and U>0, then the essential
spectrum of the system of first doublet state operator H{ is exactly the union of three segments and the discrete
spectrum of A¢ consistsof a single point, i.e., in the system exists unique antibound state. In the two-dimensional case,
we have the analogous results. In the three-dimensional case, or the essential spectrum of the system in the first doublet
state operator H{ is the union of three segments and the discrete spectrum of operator H consists of a single point,
i.e., in the system exists only one antibound state, or the essential spectrum of the system in the first doublet state operator
H¢ is the union of two segments and the discrete spectrum of the operator H{ is empty, or the essential spectrum of the
system in the first doublet state operator H{ is consists of a single segment, and discrete spectrum is empty, i.e., in the
system the antibound state is absent. In the one-dimensional case, the essential spectrum of the operator A¢ of second
doublet state is the union of three segments, and the discrete spectrum of operator H¢ consists of no more than one point.
In the two-dimensional case, we have analogous results. In the three-dimensional case, or the essential spectrum of the
system in the second doublet state operator S is the union of three segments and the discrete spectrum of operator HY
consists of no more than one point, i.e., in the system exists no more than one antibound state, or the essential spectrum of
the system in the second doublet state operator H¢ s the union of two segments and the discrete spectrum of the
operator H¢ is empty, or the essential spectrum of the system in the second doublet state operator H¢ is consists of a
single segment, and discrete spectrum is empty, i.e., in the system the antibound state is absent.
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The spectrum of the energy operator of system of four electrons in a crystal described by the Hubbard Hamiltonian in the
triplet state were studied in [12]. In the four-electron systems are exists quintet state, and three type triplet states, and
two type singlet states. The triplet state corresponds to the basic functions 't} ., = A 10 1G5 10T g, 2t gy =
apraiiat atioo, Ythapy = ahratatiatieo. If v=1and U > 0, then the essential spectrum of the system first
triplet state operator *H}! is exactly the union of two segments and the discrete spectrum of operator 1A} is empty. In
the two-dimensional case, we have the analogous results. In the three-dimensional case, the essential spectrum of the
system first triplet-state operator 1A} is the union of two segment and the discrete spectrum of operator [} is
empty, or the essential spectrum of the system first triplet-state operator 1A} is single segment and the discrete spectrum
of operator A} is empty. If v=1 and U > 0, then the essential spectrum of the system second triplet state operator
2H is exactly the union of three segments and the discrete spectrum of operator 2H} is consists no more than one
point. In the two-dimensional case, we have the analogous results. In the three-dimensional case, the essential spectrum
of the system second triplet-state operator 2H} is the union of three segments and the discrete spectrum of the operator
2H1 is consists no more than one point, or the essential spectrum of the system second triplet-state operator 2H} is the
union of two segments and the discrete spectrum of the system second triplet state operator A} is empty, or the
essential spectrum of the system second triplet-state operator 2H} is consists of single segment and the discrete
spectrum of the operator 2H} is empty. If v =1 and U > 0, the essential spectrum of the system third triplet-state
operator 3H! is exactly the union of three segments and the discrete spectrum of the operator 3H} is consists no
more than one point. In two-dimensional case, we have analogous results. In the three-dimensional case, the essential
spectrum of the system third triplet-state operator 3H! is the union of three segments, and the discrete spectrum of the
operator 3H} is consists no more than one point or the essential spectrum of the system third triplet-state operator 3H}!
is the union of two segments, and the discrete spectrum of the operator 3H} is empty, or the essential spectrum of the
system third triplet-state operator 2H} is consists of single segment, and the discrete spectrum of the operator 3H} is
empty. We see that there are three triplet states, and they have different origins.

The spectrum of the energy operator of four-electron systems in the Hubbard model in the quintet, and singlet states were
studied in [13]. The quintet state corresponds to the free motion of four electrons over the lattice with the basic functions
Qmnpr = G110 1@l 1o . In the work [13] proved, that the spectrum of the system in a quintet state is purely

continuous and coincides with the segment [44 — 8Bv,4A + 8Bv], and the four-electron bound states or the

four-electron antibound states is absent. The singlet state corresponds to the basic functions
1.0

Spare = Garaaraliati oo, s, = atral afiat @o, and these two singlet states have different origins.

If v=1 and U > 0, then the essential spectrum of the system of first singlet-state operator 'H; is exactly the union of
three segments and the discrete spectrum of the operator 'Hj is consists only one point. In the two-dimensional case,
we have the analogous results. In the three-dimensional case, the essential spectrum of the system first singlet-state
operator '3 is the union of three segments and the discrete spectrum of the operator A is consists only one point,
or the essential spectrum of the system of first singlet-state operator H; is the union of two segment and the discrete
spectrum of the operator *Hj is empty, or the essential spectrum of the system of first singlet-state operator 1[; is
consists of single segment and the discrete spectrum of operator Hj is empty.

If v=1and U > 0, then the essential spectrum of the system of second singlet-state operator 2H; is exactly the
union of three segments and the discrete spectrum of operator 2[5 is consists only one point. In two-dimensional case,
we have the analogous results. In the three-dimensional case, the essential spectrum of the system second singlet-state
operator 2H; isthe union of three segments and the discrete spectrum of the operator 2H; is consists only one point,
or the essential spectrum of the system of second singlet-state operator 2 is the union of two segment and the discrete
spectrum of the operator 2H is empty, or the essential spectrum of the system of second singlet-state operator 2H; is
consists of single segment and the discrete spectrum of operator 2Hj is empty.

Here, we consider the energy operator of five-electron systems in the Hubbard model and describe the structure of the
essential spectra and discrete spectrum of the system for sextet and first, second, third quartet states.
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The Hamiltonian of the chosen model has the form

H=AY 0y Ghyamy +BYmy Ghymsry + U X Gt Q1O (G 1 (2) Here H is the electron energy at
a lattice site, B is the transfer integral between neighboring sites (we assume that B > 0 for convenience), T = te;,
j=12,..,v, where g are unit mutually orthogonal vectors, which means that summation is taken over the nearest
neighbors, U is the parameter of the on-site Coulomb interaction of two electrons, y is the spin index, y =T or y ={,
T and | denote the spin values % and —%, and a;,, and a,, are the respective electron creation and annihilation
operators at a site m € ZV.

In the five-electron systems exists sextet state, four type quartet states, and five type doublet states. The energy of the
system depends on its total spin S. Along with the Hamiltonian, the N, electron system is characterized by the total
Spin' S, S = Siuxr Smax — 1 v Smin» Sax = %,Smin = 0,%. Hamiltonian (2) commutes with all components of the
total spin operator S = (S*,57,5%), and the structure of eigenfunctions and eigenvalues of the system therefore depends
on S. The Hamiltonian H acts in the antisymmetric Fo'ck space #,;. Below we give the constructions of the Fo'ck
space F(#). Let # be a Hilbert space and denote by #™ the n — fold tensor product " = HQH QH &

~QFH. Weset HO=C and F(H) =@ H". The F(F ) is called the Fo'ck space over H ; it will be
separably, if A is. For example, if # = L,(R), then an element F(?—T) is a sequence of functions y =
(o, Y1 (x1), P2 (1, %2), W3 (X1, %2, %3), ..y SO that [1hg]% + X5q [ (1, X, e, %) [ dixy d; .. di,, < 00,

Actually, it is not F(ﬂ"{' ) itself, but two of its subspaces which are used most frequently in quantum field theory.
These two subspaces are constructed as follows: Let B, be the permutation group on n elements, and let i,, be a basis
for space H. For each geP,, we define an operator (which we also denote by o) on basis elements " by
(P, @ 91, ...Qp, ) = Phey X Phy oy R..Q Py The operator o extends by linearity to a bounded operator
(of norm one) on space E™, so we can define S, = %de p, 0. That the operator S, is the operator of orthogonal
projection: S2 = S,, and S; = S,,. The range of S, is called n — fold symmetric tensor product of . In the case,
where 7 = Ly,(R) and H" =L,(RA) ® L,(R) ® ... ® Ly(R) = L,(R™), S,(H™) is just the subspace of L,(R™),
of all functions, left invariant under any permutation of the variables. We now define F,(H) = @S, (H"). The
space F,(H) is called the symmetrical Fo'ck space over ', or Boson Fo'ck space over .

Let (.) is function from B, to {1,—1}, which is one on even permutations and minus one on odd permutations.
Define A, = %Z(,Epn e(o)o; then A, is an orthogonal projector on H™. A,(H™) is called the n— fold
antisymmetrical tensor product of #. In the case, where H = L,(R), A,(H™) is just the subspace of L,(R™),
consisting of those functions odd under interchange of two coordinates. The subspace E, (7-[) DL A, (H™) is
called the antisymmetrical Fo'ck space over A or the Fermion Fo'ck space over H.

2. Sextet state
Let ¢, be the vacuum vector in the space H,, . The sextet state corresponds to the free motion of five electrons over the

lattice with the basic functions Sp/qr ey = Apragiatialiafioe. The subspace Hs,, corresponding to the sextet

state is the set of all vectors of the form ¥5 , = ¥, ¢ rriez f(D, @ 7 L, l)s q”lezv,fel , Where [$° is the subspace
of antisymmetric functions in the space 1,((Z")>).

Theorem 1. The subspace Hs ), isinvariant under the operator H, and the restriction Hg,, of operator H to
the subspace Hg,, isabounded self-adjoint operator. It generates a bounded self-adjoint operator Hs,, acting in the
space 15 as Hsjpys, =5Af(0qrt D+BEfp+TtqrtD+fpqtTrt,D+fpqr+otD)+
SParttTl+/p,.q 5l 3)

(31

The operator Hs, acts on a vector ig,eHs, as Hs/zlps/z—qu”lezv(HS/zf)(p,q,r t,Ds qulfzv.
(4)
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Proof. We act with the Hamiltonian H on vectors £ /2€Hs ,  using the standard anticommutation relations between
electron creation and annihilation operators at lattice sites, {am_y,a:[ﬁ} = 8 nby 5 {am,y'an,ﬁ}:{ar;,y'aiﬁ} =0,
and also take into account that  a,, , o = 6, Wwhere 0 is the zero elementof Hg,,. This yields the statement of the
theorem.

Lemma 1. The spectra of the operators Hs,, and Hs,, coincide.

Proof. Because the operators Hs,, and Hs,, are bounded self-adjoint operators, it follows that if 2eo (H§>
2

then the Weyl criterion (see [14], chapter VII, paragraph 3, pp. 262- 263) implies that there is a sequence {¥, }n=1

such that ||, 1| =1 and lim, .|| (H§ —,1) Yull = 0. We set 9, =3, 0,00 fu @ a7t Datratratatialioq.
2

Then || (12 = 2)|1? = <(H§ =), (2 -2) wn) = Sparea||( = 2) gm0 x

+ oot o+ ot ot P P —
X (ap,Taq,Tar,Tat,Tal,T(pOl ap,Taq,Tar,Tat,Tal,T(pO) =

= Ypartl |(17§ —/1) E,(.qr, t,l)| X (apracia,1ag1ap1a 0t ratiatial 00, 00) =
2
= Z “(Hgs—/'l)Fn(p,q,r,t.l)‘ (©0,90) =
p,q,7,t,l 2
2
= S arcd |(175 —,1) E®qr t,l)| 50 as  noo, where F =Y, ... f@martD. It follows that
2

Aea(Hs ;). Consequently, a(H§> c a(ﬁ§). Conversely, let 1 € a(ﬁg). Then, by the Weyl criterion, there is a
2 2 2
sequence {F,}v-; such that ||E,||=1 and limnqm”(ﬁg —/1) Yoll = 0. Setting  F, =Y, fn(@qrtD,
2

1Full = Cpgretfa@ a6, DIYV2, we  conclude that |1l = [IFl| = 1 and 1| (72 = 2) Rl = 11 (7 -
2 2
AYnl/-0 as n—co. This means that f€o(#Z52s) and hence oH52scof52s. These two relations imply

o (Hs) =0 (175)

We call the operator Hs the five-electron sextet state operator.
2

Let F:1,((ZV)°) - L,((TV)°) = H¢  be the Fourier transform, where TV is the v- dimensional torus endowed with
2

the normalized Lebesgue measure dA, ie. A(TY)=1. We set  H:, =FH;,F~'. In the quasimomentum
representation, the operator H: /2 acts in the Hilbert space L3S ((TV)*) where L35 is the subspace of antisymmetric
functions in L,((T")>).

Theorem 2. The Fourier transform of operator Hz,, is an operator Hs,, = FHS,F~* acting in the space H

2
be the formula As ;95 = h(4, 1y, 0, f (A, 1,v,6,7), (®)

2
where h(A,u,v,0,n) = 54+ 2B Y} _1[cos A; + cos u; + cosy; + cos6; + cosn;].
The proof Theorem 2, is straightforward of (3) using the Fourier transformation.
It is obvious that the spectrum of operator 1755/2 is purely continuous and coincides with the value set of the

function h(A,1,v,0,7), ie., a(ﬁg) = oot (HE) = [54 — 10Bv, 54 + 10Bv]. Therefore, the sextet state spectrum
2 2

is independent of the Coulomb interaction parameter U and is the set of energies of five noninteracting electrons
moving in the crystal. This result is totally natural because the sextet state cannot contain states with two electrons at a
site. Hence, in the sextet state, the spectrum of five-electron systems can be evaluated exactly and is purely continuous.
The spectral problem that we consider here is a particular case of the problem of finding the spectrum of a system of N
noninteracting electrons in a crystal lattice.
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By Hund's rule, the minimum-energy state in an N — electron system is the state where all spins are directed upward,
i.e., the state T7T --- T. By the Pauli exclusion principle, this state cannot contain states with two electrons at one site. In
this case, the spectrum of the system is independent of the Coulomb interaction parameter U and is the band energy of
N noninteracting electrons moving in the crystal. The spectrum of the system is then purely continuous.

3. First quartet state

In the system exists four type quartet states. The quartet state corresponds to the basic functions

2 3/2 3 3/2
qm,n,r,t,lEZ" qm,n,r,t,lEZV

1_3/2 —
qm,n,r,t,lEZ" -

+ ottt ot R P S L — at 4t 4t 4t ot
A On 10y 2 Qe 1 Q11 Pos = A1 An 1 Gr 10111 Pos = Ay n 1 Qr 1012 QprPos

4 3/2
qm,n,r,t,lEZ"

The subspace 1:77[51 20 corresponding to the first five-electron quartet state is the set of all vectors of the form 11/);1 =
Ymarciezy fmnr,t 1) 1qrs;l/,rzl,r,t,l€ZV’f € 15%, where I§° is the subspace of antisymmetric functions in the space
1,((Z¥)%). The restriction 1H§ /2 of H tothe subspace 17"{'3‘1/2, is called the five-electron first quartet state operator.
Theorem 3. The subspace 177[3"/2 is invariant under the operator H, and the operator 1H§’/2 is a
bounded self-adjoint operator. It generates a bounded self-adjoint operator 1H§ /2 acting in the space 15° as
1175/2 11,0§’/2 =5SAf(mn,r,t, ) +BY. [fm+t,nrt,D)+fmn+rt,rt D)+ fmnr+1,t,)+f(mnrt+
o l+fmnr,tl+T+U[Smn+0m,r+dm,t+5m ] fimnnr, L. (6)

R P U e
= A1 Gr 1111 Po-

The operator 'Hy,, actsonavector ', € 'Hy, as
1Hg/2 11P§I/2 = Zm,n,r,t,leZ"( 1Hg/2f)(m' n,r,t, l) 11/]; (7)

2
Proof. The proof of Theorem 3 is analogous to proof of Theorem 1.
We set 'H{ =F 1H§/2F‘1. In the quasimomentum representation, the operator 'H{ acts in the Hilbert space

2 2
LE((T")%) as
1H§q 11/J§ ={5A+ 2B Y}_4[cosA; + cosy; + cosy; + cosB; + cosn;]} X
2 2

xf(Awy 6,n)+U J[f(s,/Hu—s,%@,n) +f(s,uA+y—s0,n)+

TV
(G uwy,A+80—sn)+f(s,1y,0,4+n—s)]ds, 8
where L% ((TV)®) is the subspace of antisymmetric functions in L, ((T")>). Taking into account that the

function f(4,u,v,0,n) isantisymmetric, and using tensor products of Hilbert spaces and tensor products of operators in
Hilbert spaces [15], we can verify that the operator 1H§q can be represented in the form
2

B W =MOnQIQI+IQH¥,0)QI+IQIQH;(An, (9

where  (H3f)(A, 1) = {24 + 2B 35 _1(cos A; + cosu)Y (A w) + U [, f(s,A+u—s)ds,  (Hif)(y,0) = {24+
2B Yy -1(cosy; +cos 0} (v,0) + U [, f(s,A + 6 — 5)ds, (B3 f)Am) = {A+2BX;_  cosn}f(A,m) —
~U [, f(ssA+y—s)ds—U [, f(s,A+n—s)ds, and I isthe unit operator.

The spectrum of the operator A® I +1 @ B, where A and B are densely defined bounded linear operators,
was studied in [16-18]. Explicit formulas were given there that express the essential spectrum o,,, (A ® [ +1 Q B) and

discrete spectrum gy, (A Q I +1Q B) of operator AQ I +1 Q B in terms of the spectrum a(A) and the discrete
spectrum oy;,. (A) of A and in terms of the spectrum o (B) and the discrete spectrum o4, (B) of B:

Odisc ( AQI+IQ®B) = {o(4) \ Oess (A) +a(B) \ Oess (B)} \ {Uess (A) + O'(B)) U(G(A) + 0ess (B))},
(10)
Opss (AQ T+ 1 ® B) = (0,55 (A) + d(B)) U(0(A) + 55 (B)). (11)

Itisclearthat c(AQR I+ 1 QB)={A+u:A1€0(d),u € o(B)}.
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Consequently, we must investigate the spectrum of the operators H}, HZ,and Hj. Let the total quasimomentum of the
two-electron system A + u = A; be fixed. We let L,(T'y,) denote the space of functions that are square integrable on

the manifold T, = {(4,1): 1+ u = A;}. It is known [19] that the operator H} and the space H; = L,((T")%) can
be decomposed into a direct integral H; = @ [, Hy4,dy,  H; = @ [,, Hj,, dA, of operators Hj,, and spaces
H3a, = Lp(Ty,) suchthatthe spaces 7, are invariant under the operators /3 and each operator A3 actsin H3,,

according to the formula (H3,, fa,) (1) ={2A+4BY;)_; cos%l1 cos(%1 —A)3Ma, () + U [, fa, (5)ds,

where fy, (x)=f(x, A1 — x).
It is known that the continuous spectrum of 3, , Isindependent of the parameter U and consists of the intervals
~ A A
Ocont (H34,) = GY, = [m} .M} | = [2A—4B %), cos -, 2A + 4B Xy -y cos].
Definition 1. The eigenfunction ¢, € L,(T" x T¥) of the operator Hj, ~ corresponding to an
eigenvalue z,, € G} is called a bound state (BS) (antibound state (ABS)) of H} with the quasi momentum A; and
the quantity z,, is called the energy of this state.

We consider the operator K, acting the space #;,, according to the formula
U

(KAl (2 fAl)(x) = fTv 7 7 fAl (t)dt.

A
2A+4BYy 4 cos71cos 71—tl-)—z

It is a completely continuous operator in 34, for z, & G =[2A —4B Y _; cos

Weset Dy (z)=1+U [,

%, 2A+4BY; _;cos %].

dsyds;..ds,

2A+4B Y _ cos %cos (%a—ti)—z'

Lemma 2. A number z, € Gy, is an eigenvalue of the operator ﬁ%/\l if and only if it is a zero of the
function D} (z) i.e., Dy (z) = 0.

Proof. Let the number z, E G}, be an eigenvalue of the operator ﬁ%Al, and ¢, (x) be the corresponding

eigenfunction, i.e., {24 +4BY!_; cos/lz—llcos(%l1 =)} e, (D) +U fTV ®4,(8)ds = zop,, (D).
Let Ya,(x) =[2A+4B Y], cos%l1 cos(%l1 -1 )-z] ®4,(x) . Then
1
lp/ll (x) +U fTv A i

2A4+4BY}_; cos 71 cos (71—si)—z

Ky, (2). It then follows that Df (z,) = 0. Now let z = z, be a zero of the function Dy (z), i.e., Dy () =0. It
follows from the Fredholm theorem than the homogeneous equation

Yu, () +U L, -

Pa,(s)ds =0, ie., the number u =1 is an eigenvalue of the operator

Y, (s)ds = 0 has a nontrivial solution. This means that the number z = z,

i i
2A4+4BY}_; cos A71 cos (71—si)—z
is an eigenvalue of the operator ﬁ%Al.

We consider the one-dimensional case.

Theorem 4. a). Atv=1 and U < 0, and for all values of parameters of the Hamiltonian, the operator Hj,

has a unique eigenvalue z; = 24 —\/U2 + 16B2cos? % that is below the continuous spectrum of ﬁ%Al, ie.,

zy <my,.
b). Atv=1 and U > 0, and for all values of parameters of the Hamiltonian, the operator ﬁ%/\l has a unique

eigenvalue Z; = 24 + \/UZ + 16B2cos? /12_1 that is above the continuous spectrum of Hj, , ie., Z; > Mj..

Proof. If U < 0, then in the one-dimensional case, the function D}(1 (z) decreases monotonically outside
the continuous spectrum domain of the operator H3, , i.e., in the intervals (—co,mj; ) and (M} ,+). For z < mj,
the function D} (z) decreases from 1 to —oo, Dy (z) > 1 as z— —, Dy (2) > —oo, as z—>m}11 - 0.

Therefore, below the value m}ll, the  function D}\l(z) has a single zero at the point

z=2z =2A— JUZ + 16320052% <mj. Forz>M;, and U <0, the function Dj (z) decreases from +oo

to 1, Dj (2) >+, as z—Mj +0, Dy (z) > 1 asz— +oo. Therefore, above the value M , the function
D4, (z) cannot vanish. If U >0, and z <mj, the function D} (z) increases from 1 to +oo, Dy (z2) =1 as
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Z - —oo, D,{l (z) > +o0 asz- mﬁl — 0. Therefore, below the value m/lll’ the function D,{l (z) cannot vanish.
For z>Mj; and U >0, the function D} (z) increases from —co to 1, Dj (z) > 1 as z - +oo, D} (2) -
—00 as z - M,}l + 0. Therefore, above the value Mjl, the function D}\1 (z) vanishes on a single point z = Z; =

24 +\/U2 + 16Bzcosz/12—1. In the two-dimensional case, we have analogous results. If U < 0, then the function

D} (z) decreases monotonically outside the continuous spectrum domain of the operator Hj, . For z <mj the
function D (z) decreases from 1 to —oo, Df (z) » 1 as z - —oo, Df (2) - —o0 as z —» mj, — 0. Therefore,
below the value mj , the function D (z) has asingle zero at the point z; <mj . If U <0, and z> M, then
the function D,%l (z) decreases from +oo0 to 1. Therefore, above the value M/%l the function D}{1 (z) cannot vanish.
For U>0, and z<mj, the function DX (z) increases from 1 to +oo, Df (2) > 1 as z > —oo, Dy (2) -
+oo as z - mj, — 0. Therefore, below the value m7, the function Df (z) cannotvanish. For U >0, and z > M},
the function DX (z) increases from —co to 1, Df (2) »1 as z— 4w, D (2) > —c0 as z-Mj +0.

Therefore, above the value M,%l the function D,%l (z) hasasingle zero at the point Z; > M,%l.
dSldSZ dS3

We consider three-dimensional case. Denote m= fT3 o 7 :
i=1 c0571(1+cos (71—si))
For U<0, and U< —fn—B below the continuous spectrum of the operator 3, ~the function D (z) has a

single zero at the point z; < mﬁl. For U <0, and < —‘:n—B < U <0, below of the continuous spectrum of the
For U > 0, and

d51d82 dS3
A4 A}
21-3:1 cos%(l—cos (71—51'))

U> %, above the continuous spectrum of the operator ﬁ%Al the function D,%l (z) has a single zero at the point

operator ﬁ%Al, the function Dﬁl (z) cannot vanish. We now denote M= fT3

Z;>Mj . For U>0, and 0 <U < %, above the continuous spectrum of the operator H}, ~the function D7 (2)

cannot vanish.
Consequently, we have the following theorem:
4B

Theorem 5. a). If v=3 and U <0, U<-—, then the operator Hj, hasa unique eigenvalue
z1, the below of the continuous spectrum of operator Hz, , i.e., z; <mj .
b). If v=3 and U<O, —%s U <0, then the operator 1721,11 has no eigenvalue the below of the
continuous spectrum of operator Hz, .
¢ If v=3 and U>0,U> %, then the operator Hzl,ll has a unique eigenvalue Z;, the above of the
continuous spectrum of operator Hj, , i.e., Z; > Mj .
d.lfv=3 and U>0,0<U< %, then the operator 1721,11 has no eigenvalue the above of the continuous

spectrum of operator Hz .
We let A, =y + 6. We now investigated the spectrum of the operator HZZAZ, i.e., the operator

_ o A A
(T, fi) () = 24+ 4B ) cos Zeos(G=ya, D+ U [ £, s
n=1 TV

It is known that the continuous spectrum of the operator 1722,12 is independent
of U and coincides with the segment o, (H34,) = G},=[m},, M},] =[2A-

4BYY_, cos /12—12,2A+4BZL-V:1 cos Az—lz].

Comparing the actions of operators H;, and HZ,, we show that the operators HZ, and HZ,, are the
identical operators. Therefore, the spectra of these operators coincide. It is necessary only exchange A; on A,. We
let z, and Z, denote the eigenvalues of operator H3,,.

Let A; =A1+n. We now investigated the spectra of operator ’I—T,ﬁ.
(AR, f2,)(D) = {A+ 2B XY cos(A3 = 2)fa, (D) = 2U [, fa, (s) ds.

It is known that the continuous spectrum of the operator Hi is independent of U and coincides with the
segment oo (A3,) = G, = [m},,M},] = [A— 2Bv,A + 2Bv].
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v 14 _ dsids,_ds,
Denote DA3 =1 2UfTV A+2B ¥Y_; cos(As—s;)—z'

The analogue of the Lemma 2 holds for the in this case. We consider the one-dimensional case.

Theorem 6. a). At v=1 and U <0, and for all values of parameters of the Hamiltonian, the
operator Hj, has a unique eigenvalue Z; =A+ VUZ? + B2, that is above the continuous spectrum of Hj, e,
73> Mj,.

b). At v=1 and U >0, and for all values of parameters of the Hamiltonian, the operator H,i has a
unique eigenvalue z; = A —VUZ + B2, that is below the continuous spectrum of Hj , i.e., z3 <mj,.

Sddydz 1,516 (see. [20]).

3—cosx —cosy —cosz

We consider three-dimensional case, and the Watson integral W = %fon o IS

. . 3dxdyd w
Because the measure v is normalized, therefore [, ———=———=—.

3—cosx —cosy —cosz 3

Theorem 7.a). Atv=3, U<0, and U< —%, then the operator Hj, has a unique eigenvalue Z,
that is above the continuous spectrum of A3, ie., Z3>M; . If U <0, and —% < U <0, then the operator
Hja has no eigenvalue, that is above the continuous spectrum of 17,?3.

b). Atv=3, U>0, and U > %B, then the operator 17,?3 has a unique eigenvalue z; that is below the
continuous spectrum of A7, ie, zz<mj. If U>0, and 0<U S%B, then the operator Hj, has no

eigenvalue, that is below the continuous spectrum of A3 .

We now using the obtaining results and the representation (9), we can describe the structure of essential spectrum and
discrete spectrum of the operator of first five-electron quartet state:

Theorem 8. At v=1 and U <0, the essential spectrum of the system first five-electron quartet state
operator Ay, is exactly the union of seven segments: g ( 1ﬁ§) =[la+c+eb+d+flulat+c+z;,b+d+
z3Ufare+z2b+f+z2]Ufat z2+23,0+22+23]Uc+e+z1,d+/- +ZZJ Uct+z1+23,d+z1+23Ve+z1+22,f+z1+2z2. The
discrete spectrum of operator 1H§ /2 consists of no more than one point: o, ( 1173‘1 ) ={zy +2z,+ 73}, or

2

Odisc 11:73(1 = Q. 1A 1A y 1
Here and2Hereafter a = 24 — 4Bcos71, b= 24+ 4Bcos71, c= 24 — 4Bcos 72 d= 24 + 4Bcos 72 e=A-2B,

f=A+2B, z,=24— \/UZ +16B%cos2ZL,  z, = 2A — JUZ +16B%cos2 22, 73 = A+ 2VUZ + B2,
Proof. If v=1 and U < 0, then the continuous spectrum of the operator 1721/11 consists of the interval
Ocont (Hzl,ll) = [a,b] = [24 — 4Bcos/12—1,2A + 4Bcos %], and the discrete spectrum of operator Hzl/ll consists of a

single eigenvalue z; = 24 — JUZ + 16B?cos? % The continuous spectrum of the operator HZZAZ consists of the

interval  0.on; (H24,) = [c, d] =[2A-4Bcos/12—2, 2A + 4Bcos %], and the discrete spectrum of operator HZ,, consists

of a single eigenvalue z, = 24 — JUZ + 16B?cos? /12_2 The continuous spectrum of the operator sz consists of the
interval .., (H3,) = [e,f] = {A—2B,A+2B], and the discrete spectrum of operator A}, consists of a single
eigenvalue Z; = A ++U? + B2. It follows from representation (9) that a( 1H§) ={A+u+yireo(ly, )ue
OH2422 yEaHA33. Therefore, the essential spectrum of the system first ?ive-electron doublet state operator
1173" consists of the union of seven segments: [a+c+e,b+d+f], and [a+c+Z;,b+d+Z;], and [at+e+z,,b+f+2,], and
[a+;2+z~3,b+zz+z3], and [c+e+zy,d+f+z;], and [c+z;+Z5,d+2,+Z3], and [e+z; + Z3,f+z;+Z3], and the number z;+z, +
Z3 is the eigenvalue of this operator (the antibound state energy). If z;+z, + Z; € g, ( 1ﬁ§) then the number
2

z1+z5 + Z3 lie in the discrete spectrum of operator 1H§q , if zy+z, + 73 € 0, ( 1ﬁ§ ) then discrete spectrum of
2 2
operator 'Hj is empty, i.e. g, ( 1H§") = Q.
2

2
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The following theorem is proved totally similarly to Theorem 8.
Theorem 9. At v=/ and U > 0 the essential spectrum of the system first five-electron quartet state

operator 1175 is exactly the union of seven segments: o, ( 1H§) =la+c+eb+d+flUla+c+2z;,b+d+
2 2
z3Ua+e+z2,6+f+z2Ufa+z2+23,6+22+23]U[c+e+z1,d+/+z]1]Uctz1+23,d+z1+2z3Ufe+z1+22, f+z1+22].

The discrete spectrum of operator 1H§q is consists of no more than one point: ay;,. ( 1ﬁ§q ) ={Z, + 27, + z3}, or
2

2
ouse (1) = 0.

2

Here 2, = 24 + \/UZ +16B%cos2%L, z, =24+ JUZ +16B%cos22,  z3 = A— 2VUZ + BZ.
In the two-dimensional case we have the analogous results. We now consider the three-dimensional case. Let v=3:
Theorem 10. The following statements hold:

a). Letv=3and U<0, U< —‘:n—B, m< %W, orU<0,U< —%, m > %W. Then the essential spectrum of the

system first five-electron quartet state operator Ay is the union of seven segments: o, < A ) =la+c+eb+
2

2
d+fUa+c+z23 0+d+z3Ulate+22,0+/+22]Ua+z2+23,6+22+23U[ct+e+z1,0+T+ 21 JUc+z1+23,d+z1+2z3Ue+z
1+22 f+z1+z2. The discrete spectrum of operator 1/32 is consists of no more than one point:

Odisc ( 11‘_1"5) = {Z1 + 2z, + 23}; or Ogisc ( 1ﬁ§> = Q.
2 2

Here, a=2A—-4BY} costl,  b=2A+4BY} costl, ¢=24-4B3¥) cos%Z, d=24+

3 ALZ _ _ - - 71 - .
4B Y’_; cos 5 e= A—6B, f=A+6B,and z; isan eigenvalue of operator H,,,, and z, isan eigenvalue
of operator HZZAl, and z; isan eigenvalue of operator H,i.

b). Let v=3, U <0, —%B <U< —A;n—B, and m >§W. Then the essential spectrum of the system first

five-electron quartet state operator 'Hj is the union of four segments: gy ( 1I7§) =la+c+eb+d+flu
2 2
[a+e+z,,b+f+2z]U[c+e+z,d+f+2z]Ule+2zy+2,,f+2,+2,]. The discrete spectrum of the
operator 'Hj isempty: oy, ( 1I7§) = Q.
2 2
c). Let v=3, U <0, —% SU< —%, and m <§W. Then the essential spectrum of the system first

five-electron quartet state operator 'Hj is the union of two segments: gy ( 1H§> =la+c+eb+d+flu
2 2
[a + ¢+ Z;,b + d + Z3]. The discrete spectrum of the operator 1ﬁ§ is empty: gy;sc ( 1ﬁ§q> = 0.
2

2
d). Let v=3, U <0, —;—B <U<0 and m > gw, or —% <U<0, and m< %W. Then the essential

spectrum of the system first five-electron quartet
state operator 'Hy is consists of single segment: oy, ( 1173") =[a+c+eb+d+f], and the discrete spectrum
2

2
of the operator 'Y is empty: g, ( 1H§q) = Q.
2 2
Theorem 11. The following statements hold:
a). Let v=3, U>0, and U >%, M <§W, or U>0, and U >%, M >§W. Then the essential
spectrum of the system first five-electron quartet state operator 1ﬁ§ is the union of seven segments: g, ( 1ﬁ§ ) =
2

2
[a+c+eb+d+flula+c+z3,b+d+z3]U[ ater Zyb+f+Z]Ula+Z,+23,b+ 7, +23]U[c+e+
Zi,d+f+ 2] Ulc+2 +23,d+2 +2z3]U e+ 2 + 2y, f + 2, + Z,]. The discrete spectrum of the operator *Hy

2

is consists of no more one point: o;s. ( 1H§) ={#4 +2Z,+ 23}, or
2

Odisc ( 1H§q) = @
2

Here, Z; is an eigenvalue of the operator ﬁzl,ll, and Z, is an eigenvalue of the operator sz,h, and zs, is
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an eigenvalue of the operator Hj .
b). Letv=3, U > 0, LL—B SU< %B, and M > %W. Then the essential spectrum of the system first five-electron

quartet state operator 'Hy is the union of four segments: g, ( 1H§) =lat+c+eb+d+flulat+e+Z,b+
2 2
JS+z22Uc+e+z1,d+/+z10e+z1+22, [+z1+22. The discrete spectrum of the operator 1432g is empty:

Gise ( ) =o.
2
c). Let v=3, U >0, 3WB <U< %B, and M < gw. Then the essential spectrum of the system first five-electron
quartet state operator 'Hy is the union of two segments: g, ( 1H§> =la+c+eb+d+flula+c+z;,b+d+
2

2
z3. The discrete spectrum of the operator 7/432gis empty:

ouse (1) = 0.
2
d). Let Let v=3, U>0, 0<U s%, and M < %W. Then the essential spectrum of the system first

five-electron quartet state operator 'Hy is consists of single segment: g, ( 1173‘1) =la+c+eb+d+f], andthe
2 2
discrete spectrum of the operator 'Hy is empty: oy, ( A ) = 0.

Letv=3 and A; = (/10,/10,2/15’), and A, = (/10,/210,/13).

It is known that the continuous spectrum of Hzl,ll is independent of U and coincides with the segment
Geone (Fl,) = G}, = [24 - 128605%(1), 24 + 1213cosA2—?].

Theorem 12. a). At v=3 and U <0 and the total quasimomentum A; of the soystem have the form

~ ) ) . 12BcosL _
Ay = (49,49, 49). Then the operator Hzl/11 has a unique eigenvalue z{, if U< — IC;S 2, that is below the

continuous spectrum of operator 1721,11. Otherwise, the operator 1721,11 has no eigenvalue, that is below the continuous
spectrum of operator Hz, .
b). At v=3 and U > 0, and the total quasimomentum A, of the system have the form A; = (49,49, A9).

3
~ 2Bcos—
Then the operator H21/11 has a unique eigenvalue z?, if U > ;‘;5 £ that is above the continuous spectrum of

operator FI}AI. Otherwise, the operator 3, , has no eigenvalue, that is above the continuous spectrum of operator
H3,,.

It is known that the continuous spectrum of 1722,11 is independent of U and coincides with the segment
~ 0 0
Ocont (B2n,) = G}, = [2A — 12Bcost,2A + 123cos’12—2].
In this case, to take place the analogously theorem to theorem 12. It is necessary only exchange in this theorem A,
on Aj.
Now using the obtained results and representation (9), we describe the
structure of the essential spectrum and the discrete spectrum of the system first five-electron quartet state operator Hj.

Let v=3 and A = (4%,49,4?), and A, = (49,49,49).

2

Theorem 13. The following statements hold:

29 19
12Bcos=L A0 A9 A0 1 12Bcos= A9
a). Let U<0, and U< -— 2 cos—L>cos=% cos=>> orU<0, and U< — 2 cost<
. w 2 2 2 74 w 2

0 —~
cos /12_2 cosAz—2 > %. Then the essential spectrum of the system first five-electron quartet state operator 1H{ s

2

consists of the union of seven segments: g, ( 1H§> =la;+c;+e,by+dy+filUlay+ ¢ + Z3,by +dy + 23] U
2

la; +e  +zh,by + fi+z3]Uay + 23 + 23,by + 23 + 23] U [c; + ey + zi,di + fi + zH] U [c + 2§ + 2Z3,dy + 2] +
z3Uel+z11+2z21,/1+z11+2z21.
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The discrete spectrum of the operator 1H§q is consists of no more one point: ;. ( 1H§) ={z{ + 2z} + 73}, or
2 2
Odisc ( 11‘7;) = @
2 A9 A A3
Here and hereafter a; = 24 — 1ZBCOS7, by = 2A+ 12Bcos > c; = 2A — 12Bcos > d=2A+

0 ~ . .
12Bcos /12_2 ep=A—6B, fi =A+6B,and z{ isan eigenvalue of the operator Hj, , and z; is an eigenvalue of
the operator Hj, , and Z; isan eigenvalue of the operator Hj..

/10
3B 12Bcos=L A9 9 0
b). Let U <0, and -y SU<-——V z cos—z1 < cos—zz, cos—z2

< % Then the essential spectrum of

the system first five-electron quartet state operator LY is consists of the union of four segments: o, ( 1ﬁ§q ) =
2

2
[al +C1 +el,b1 +d1 +f1] U [a1 +el +Z%,b1 +f1 +Z%] U [Cl +e1 +Z%,d1 +f1 +le] U [el +Z::ll +Z%,f1 +Z% +
z21. The discrete spectrum of the operator 1432g is empty: odisc1432g=0.

AO
12Bcos =t 3B A9 49 A3 1 .
c).Let U<0, and —— —~<U<-7, cos;1 > cos 72 and 60572 > - Then the essential spectrum

of the system first five-electron quartet state operator 1H§ is consists of the union of two segments: g, ( 1173‘1) =
2

2
[a; +¢1 + e, by +dy + filUlay + ¢4 + Z3, by + dq + Z3]. The discrete spectrum of the operator 1H§ is empty:
2
Odisc ( 117;) = Q)
2

3B A9 A9 A9 1 3B A9
d. Let U<0, and —=<U <0, and cos=*<cos=% cos=2t>- or ——=<U<0,and cos=>
. 0 w 2 2 2 74 w 2
2

cos /12—2 cos— > . Then the essential spectrum of the system first five-electron quartet state operator 1H§ is consists
2

of single segments: o, ( 1H§) =[a; +¢; + e, by +d; + f;], and the discrete spectrum of the operator 'HY is
2 2

empty:  Oyisc ( 1173") = Q.
2
Theorem 14. The following statements hold:
0

A7 43
12Bcos—- A9 A9 29 1 12Bcos—= 29
a). Let U>0, and U >— Z, 00571 > 60572, 00571 >2 orU>0, and U>—21 Z 00571 <

0

0 ~
cos /12—2 cos /12—2 > %. Then the essential spectrum of the system first five-electron quartet state operator 1H§ is consists
2

of the union of seven segments: o, ( 1H§q> =la;+c+e,bi+di+filUlay +¢ +23,b1 +dy +23]U
2

la; +e +2z2,b; + fi + z51U [ay + 25 + z3,by + 2% + 23] U
i +e+z8,di+fi+2z81Uley + 22+ z3,dy + 22 + 23] U [eg + 22 + 25, f +

z? + z%]. The discrete spectrum of the operator 'Ay s consists of no more one point: oy, ( 1~3q) ={zt+22 +

1
Z3} or oOyisc ( Hiq) = (Z)
2
Here and hereafter, z? is an eigenvalue of the operator Hzl,ll, and z7 is an eigenvalue of the operator

j2 H H 73
H3,, and z3 isan eigenvalue ofothe operator Hy, . .
A A
12Bcos =t 3B 29 A9 A9 1 12Bcos== 3B
b). Let U>0, and L<U<>=—, cos=t>cos=% cos=<-, or U>0, and L<U<=—,
w w 2 2 2 4 w w
AY A9 A 1 .
cos— < cos 5 COS— < " Then the essential
spectrum of the system first five-electron quartet state operator 1H§ is consists of the union of four segments:
2

Uess<1H§q)= la; +c1+e,by+di + filUlay +eg +25,by + fi +25] U ey + ey +2f,dy + f + zf] U
2

ley + z2 + z3,f + z2 + z2].  The discrete spectrum of the operator 'Hy is empty: oy, ( 1ﬁ§) = Q.
2 2
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AO
3B 12Bcos =t 49 A9 49 1 3B
c). Let U>0, and 7 SU<— z cos7l<cos72 and cos7l>z, or U>0, and wSU<

0

0 0
cosAZ—1 > cosAZ—2 and cosAZ—2 > i. Then the essential spectrum of the system first five-electron quartet state

0
12Bcos /172
W 7

operator 'Hj is consists of the union of two segments: g, ( 1H§) =la;+c +e,by+d+filUlag +c; +
2

2
z3,61+d1+z3. The discrete spectrum of the operator
YA isempty: a6 ( 1175) = 0.
2

2
3B A9 A9 A9 1 3B Ay A9
d). Let U >0, O<U<W, and cos7l<cos72, COS71>Z, or 0<U<W and cos7l>cos72,

0 ~ . .
cosAZ—2 > %. Then the essential spectrum of the system first five-electron quartet state operator 1H§q is consists of
2

single segments: o, ( A ) =[a; +c; + ey, by +dy + fi], and the discrete spectrum of the operator ‘A is
2 2
empty: oy ( 1173") = Q.
4. Second quarzcet state
The second quartet state corresponds the basic functions %>/ . = a}, 1a; afra;af1¢0. The subspace

2:7-[3‘7/2, corresponding to the second five-electron quartet state is the set of all vectors of the form
3

leg/z = Ymnreiezy f(mnr,t, 1) Zq?n,n,r,z,zezv' f € 15° where 1§° is the subspace of antisymmetric functions in the
space 1,((Z")®).
The restriction  *H{ /2, of operator H to the subspace 2}[3‘1/2, is called
the five-electron second quartet state operator.
Theorem 15. The subspace 23—[3"/2 is invariant under the operator H, and the operator 2H§/2 is a
bounded self-adjoint operator. It generates a bounded self-adjoint operator Zﬁg /2 acting in the space 15° as
Zﬁg/z Zl»l’g/z =5Af(mn,1,t, )+ BY. [f(m+t,nr.tl)+
fmn+trt, )+ fmnr+tt,)+fmnrt+7tl)+

fmnr, t, L+ 1)+ U[8pn + Snr + Opp + S| f(mn, 7,8, D). (12)
The  operator ’Hy acts on a  vector g, € Py, as
ZHg/z leg/z = Zm,n,r,t,lEZV( zﬁg/zf)(m: n,7,t 1) 21!’; (13)
2

Proof. We act with the Hamiltonian H on vectors th;’ 1 € 2.‘}[3‘7/2 using the standard anticommutation
relations between electron creation and annihilation operators at lattice sites, {a, ,, a,j_ﬁ} =0Omnbypr {Amy Anp} =
{a;l,y,a:{_ﬁ} = 0, and also take into account that a,,, @, = 6, where 6 is the zero element of 2}[3‘7/2. This yields
the statement of the theorem.

We set *H{, = F ?Hj,,F~'. In the quasimomentum representation, the operator ~“f, acts in the Hilbert

space L% ((T)%) as

v
217;1/2 leg/z ={5A+ 2B 2[605/11- + cosy; + cosy; + cos8; + cosn;| X

i=1
X f(Awy, 6,n)+ Uf [fs,A+u—sy,0,n)+fAs,uty—s0,mn)+
TV

+f(4,s,y,u+0—s,n+f(4s,y,0,u+n—s)ds, (14)
where L4°((TV)®) is the subspace of antisymmetric functions in L, ((T")®).
We verify that the operator Zﬁg /2 can be represented in the form

‘Hy, =} Q@IQI+IQH; Q1+ Q®IQ Hj, (15)
where (H3 f)(A, 1) = {24 + 2B }_y[ cos; + cosp13f (A, ) +
U [, f(s, 2+ u—s)ds,
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H3 ), 6) = {ZA + 2B Z[COS%’ +cosO][}f(r,0) —U | f(s,u+6—s)ds,
i=1 L

v

HSF) () = (A+2B ) cosndf Aw) +U | f(s,uty=s)ds+
i=1 L
Ul f(s,u+n-—s)ds.
TV
Consequently, We must investigated the spectra of the operators Hy, H; and HS, the separately. The
operator Hf and H} is identical operators. Therefore, their spectrum is coincide. We use from this results.

Let A, =y + 6. We now investigated the spectrum of the operator HEAZ: {ZA +4BY/_4 cos/lézcos(/lz—L2 -
Yi—z}fA2y—UTvfA2sds=0.

It is clear that the continuous spectrum of the operator HEAZ coincides with the segment

_ oA = A
Ocont (HZSAZ) = G}{Z = [m}l’z,M}{z] =[24 - 432 0057, 2A + 432 6057].
i=1 i=1

dsqdsy..ds,

v = —

et DAZ (Z) ! v fTV 2A+4BYY_, cos%cos (%—yi)—z .
Lemma 3. The number z, € G, is an eigenvalue of operator HEAZ if and only if it is a zero of the function
Dy, (z), ie, Dj (z)=0.
Itis clear that, if U < 0 (U > 0), then the exists only one solution of the

equation D}, (z) = 0, the above (the below) of continuous spectrum of the operator H25A2.

First we consider the one-dimensional case. Let U < 0. Then the equation D/}Z (z) =0 in the above the
continuous spectrum of the operator H§A2 has a

only one solution z, = 24 + \/Uz + 16BZ¢:052AZ—2 . If U >0, then the equation D4 (z) = 0 in the below of the

continuous spectrum of the operator HEAZ has

a only one solution Z, = 24 — JUZ + 16B?cos? AZ—Z

In the two-dimensional case we have the analogous situation. If U < 0, then the equation D,%z (z)=0 in
the above the continuous spectrum of the operator H§A2 has a only one solution z, > M}z. If U>0, then the

equation Djz (z) = 0 inthe below the continuous spectrum of the operator HEAZ has a only one solution Z, < mﬁz.
dsidsydss

We now consider three-dimensional case. Denote M = fT3 — 7 .
2A+4BY7_4 00572(1 —cos (72—51-))

4B

If U<-— o then the above of the continuous spectrum of operator HEAZ the equation D,?z (z) =0 have the

only one solution z, > Mj'z. If —% < U <0, then the equation D,?Z(z) =0 has no solution in the above of

H s
continuous spectrum of operator Hy,,.
d51d52d53

A3

A )
2A+4B Z?:l cosT(1+cos (TZ—Si))

If U>0,U> %, then the equation D,?Z (z) =0 has only one solution Z, < mﬁz, lying in the below of

Denote m= [,

continuous spectrum of operator ﬁ25A2. Ifo<U< ‘:n—B, then the equation D,?Z (z) =0 has no solution in the below of
continuous spectrum of operator 175,12.
We now investigated the spectra of operator HS. Let A; = u +1.
v

(A8, 1)) = {A+2B ) cos(s = )Y, G0 +20 | fu,(5)ds.
i=1 ™

It is known the continuous spectrum of operator Hy, is consists of interval o, ((HS,) = G}, = [m3,,M}.] =
[A —2Bv, A+ 2bv].
Denote D}, (z) = 1+2U [,

dsidsy..ds,
V A+2BY)_; cos (A3—s;)—z'
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Lemma 4. The number z, € G, is an eigenvalue of operator H,?3 if and only if it is a zero of the function
Dy, (2), ie., D}, (z) = 0.

It is known, at U >0 (U < 0) is exists only one solution of the equation D}, (z) = 0, lying the above (the
below) of the continuous spectrum of the operator 17,?3.

We consider at first one-dimensional case. Let U < 0. The the equation Dj3 (z) =0 has only one solution
z3=A—2JU% + B% , lying the below of the continuous spectrum of operator Hj . If U >0, then the equation
D,}3 (z) =0 has only one solution Z; = A + 2VUZ% + B2, lying the above of the continuous spectrum of operator
HS,.

In the two-dimensional case we have the analogous situation. If U < 0, the equation D/%3 (z) =0 hasaunique
solution z, < mj,, lying the below of the continuous spectrum of operator Ay . If U > 0, then the equation D7, (z) =
0 has a unique solution Z, > M,%3, lying the above of the continuous spectrum of operator H,?3.

We consider three-dimensional case.

If U<0,U< —%, then the equation D,§3 (z) = 0 has only one solution 73 < m,3{3, lying the below of the
continuous spectrum of operator Hp . If —%s U <0, then the equation D3 (z) =0 in the below of the
continuous spectrum of operator Af, has no solution. If U >0,U > %, then the equation D7, (z) = 0 has only one

solution z; > M3, lying the above of the continuous spectrum of operator Hf. If 0<U < %, then the equation

D/?3 (z) = 0 in the above of the continuous spectrum of operator 17,?3 has no solution.

We now using the obtaining results and representation (15), we can describe the structure of essential spectrum and
discrete spectrum of the operator of second five-electron quartet state:

Theorem 16. If v=1 and U <0, then the essential spectrum of the second five-electron quartet state
operator *Hj, is consists of the union of seven segments: g ( 2ﬁ§> =la+c+eb+d+flula+c+z,b+
d+z3Ua+e+z2,0+/+z2Ua+z2+23,b+z2+z3UC+etz1,d+/+z1] UZ+21 +23,d+z1+23Ve+z1+22, [ +2z1+22,
and discrete spectrum of operator zﬁg/z is consists of no more one point: oy, ( Zﬁgq) ={zy + 2, + z3}, or

2

Odisc 21:73‘] = 0.
2 Aq Aq Ay Ay
Hefe and hereafter = 24 — 4Bcos > b =2A+ 4Bcos - = 2A — 4Bcos 5 d =2A+ 4Bcos 5 €= A—

2B, f=A+2B, 2, =2A- JUZ +16B2cos 2, 7z, =24 +\/U2 +16B2cos 22, z3 = A—2VUZ+ B2
Theorem 17.1f v=1 and U >0, then the essential spectrum of the second five-electron quartet state operator
217;’/2 is consists of the union of seven segments: g, ( 2175) =la+c+eb+d+flulatc+iZ;,b+d+7;]U
2

[a+e+Z2,b+f+Zz]U[a+Zz+Z3,b+Zz+Z3]U[ cte+ le,d+f+fl]U[C+Z~1+Z3,d+il+i3]u
le+7Z +2,,f +7Z +2,], and discrete spectrum of operator 2H3q/2 is consists of no more one point:

Odisc ( Zﬁiq) = {21 +z,+ 23}, Or Og4isc ( Zﬁg) = Q.
2 2

Here 2 =24+ \/UZ +16B%cos L, z, = 2A — JUZ +16B%cos 2, z3 = A+ 2VUZ + BZ.

In the two-dimensional case we have the analogous results.

We now consider the three-dimensional case.
Theorem 18. a). If v=3 and U <0, U<>>, M>m, m<sW, or U<O0, U<—-2m>M, m<iW, or
U<0,U< —%, M>m, m> gw, oruU<o0,U< —%, m>M, M>§W, then the essential spectrum of the
second

five-electron quartet state operator Zﬁg /2 is consists of the union of seven segments: g, < Zﬁg ) =lat+c+eb+
2

d+flula+c+zz3b+d+z3]VU[la+te+Z,,b+f+Z]Ula+7Z, +23,b+ 7, +z3]U[c+e+2z,d+ f+
z1]U[c+ 2z, +2z3,d+ 2z +2z3]U e+ 2z + Z,,f + 2z, + Z,], and discrete spectrum of operator Zﬁg/z is consists of
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No more one point: oy, ( Zﬁi") ={z1 +2Z; + 23}, Or oy ( 2ﬁ§> =0.
2 2

Here, a=2A-4BYL cosZ, b=2A+4B3) cosD,  c=24-4BY), cos’Z, d=24+

4BY3 | cos /12_2 e=A—6B, f=A+6B, z;, 7,, and z;, are the eigenvalues of the operators HY, H; and HS,
correspondingly.

b. f v=3 and U<0, -2<U<-2 M>m ad m><w, oo U<0, -2Z<vu<-%

w m 3 w M

m>M,and M>ZW, or U<0, -2 <U<-22
M <m, and m < %W, then the essential spectrum of the second five-electron quartet state operator zﬁg /2 is consists
of the union of four segments:

JESS(ZH§>=[a+c+e,b+d+f]U[a+c+23,b+d+z3]U[a+e+22,b+f+22]u[c+e+zl,d+f+
2

M>m, and M<iw, o U<0, -Z<cy<_-%
3 M m

z1Ue+z1+22, f+z1+22,
or 0855(2H§> =la+c+eb+d+flula+e+Z,,b+f+Z]Ula+Z,+23,b+ 7, +23]U[c+e+2;5,d+
2
J+Z23Uc+z1+23,d+z1+23Ue+22+23, f+22+23  Of
aess(2ﬁ§)= [a+c+eb+d+flula+e+z,b+f+2z]U[c+e+z;,
2
d+f+2z3]Ule+2z +2z3f +2 +2;], and discrete spectrum of operator  2H3 is empty: oy, < 2173‘1) = Q.
2 2

3B 4B 4 4B 3B
c.If v=3 and U<0,—W§U<—V,M>m, M>ZW,or U<O, —VSU<—W,m>M,and

m<iW, or U<O, —=<U<-2 m<M ad M<iW,or U<0, ——<U<-2 m<M, and
M > gw, or U<o, —% SU< —A;n—B, m>M, and m >§W, then the essential spectrum of the second

five-electron quartet state operator Ay is consists of the union of two segments: o, ( 2173") =lat+c+eb+d+
2

2
JUa+tc+z20+d+22, or oessZH32g=a+c+eb+d+/Ua+c+2z3,0+d+2z3, or

Ooss ( Zﬁg) =[a+c+eb+d+flula+c+z,b+d+z] and discrete spectrum of operator %Ay is empty:
2 2
Odisc ( Zﬁiq) = @
? 4B 4 4B 4
d. Ifv=3 and U <0, —WSU<0, and M > m, M>§W, or —ESU<O, and M > m, M>§W,
or —% <U<0,and M>m, M < gw, then the essential spectrum of the second five-electron quartet state operator

2Af is single segment: g, ( 2175) =[a+c+eb+d+f] and discrete spectrum of operator 2H3 is empty:
2 2 2
Odisc ( 21’_‘1'3(1) = ®
2 3B 4 4B 4
Theorem 19. a). If v=3 and U >0, U>, m><Ww, and m< M, or U >0, U>- m<sW, and
M<m, orU>0, U> fn—B, m < %W, and m < M, then the essential spectrum of the second five-electron quartet
state operator “Hj is consists of the union of seven segments: o, ( 2H§> =la+c+eb+d+flula+c+
2

2
Z3,b+d+z30a+e+z2,0+f+z20a+z2+23,0+2z2+4+23Uc+e+z1,d+/+z1Uc+z1+23,d+z1+23Ve+z1+22,[+21+2
2, and discrete spectrum of operator 24324 is consists of no more one point: odisc2H/32g={z1+z2+2z3}, or

Odisc ( Zﬁéq) = @
2

Here, Z,z, and Z;, are the eigenvalues of the operators H7,,, H3,, and H,, correspondingly.
b). If v=3 and U>0, %SU<%, and m < M, m<§W, or U >0, %<U<%, M < m, and
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then

28
m<-=-W, orU>0 —<U<=— andM<m,m>§W, orU>0 ESU<— and m<M, m>-W
H{ is consists of the union of four segments

4
37 "M
the essential spectrum of the second five-electron quartet state operator 2H3
2
655(2H3) [a+c+eb+d+flUlatc+Z;b+d+Z3]U[c+e+Z,d+f+Z]U[c+2Z +2Z3,d+ 7 +
U

ess<2H3) [a+c+eb+d+flulatc+Z3,b+d+2Z3]Ula+e+z,,b+f+2]Ula+ 2z, +
2 7] U

Z3], or
Z3,b + 7, + Z3] or O'ESS(ZH3) [a+c+eb+d+flUlat+e+zy,b+f+2z]U[c+e+Z,d+ [+ 7]

le+Z, + 2y, f + 7 +2;], and discrete spectrum of operator 2H3 is empty de( H3> =0
2
Z<U<Z, and m<iW, M<m, or U>0, 3—B<U<—, and M <ZW,
and M > - W M<m or

c). f v=3 and >0, 3B
m<M, or U>0, —<U<— M<m, and m>ZW, or U>0, T<U<,
—<U<—, and M>2w, M<m orU>0,ﬁ§U<?, and m>3W m<M thentheessentlal
is consists of the union of two segments

U>0o0, <
m M
spectrum of the second five-electron quartet state operator 2H3
2
aess(ZHE") =la+c+eb+d+f]

aess<2ﬁ3) [a+c+eb+d+flulat+c+Z,b+d+2], or
[c+e+Z,d+ f+Z], and discrete spectrum

[a+e+2z,b+ f+ 2], or Jess(2H§ [a+c+eb+d+f]U
2

of operator 2y is empty: Gdzsc(2H3>
2 2

d. Ifv=3 and U >0, 0<U=,

M <m, and m>§W, or U >0, 0<U§%,

= Q.
and M <IW, or U>0, 0<U <>, and m<iW, M<m, or
U>0, 0<U<2 .
m
spectrum of the second five-electron quartet state operator Zﬁf is single segment: o, ( H; > [a+c+eb+d+

and m >fW, M > m, then the essential

2

/, and discrete spectrum of operator 2432q is empty: odisc2H32g=0.

We now consider the three-dimensional case, when A, = (4%, 49,4?), and A, = (A9, 43, A9). Then the continuous
3 _ A9
= 1,

2 has

)

spectrum of the operator H,, is consists of the segment a,,,,; (HzAl) G, [ZA —12Bcos—=,2A + 12Bcos ]
29
12Bcos =L ~
2 then the operator H3,,

Theorem 20. a). If v=3 and A; = (49,4%,49), and U <0, and U < —
1ZBcos—

only one eigenvalue z;, lying the below of the continuous spectrum of operator H;,
0
< U <0, then the operator Hz,1 has no

b). If v=3 and A; = (49,4%,49), and U <0, and —
eigenvalue, lying the below of the continuous spectrum of operator H;,
o). If v= 3 and A = (4%,49,49), and U > 0, and
12Bcos=L
U> ;‘;S 2, then the operator A3, has only one eigenvalue z#, lying the above of the continuous spectrum of
operator H3, .
123605/12—(1)

)

d.Ifv=3

and A; = (4%,49,4?), and U >0, and 0 < U
then the operator HQ‘A has no eigenvalue, lying the above of the continuous spectrum of operator H;,
We now consider the three-dimensional case, when A; = (49,49,49), and A, = (49,49, 49). Then the
0
continuous spectrum of the operator f3,  is consists of the segment oo, (H3 /12) G, [ZA — 12Bcos=,2A +
43
12Bcos == ~
"2 then the operator H3,, has

12FBcosA202.
Theorem 21. a). If v=3 and A, = (49,43,49), and U <0, and U < —
only one eigenvalue z3, lying the above of the continuous spectrum of operator HEAZ.
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0
123605/172

b). If v=3 and A, = (49,49,49), and U<0, and —
eigenvalue, lying the above of the continuous spectrum of operator HZSAZ.

< U <0, then the operator H3,, has no

0
1ZBC0SA72

¢). If v=3 and A, = (49,43,49), and U >0, and U > , then the operator H3,, has only one
eigenvalue zZ, lying the below of the continuous spectrum of operator HZSAZ.

0 40 40 123605% ~5
d. If v=3 and 4, =(4;,45,47),and U>0, and 0 <U < o then the operator H3,, has no

eigenvalue, lying the below of the continuous spectrum of operator HEAZ.
We now using the obtaining results and representation (15), we can describe the structure of essential spectrum and
discrete spectrum of the operator of second five-electron quartet state:
Let A; = (A9,49,49), and A, = (43,49, 49).

0

A2
12Bcos=% A9 A9 A9 1
Theorem 22. a). If v=3 and U<0, U< _TZ’ C0571> COS?Z, COS71 >, 00 U<O0, U<
49
12Bcos == A9 A9 A9 1 3B A9 A9 A9 1 3B
—————2 cos=2<cosE cosE>-,orU<0, U<—=, cos=t>cos=2, cos=L>-or U<0,U<—=,
W 2 2 2 "4 w 2 2 2 "4 w

A A9 A9 . . ~q -
60571 < cos 72 cos;2 < %, then the essential spectrum of the second five-electron quartet state operator 2H§ is
2
consists of the union of seven segments: g, ( 2H§> =la;+c+e,b+di+filUlag +¢ +23,b; +dy +23]U
2

la; +e  +zi,by + fi +zJ]U[ay + 23 + z3,by + 2} + 23] U [c; + ey + zi,dy + fi + zH] U [¢y + 2} + z3,dy + 2] +
z3Uel+z11+221,/1+z11+221, and discrete spectrum of operator 24324 is consists of no more one point:

Odisc ( Zﬁgq) ={z} + 2z} + 23}, or Oy, ( 2H§> = 0.
2 2

0 0 0
Here, and hereafter a, = 24— 12Bcos, by =2A+12Bcos%, ¢ =24—12Bcos%, d; =24+

0 ~ ~
1ZBcosAz—2, ee=A—6B, fi=A+6B,and z{, z}, and z3, are the eigenvalues of the operators A3, , /3,, and

Hp., correspondingly.
IZBcosﬁ 1ZBcosﬁ A9 A9 A9 1
2 < < - 2 1 22 n 22 it r
o sSUs o COS—>cos—, adcosz>4, or U<DO,
19 29 A0
1ZBc0572 12Bcos =k 0 A9 12360571

A 19 1
———i<U< - 2 cos=<cos=% and cos=>- or U<0, and —
% w 2 2 2 74

b) f v=3, and U<0, —

3B A9
<UL —=— cos=>
w 2

29
0 12Bcos =~ 3B A9

A A9 1 A9 A9 1
cos=%, and cos—=>-0rU<0, and ———2+<U < —=—, cos=<cos=% and cos==>- or U <0, and
2 2 "4 w w 2 2 2 " a

0 0

A7 A2
3B 12Bcos—- A9 A9 A9 1 3B 12Bcos—= A9 A9
W_U< o cos—<cos—, cos— <o, or U<0, and W_U< W , €COS— < Cos—,

0 ~
cos /12—2 < %, then the essential spectrum of the second five-electron quartet state operator 2H§ is consists of the union
2

of four Segments: Oess ( Zﬁg) = [al +c + el,bl + dl +f1] U [al + e +Z%,b1 +f1 +Z%] U [al +c +Z3,b1 +
2

d1+z3Ual+z21+2z3,01+2z21+23, or
O-ESS<ZH§) = [al +C1 +el,b1 +d1 +f1] U [a1 +C1 +Z3,b1 +d1 +Z3] U [Cl +61 +le,d1 +f1 +le] U
2

[C1 +le+Z3,d1 +le+23], or O'ess(zﬁg):[a1+C1+€1,b1+d1 +f1]U[a1+61 +Z%,b1 +f1 +Z%]U
2

[y +es+zi,dy + fi+ 211U ey + 28 + 23, fi + zL + 23], and discrete spectrum of operator 2 is empty:
2

259\ _ n
Odisc (5 H3f) = Q. 12Bcos’2 3B 20 29 2 1
). 4 v=3 and U<0, ———2<U<—-=—, cos=>cos=% and cos=%>- or U<O,
w w 2 2 o2 e
A
3B 49 49 A9 1 3B 12Bcos =t 49 49
—— 2 <U<-Z cosPE<cosZE and cosE > or U<0, —=<U<—-———2 cos=L<cos=% and
w w 2 2 2 74 w w 2 2
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0 0
/1(1) 1 U 0 3B <U 1ZBCOSA72 0 d U 0 d 1215?6051172
cos— >, ((?r <0, —;sU<—-——7—+ oo >cos— and cos 2O<— or < 3 and ——-—<
A A A
12Bcos =L A9 A9 A9 1 12Bcos =L 12Bcos =% A /10
U<—T2, cos7l<00572, and COS7Z>Z’ or U<O0, and —TZSU<—T2, cos—>cos7

0 ~
and cosAZ—l > % then the essential spectrum of the second five-electron quartet state operator 2H§q is consists of the
union of two segments: g, ( 2175) =la; +c;+e, b +di+filUlc; + e +zi,di + fi + z1], or 0, ( zﬁg) =
2 2
[a1+C1+€1,b1+d1+f1]U[a1+el+Z%,b1+fl+Z%], or ess(2H3):[a1+C1+€1,b1+d1+f1]U

[a, + c1 + Z3,b; +dy + 23],  and discrete spectrum of operator  “Hj' is empty: oy, ( 2ﬁ§> = Q.
2 2

3B A9 A9 A9 1 3B
d. f v=3 and U<0, —WSU<0 and C0571<C0572, cos—>Z, or —WSU<O, and
0
A0 A9 1 12Bcos™L A9 49 1
cos—>cos7Z cos;z>—, or U<DO, —TZ<U<O and cos—<00572 00572<Z, or U<O,

/10
12Bcos =% A9 A9 1 . .
_TZ <U<0,and cos > cos;2 00571 < then the essential spectrum of the second five-electron quartet

state operator H{ s single segment: Ooss ( A ) = [a; + ¢ + e, by +dy + f1], and discrete spectrum of operator
2 2

2

2 is empty: oy ( 2173") = Q.
2

49 20

12Bcos=L A9 A9 A9 1 12Bcos =%

Theorem 23. a). If v=3, and U>0, U> —14 00571 > 00572, 00572 >50orU>0, U>—/7H%
A9 A3 A9 1 3B A9 A9 19 1 3B A9

c052<cosz, cosz>4, or U >0, U>W, cosz>cosz, cosz<4,0rU>0, U>W, cosz<

A9 A9 1 . . ~q - .
cos 72 60572 < then the essential spectrum of the second five-electron quartet state operator 2H§ is consists of
2

the wunion of seven SegmentSZ Opss ( Zﬁéq) = [al +c tey, bl + dl + fl] U [al +c + Z3,b1 + dl + Z3] U
2

la; +e +22,by + fi + 221U [a; + 2% + 23,b; + 22 + 231U [c; + ey + 22,dy + f1 + 221 U [cy + 27 + z3,dy + 2z +
z3Uel+z12+222,f1+z12+222, and discrete spectrum of operator 2432 is consists of no more one point:

Odisc ( Zﬁiq) = {212 + 222 + Z3}, Oor Ogisc ( 2]75) = Q.
2 2

Here, z7, z§ and z3, are the eigenvalues of the operators A3, , H3,, and Hf,, correspondingly.

0
A2
3B 12Bcos—~ A9 A9 A3 1 3B
= < < 2 1 22 22 - 2 < <
bz. If v=3, and U >0, W_U_ o coszo<cosz,and cos— >, or U>0, W_U_
47 A7
12Bcos—- A9 A9 A9 1 12Bcos—- 3B A9 A9 A9 1
2 1 2 1 2 1 2 1
—z = = an =>- r ——i << U= = = an = <- or
o cosz>cosz,ad cos—>2, or U >0, 7 <U o cosz>cosz,ad cos—<, 0
123cos£ 3B A9 A9 A9 1 1ZBcosﬁ IZBcosﬁ A9
U>0, and —2<U<=, cos=t<cos=% cos=2<-,0or U>0, —Et<U<—2, cos=t<
w w 2 2 , 2 4 w w 2

49 A
20 2 1 12Bcos =2 12Bcos =t 49 A3 A 1 :
cos 72 cos;2 > o U>0, ——+<Us——% cos— > cos;2 cos;1 > -, then the essential spectrum

of the second five-electron quartet state operator Zﬁg is consists of the union of four segments: o, ( 2ﬁ§ ) =
2

2
[al+C1+el,b1+d1+f1]U[a1+C1+Z3,b1+d1+Z3]U U [C1+el+le,d1+f1+212]U[C1+212+23,d1+
z12+230el+2z12+222, f1+z12+222, or

O'ess(zi:iéq): [a1+C1 +€1,b1+d1 +f1]U[a1+C1 +Z3,b1+d1 +Z3]U[a1+€1 +Zzz,b1 +f1 +Z22]U
2

[a1+222+z3,b1+222+z3], or O'ess(zi:iiq):[a1+C1+€1,b1+d1+f1]U[a1+€1+Z22,b1+f1 +Z22]U
2

[y + ey +z8,di+ fi + 281U ey + 28 + 23, f; + 2§ + 23], and discrete spectrum of operator *H{ is empty:
2

Odisc ( Zﬁéq) = @
2
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49
1230057 0 0

A9 A9 19 1
, cos—<cos==, and cos=>-,o0or U>0, <U<
w 2 2 2 7 4

b

0. If v=3 andU>0 2 <U<

0
1ZBCOSA—2

0 0
43 42
A9 A9 A9 1 12Bcos— 12Bcos== A9
= 2 cos —21 > cos—zz, and cos—z1 > or U>0, 2

2 i A A 1
<U< , cos— < cos==, and cos= < -,
w 2 2 2 4

0 0 0
42 41 41

12Bcos—= 12Bcos— A9 A9 A9 1 12Bcos—- 3B 29
L<U< z cos—z1 > cos—=%, and cos—21 <, or U> 0, - L<U< ' cos =<

or U>0, " > >

AO
A9 29 1 12Bcos =% 3B 29 49 A3 1 .
cos 72, and 00571 <; o U> 0, = L<U< - 60571 > cos 72, and 00572 <z then the essential

spectrum of the second five-electron quartet state operator 2H§ is consists of the union of two segments:
2

aess(zﬁgq) =lai+e tenby+di+AilUle +e +2f,di+fi+28] or aess(zﬁg‘f) =lar+e +ey by +
2 2

d1+f10al+el+z22, p1+f1+222, or ocess2H32g=al+cl+el bl1+d1+/10al+cl+23, b1+d1+2z3, and
discrete spectrum of operator Zﬁg is

)=o.

3B A A9 A9 1 3B A
d.If v=3and U>0, 0<U<<- and os7l<cos72, 6‘0571>— or 0<U<<., and cos71>

W

empty: oyis ( ’H

N

4’
A9 A9 1 1ZBcosﬁ A9 A9 A9 1 123cos£
COS72, cos;z>z, orU>0 0<UK< = 2 and 00571<cos72, COS7I<Z, orU>0 0<Ux - 2

A9 A9 19 1 . . ~
and cos71 > cos 72 60572 < then the essential spectrum of the second five-electron quartet state operator  2H{

2

is single segment: o, ( Zﬁg) = [a; +¢; + ey, by +d; + fi], and discrete spectrum of operator 2H{ is empty:
2

2
Odisc ( Zﬁiq) = Q)
2

5. Third quartet state
The third quartet state corresponds the basic functions 3¢>/2 ., = a} 1af1af afra0,. The subspace 33,
corresponding to the third five-electron quartet state is the set of all vectors of the form
311);’/2 = Ymmrtiezy fmnr,t 1) 3q73;1/,f1,r,t,lez"’ fely®, where [5° is the subspace of antisymmetric functions in the
space 1,((Z")®).
The restriction *H /2 Of operator H  to the subspace 33—[3"/2, is called the five-electron third quartet state operator.
Theorem 24. The subspace 3}[3‘1/2 is invariant under the operator H, and the operator 3H3?/2 is a bounded
self-adjoint operator. It generates a bounded self-adjoint operator 317;’ /2 acting in the space 15° as

317§/2 31p§/2 =5Af(m,n,r,t, )+ BY [f(m+tnnrt )+ f(mn+t,rt, )+ fmnr+tl)+ f(mnrt+

o l+fmnr, {4+ T+ [Om,r+0n,r+07r,{+07,/].

(16)
3179 3.1,4 39,4
The operator  “Hy,, actsonavector “y;,e “Hz, as
3H§/2 31:03‘,1/2 = Zm,n,r,t,leZV( 3ﬁg/2f) (mmn,r,t,1) 3¢§ (17)

Proof. We act with the Hamiltonian H on vectors 31,b§/2 € 3.‘}[3‘7/2 using the standard anticommutation relations
between electron creation and annihilation operators at lattice  sites, {am,y,arfﬁ} = Omn0y g,
{am,y,anlﬂ}:{a;,y,a,fﬁ} = 6, and also take into account that a,, , o = 6, Where @ is the zero element of 37—[3q/2.

This yields the statement of the theorem.

We set °H, = F °Hj,,F~'. In the quasimomentum representation, the operator *Hz , acts in the Hilbert

space L% ((T")®) as

v
31?;1/2 3¢g/2 = {SA + 2B ) [cosA; + cosy; + cosy; + cosO; + cosn; | X
i=1
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Xf(ALuy 0,m)+U f[f(s,u,/l +y—-s0m+f@Asut+y—s0,n)+
TV
+fAuwsy+0—sn+f(Aus6,y+n—s)lds, (18)
where L% ((TV)>) is the subspace of antisymmetric functions in L, ((T")).
We verify that the operator A /2 can be represented in the form
Hy,,=H] @IQI+IQH; QI+ QIR H;, (19)
Where
(H]F)y) = (2A+ 2B EY_1[ cosd; + cosy)f (Ay) = U [, [f (s, A +y —s)ds, (H3f)(wy) ={A+
2Bi=1vcosuifuy+207Tv[fsu+y—sds,  H29/8,y=2A+2Fi=1v[cosbi+cosyifEn—UTv[fs,y+n—sds.

Consequently, We must investigated the spectra of the operators H;, Hs and H3, the separately.

Now, we investigated the spectrum of operator HJ. Let A, = A+7y be fixed. That the operator 4] and the
space H; = L,((T¥)?) can be expanded into the direct integrals HJ = @ [, A4, dA;, H] = & [,, 77, dA;.

It is known that the continuous spectrum of the operator HJ 4, does not
depend on the parameter U and consists of the intervals o, (1727/11) =G, = [—ZA — 4B Z}’zlcos%ﬁ,—ZA +

4Fi=1vcosA11Z.

dsqidsy..ds

v — 1452 v

Let D} () =1-UJ, s .
—2A-4BY¥]_; cos—z1 cos <—21 —5; )—

We have the next Lemma.
Lemma 5. The number z, € G, is an eigenvalue of operator 1727,11 if and only if it is a zero of the function Dj (2),
e, Dj (z)=0.

In the one-dimensional case we have the following theorems:
Theorem 25. Let v =1. Then

a).If U >0, thenthe operator A7, hasaunique eigenvalue z; = —24 — JUZ + 16B%cos? % lying the below

of continuous spectrum of operator H27A1.

b). If U <0, then the operator H27A1 has a unique eigenvalue Z; = —24 + JUZ + 16B2cos? % lying the above

of continuous spectrum of operator H27A1.
In the two-dimensional case, we have the analogous results.
We now consider three-dimensional case.

We denote M = [, dsld/ffdsg —
2A+4B Z?:l 60572(1—605 (TZ—Si))
Theorem 26. Let v = 3. Then

a.lf U> %, then operator H27A1 has a unique eigenvalue z;, lying the
below of continuous spectrum of operator A7, .

b).If 0<U< %, then operator ﬁ27,11 has no eigenvalues, lying the below of continuous spectrum of operator
..

o.If U< —%, then operator ﬁ27/11 has a unique eigenvalue Z;, lying the
above of continuous spectrum of operator HJ A

d51 dSZ d53
3 44 45 )
2A+4B¥7_, 6057(1 +cos (7—51'))

and m= [,

d). If — ‘:n—B < U < 0, thenoperator H27A1 has no eigenvalues, lying the above of continuous spectrum of operator
ZE
We now investigated the spectrum of operator
(A3f)(wy) = {A+ 2B X} cosu3f (uy) +2U [, [f(s,u +y — s)ds.
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Let A, = u+y befixed. Then (ﬁg,lzf,lz)(u) ={A+ 2B Y[ cospu}fy,(w) + 2U fTV fa,(s)ds.
The continuous spectrum of operator H3,, is consists of interval Gy, = [m},, M} | = [A— 2Bv,A + 2Bv].
v _ dsidsy..ds,
Weset D, (z) = 1+2U [, —=rt—r— ST cossi

L

. Then we have the next Lemma.

Lemma 6. The number z, € Gj, s an eigenvalue of operator ﬁ?Azif and only if it is a zero of the function
Dj,(z), i.e., Dj (z) =0.
Theorem 27. a). If v=1 and U < 0, then the operator H§A2 has a unique eigenvalue z, = A — 2vU? + B2, lying
the below of continuous spectrum of operator Hy,,.

b). fv=1 and U >0, then the operator H§A2 has a unique eigenvalue Z, = A + 2VU? + B2, lying the
above of continuous spectrum of operator 3, .

In the two-dimensional case, we have the analogous results.
We now consider the three-dimensional case.

Theorem 28.a). If v=3, U<0 and U< —%B, then the operator H3,, has
a unique eigenvalue z,, lying the below of continuous spectrum of operator H,,.
b). If v=3, U<O0 and —% <U <0, then the operator A3,, has no eigenvalues, lying the below of
continuous spectrum of operator Hy,,.
¢.Ifv=3 U>0 and U> %B, then the operator H?Az has a unique eigenvalue Z,, lying the above of
continuous spectrum of operator H§A2.
d. Ifv=3 U>0 and 0<U s%, then the operator HJ, has no eigenvalues, lying the above of
continuous spectrum of operator Hy,,.
We now investigated the spectrum of operator (H37f)(6,1n) = {24 + 2B X!_[cosB; + cosn;1f(6,1) —
U . f(s,y+n—s)ds.
Let A; =6+ d A,=y+6. Th (H3p,f2,)(0) = {2A + 4B Y}, | 4 _g ) —
et A3 = n, and A4 =y+0. en 245 J15 = i=1€0S— COS |5 i) fas
U [1v fa,(s)ds.
It is known that the continuous spectrum of the operator 172,13 does not depend on the parameter U and consists
of the intervals oo (F3,,) = Gf, = [24 — 4B XY_; cos 2,24 + 4B ¥, cos 2],
We Set DX3 (Z) — 1 _ UITV dSldSZI...dSV

2A+4BYY_, cos%cos <§—si>—z.
Lemma 7. The number z, € G, is an eigenvalue of operator HSAS if and only if it is a zero of the function
Dj.(z), ie, Dj.(z)=0.

Theorem 29. a). If v=1 and U >0, then the operator 172,13 has a unique eigenvalue z3 = 24—

\/UZ + 16B?cos? /12—3 lying the below of continuous spectrum of operator H§A3.

b). If v=1 and U <0, then the operator H§A3 has a unique eigenvalue Z; = 24 + \/Uz + 16B?cos? %

lying the above of continuous spectrum of operator 173,13.
In the two-dimensional case, we have the analogous results.
We now consider the three-dimensional case.

Theorem 30.a).If v=3, U>0, and U > %, then the operator ﬁ§A3 has a unique eigenvalue z;, lying
the below of continuous spectrum of operator
A,

b). If v=3, U>0, and 0<U S‘;—B, then the operator ﬁ§A3 has no eigenvalues, lying the below of
continuous spectrum of operator Hy,.

c.If v=3, U>0, and U< —%, then the operator ﬁ§A3 has a unique eigenvalue Z3, lying the above
of continuous spectrum of operator ﬁ§A3.
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d.If v=3, U<O, and —% < U <0, then the operator ﬁ§A3 has no eigenvalues, lying the above of

continuous spectrum of operator 3.
We now using the obtaining results and representation (19), we can describe the structure of essential spectrum and
discrete spectrum of the operator of third five-electron quartet state:

Theorem 31.If v=1 and U <0, then the essential spectrum of the third five-electron quartet state operator
317;’/2 is consists of the union of seven segments: o, ( 3H§> =la+c+eb+d+flula+c+Z5b+d+7;]U
2

[a+e+z,,b+f+z]Ula+2z,+23,b+2,+Z3]U[c+e+Z,d+ [+
+Z]]U[c+ 2 +Z3,d+ 2, + Z3] U [e + Z, + 25, f + Z; + z,], and discrete spectrum of operator 317;’/2 is consists

of no more one point: oy, ( 3173") ={Z1+ 2z, + 23}, or oy ( 3ﬁ§> = 0.
2 2

Here and hereafter a = —2A4 — 4Bcos%, bh=—24+ 43605%, c=A—2B, d=A+2B, e=24—

4Bcos=2, f=2A+4Bcos%, 7z =-24- JUZ +16B%cos? 2, z,=A-2VUZ+ B, 7 =24+

\/UZ + 16B2c0s2 22,
Theorem 32.1f v=1 and U > 0, then the essential spectrum of the third five-electron quartet state operator
3H§/2 is consists of the union of seven segments: g, ( 3ﬁ§q> =la+c+eb+d+flUla+c+zs,b+d+
2

Z3] U
[a+e+Z,,b+f+ZlUla+2Z,+23,b+ 2, +z3]U[c+e+z,d+ [+
+z]U[c+ 2y +23,d+ 2z, + 23] U e+ z; + Z,, f + z; + Z,], and discrete spectrum of operator 3ﬁ§/2 is consists of

nNo more one point: oy ( 3H§) ={z1 +Z; + 23}, or Oy ( 3173‘1) = 0.
2 2

Here 21=—2A—\/U2+16Bzcosz% 7, = A+ 2VU? + B?, Z3=2A—\/U2+16BZCOSZ%.

In the two-dimensional case we have the analogous results.
We now consider the three-dimensional case.

Theorem 33.a). If v=3 and U<0,U<-2" M>m, m<W, or U<O0, m>M m<iW, or
U<O0,U<=3, m>M, m<iW,or U<O, U<—-3, M>mm>:W, or U<0,U<—2, m>M,
M>§W, then the essential spectrum of the third five-electron quartet state operator 3173/2 is consists of the union of
seven  segments: oess(3ﬁiq>=[a+c+e,b+d+f]U[a+C+Z3,b+d+23]U[a+e+22,b+f+zz]u
[a+zz+Z3,b+zz+Z3]U[C+Ze+z~1,d+f+21]U[c+z”1+z”3,d+z”1+z”3]U[e+Zl+zz,f+Zl+zz], and

discrete spectrum of operator 3173‘?/2 is consists of no more one point: gy ( 3ﬁ%q> ={Z1 +2,+ 73}, or
Odisc ( 31’_‘1'3(1) = ®
2

Here, a = —2A—4BY. cosS, b=-2A+4BYl cosst, c=A-6B, d=A+6B, e=24-

4B YV_, cos /12—3 f=2A+4B Zi”:lcos/lzi, and Z;, z, and Z;, are the eigenvalues of the operators A7, , H3,,
and H;,,, correspondingly.

b. fv=3 and U<0, -2 <U<-3, M>IW,0or U<0, —=<U<-, M>m and M<
fW, or U<DO, —§SU<—ﬂ, M >m, andm>fW, or U<O, ——$U<—£, m>m, and
3 4 w m 2 w M
M>-W,or U<0, ——<U<—-—, M<m,and m>-W, o U<0, —-——<U<-— M<m, and

3 M w 3 M m

m < gw, then the essential spectrum of the third five-electron quartet state operator 3H§ /2 is consists of the union of

four segments: aess(3H§)=[a+c+e,b+d+f]u[a+e+zz,b+f+zz]u[c+e+21,d+f+21]u
2

[c+Z+23,d+Z +Z3]Ule+ 2+ 25, f + 7, + 2], or



Tashpulatov 35

aess(3ﬁ§)= l[a+tc+eb+d+flUla+te+z,b+f+2z]U[c+e+2;,d+f+ )

’ Ule+2z, +273,f + 2, + 73],
or Gess<3l7§>= [a+c+eb+d+flUlate+Z,b+f+Z]]U[c+e+2Z3,d+f+Z3]U[c+2Z+2;,d+
z1+z3Ve+z1 7'-223, /+z1+z3, and discrete spectrum of operator 343/2g is empty: odisc3H32g=0.

4B 3B 4 4B 3B

. If v=3 and U<0O, _VSU<_W' M >m, and m<§W, or U<O, —;SU<—W,

4 4B 3B 4 4B 4B

M <m, and m<§W, or U<DO, __SU<_W' m <M, and M>§W, or U<DO, —;§U<——,

m < M, and m>fW, or U<DO, ——§U<—ﬂ, m > M, and M>fW, or U<O, —§SU<—£
3 M m 3 w m

M<m, m> %W, then the essential spectrum of the third five-electron quartet state operator 3H§’ /2 is consists of the

union of two segments: 0855(3H§q>=[a+c+e,b+d+f]U[a+c+22,b+d+Zz], or 0955(3173‘7):
2 2

[a+c+eb+d+flula+c+Z;,b+d+ 2], or aess<3ﬁg>= [a+c+eb+d+flula+c+Z,b+d+
2
z1, and discrete spectrum of operator 373/2q is empty: odisc3H/32g=0.

d.Ifv=3 and U<0, —2/<SU<0 and M<m, (M>m), m<3iW,
or U<0, —%§U<O,M>m,andm<gw, or U<0, —%SU<0,M>m,and m>§w, or U<0,

—% <U<0,M<m,and m > SW, then the essential spectrum of the third five-electron quartet state operator 3173‘1
2

is single segment: o, ( 3173") =[a+c+eb+d+f], and discrete spectrum of operator 3Hf is empty:
2

2
Odisc ( 3[75) = Q)
2

Theorem 34.a). If v=3 and U>0,U>> m><W, andm<M, (m>M), or U>0,U>>,

m < gw, and m< M, or U>0, U> %, M< SW, and M <m, then the essential spectrum of the third
five-electron quartet state operator 3173‘1 is consists of the union of seven segments:
2

aess<3ﬁg’) =la+c+eb+d+flUla+c+zz,b+d+zz]VU[a+e+Z,,b+f+2Z]Ula+Z, +23,b+ 2, +
z3U[c+eZ+zl,d+f+21]Uc+zl +23,d+2z1+23Ue+z1+22,f+z1+22, and discrete spectrum of operator 3732g is
consists of no more one point: ;. ( 3173‘1) ={z1+7%, +23}, Of Oy ( 3H§) = Q.

Here, z;, 2, and z;, arethe eigzenvalues of the operators A7, , H3,, 2and H3y,, correspondingly.

b). If v=3 and U>0, Y <U<Z, andm<M, m<iW,orU>0, 22<U<>, M>m, and
m<IW, or U>0,2<U<Z, M<m, ad M<iW, or U>0,2<U<= and M<m, m<:W,
orU>0, % <U< %, and m< M, (M <m), m> gw, the essential spectrum of the third five-electron quartet

state operator 3ﬁ§q is consists of the union of four segments: g, ( 3ﬁ§) =la+c+eb+d+f]U
2 2

[a+c+z3,b+d+z3]Ula+e+z,d+f+2z)]U[c+2z +23,d+2, +23], or aess<3H

wQ

)=[a+c+e,b+

N

d+fUa+c+z3,0+d+z3V0a+e+z2,0+)f+z20a+z2+23,d+z2+23, or

aess(3ﬁ§)= [a+c+eb+d+flulat+e+Z,d+f+2]U[c+e+z,d+f+z]U[e+z1+2,,f+z;+
2

z2, and discrete spectrum of operator 3732qg is empty: odisc3H32q=0.

3B 4B 4 3B 4B 4
¢). If v=3 and U>0,WSU<? andm<§W, M<m,orU>0,WSU<V, and M<§W,
4B 4B 4B 4
m<M, orU>O,ﬁ ﬁsu<?and m>§W,m<M, or

U>0, %SU<%, andM<§W,M<m, or U>0,jn—BSU<%,andM>§W,M<m,then the essential

3B 4
SU<W, and m<§W, M>m, orU>0,
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spectrum of the third five-electron quartet state operator 3H§ is consists of the union of two segments: g, ( 3ﬁ§q ) =
2 2
[a+c+eb+d+flUla+c+z3,b+d+2z3], or aess(?ﬁg): [a+c+eb+d+flUulate+Z,b+f+
2
%], OF O ( 3H§) =la+c+eb+d+flU[c+e+z,d+f+2z] and discrete spectrum of operator *Hy is
2 2

empty: o4 ( 3H§> = 0.
2 3B 4 3B 4
d. If v=3 and U>0,0<Us5 andM<§W,orU>0,0<U§W, andm<§W, M<m,
orU>0,0<US%, andM>§W, M>m, 0rU>0,o<US%, M>m, andm>§w, or U>0,

oO<U< %B, M <m, and m > gw, or>0,0<U< %B, M<m, and M > §W, then the essential spectrum of

the third five-electron quartet state operator 3H§q is single segment: o, ( 3H§) =la+c+eb+d+f], and
2 2
discrete spectrum of operator *H3 s empty: g ( S ) = 0.
2 2
We now consider the three-dimensional case, when 4, = (49,49,4?), and
Az = (A9,49,49). Then the continuous spectrum of the operator 7, is consists of the segment o, (H7,,) =

0 0
G}, = |-24— 12Bcos =}, 24 + 12Bcos ],

0
1ZBCOSA71

Theorem 35. a). If v=3 and 4; = (49,49,49), and U <0, and U < —

only one eigenvalue z{, lying the above of the continuous spectrum of operator H27A1-
0

0 10 40 1ZBcos/171 ~7
b). If v=3 and A; = (47,47,47), and U <0, and < — o =U<QO, then the operator Hj,, has no

eigenvalue, lying the above of the continuous spectrum of operator A7, .-

, then the operator Hj, has

0
1ZBCOSA—1

o). Ifv=3 and A, =(4%49,4%), and U>0,and U > ——=, then the operator Hj,, has only one
eigenvalue z7, lying the below of the continuous spectrum of operator H7,..

AO
12Bcos =t ~
d. If v=3 and A; = (49,49,4?), and U>0, and 0< U < ;;S 2, then the operator A7, has no

eigenvalue, lying the below of the continuous spectrum of operator H27A1-
We now consider the three-dimensional case, when As; = (43,49,43), and A, = (4%,49,43). Then the

~, ~ 0
continuous spectrum of the operator H§A3 is consists of the segment o,y (H29A3) = G,i = [ZA - 123605%, 2A +
12BcosA302.

0
A
12300573

Theorem 36. a). If v=3 and A; = (43,43,49), and A, = (43,4%,49), and U<0, and U < — =,
then the operator H3,, has only one eigenvalue z}, lying the above of the continuous spectrum of operator Hy,..
b). If v=3 and A3 = (43,43,493), and A, = (43, 49,43), and U <0,
0

43
12B -= ~ . . .
and — ;;S 2 < U < 0, then the operator H§A3 has no eigenvalue, lying the above of the continuous spectrum of

operator  Hy..

29
12Bcos =2
0. If v=3 and A;=(434349), and A, = (43,43,49), and U >0, and U>——2, then the
operator ﬁ§A3 has only one eigenvalue zZ, lying the below of the continuous spectrum of operator H§A3.
d).If v=3 and A3 = (49,43 43),and A, = (43,49, 43), and U > 0, and
0

A
12860573

, then the operator ﬁ§A3 has no eigenvalue, lying the below of the continuous spectrum of operator

We now using the obtaining results and representation (19), we can describe the structure of essential spectrum
and discrete spectrum of the operator of third five-electron quartet state:
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Let Ay = (42,49,49), and A3 = (43, 43,49), and 4, = (/10,/14,/1 ).

1219cosT A9 A9 !

Theorem 37. a). If v=3, and U <0, U<—T, C057>C057, COST>Z, or U<0 U<
49

12Bcos == A9 A9 A9 1 3B A9 A9 A9 1 3B

_1 cos7l<cos—2, cos=2>-orU<0, U<—=, cos=x>cos=% cos=2>> 0or U<0, U< —-=,

(I)/V 27 77T 2 7 4 ’ w’ T2 27 77T 2 T 4 w’

A A9 19 1 . e ~g . .
cos 71 < cos 72 cos 72 < then the essential spectrum of the third five-electron quartet state operator 3H§q is consists
2

of the union of seven segments: g, ( 3173") =la;+c +e,by+dy+filU[ay +c; +23,by +dy + 23] U
2

la; +e  +zi,by + fi +z2]U[ay + 23 + z3,by + 2} + 23] U [c; + e + z1,dy + fi + zH] U [c + 2] + z3,dy + 2] +
z3Uel+z11+221,/1+z11+221, and discrete spectrum of operator 3432 is consists of no more one point:

Odisc ( 3H§q) = {le + ZZ1 + Z3}: or  Ogisc ( 31:75) = 0.
2 2

0 0
Here, hereafter a; = 24 — 12Bcos=L, b; = 24 + 12Bcos 2,

0
¢ =24—- 1ZBcosA—2 dy =24+ 12Bcos—2 eg=A—6B, fi=A+6B, and z{, z}, and z3, are the
eigenvalues of the operators HZA ) HZ/12 and HZA , correspondingly.

0
IZBcosA— 1ZBcos— g
b). If v=3, and U<O, —TSUS—T, co >cos—, and cos >— or U<O,
1ZBCOS£ 121}?605ﬁ A9 A9 29 1 1ZBCOS—0 3B AO
e =2 ' § 22 el S 2 <= 21
o <U< o C0S—- < Cos—, andcg)sz>4, or U<0, and m <U L COS—->
A
20 20 1 12Bcos =2 3B A9 A9 49 1
cos=% and cos=t>- or U<0, and ———2<U<-=, cos=2<cos=, and cos=2>=> or U<O,
2 2 7 4 . w w 2 2 2 74
47 42
3B 12Bcos—- A9 A9 A9 1 3B 12Bcos—=~ A9
and ——=<U<-——=2 cosZE<cos=2, cos22<= or U<0, and —=<U<-—-——2, cos=><
w w 2 2 2 4 w w 2

0 0 ~ . -
cos /12—2 cosAz—2 < %, then the essential spectrum of the third five-electron quartet state operator 3H§ is consists of the
2
union of four SegmentSZ Ogss ( 3ﬁ§) = [al +c + el,bl + dl + fl] U [al +e + Z%,bl +f1 + Zzl] U [al +c +
2
Z3,b1+d1+Z3]U[Q1+Z%+Z3,b1+l%+Z3], or 0955(317;)=[al+C1+e1,b1+d1+f1]U[a1+Cl+
2

z3,by +dy +z3]U[c; + ey +2zi,dy + fi + 21U [c; + zf + z5,dy + 2} + 23] | or 655(3H3)=[a1+c1+
elb1+d1+f1Val+el+2z21,01+f1+221U[cl+el+z11,d1+/1+z11]JUel+z11+221, f1+2z11+221, and discrete
spectrum of operator *Hj is empty: g ( S ) = Q.

2 2

0
IZBCOS— 3B A9 A9 1

/1
¢ f v=3 and U<0, ——2E<U<-=, ©co >cos—2, and cos=%>- or U<O,
r w w’ 2 2 4
A
1ZBcos— 3B A9 A9 A9 1 3B 12Bcos=* A9 A9

———— 2 <U<-= cosZEt<cosZE and cos=2>-, orU<0, ——<U<———2 cos=Lt < cos=, and

w w 2 2 R w w 2 2’

Ay 43

/1(1) 1 3B 12Bcos—= A9 A9 A9 1 12Bcos—=
il Rt < =2 it § 42 22 -2 2 <
cos— <, or U<O, W_U_ o COS—>cos~ , and cos— <, or U <0, and =

1ZBCOSﬁ A9 A9 A9 1 1ZBcosﬁ 1ZBCOS£ A9 A9

< "2 it § 22 225 < =2 1 22
U< o cos— < cos—, andcosz>4, or U<0, and o <U< o Cos—>cos—,

0 ~ . .
and cosAz—1 > %, then the essential spectrum of the third five-electron quartet state operator 3H§ is consists of the
2

union of two segments: o, ( 3H§) =[a;+c +e,b+d;+filU[c; + e +zi,dy + fi + 2], or 0, ( 3H§> =
2 2

[a1+C1+el,b1+d1+f1]U[a1+el+Z%,b1+f1+z%], or ess(3H3)=[a1+C1+el,b1+d1+f1]U

2

[ay +c; + Z3,b; + dy + 73], and discrete spectrum of operator 3H{ is empty: 045 ( 3H§) = 0.
2
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3B A9 A9 19 1 3B
d. If v=3 and U<O0, _WS U<0, and cos—< cos—, cos7>z, or _WS U<0, and
AO
A9 A9 19 1 128005— A9 29 1
cos—1>cos72, 00572>—, or U<O, _T <U<0, and cos—<cos72, C0571<Z, or U<O,
0
1ZBcos—

—TZ <U<0, and cos > cos% cos < -, then the essential spectrum of the third five-electron quartet

state operator 3H§ is single segment: Ooss ( H§> = [a; + ¢; + ey, by + dy + f1], and discrete spectrum of operator
2 2

2

SHT isempty: 045, ( 3Fi§) = 0.
2

43 43
12Bcos—= A9 A9 12Bcos—=
Theorem 38.a). If v=3, and U >0, U > TZ, 00571 > cos 72, cos > - or U>0 U> TZ‘
A A9 19 1 3B A A9 A9 3B A
cos—1<cos—2 cos=2>= orU>0 U>= cos=>cos= cos—2<—, or U>0 U>= cos=<
2’ 2 7 4 w 2 2 2 4 w 2
/1 A3 1 . s ~a . i
cos 72 cos 72 v then the essential spectrum of the third five-electron quartet state operator 3H§q is consists of the

2
union of seven SegmentSZ Ogss ( 3]75) = [a1 +c + el,bl + dl + fl] U [al +c + Z3,b1 + dl + Zg] U [al +e +
2

222,01+[1+2220al+222+23,01+222+23U[cl+el+z12,d1+/1+2z12]Ucl+z12+23,d1+z12+23V0el+z12+22
2, f1+z12+2z22, and discrete spectrum of operator 3H32g is consists of no more one point:

Odisc ( 31’_1"5) = {le + ZZZ + ZS}; or  Ogisc ( 3]75) = Q.
2 2

Here, zf, zj, and z;, are the eigenvalues of the operators A7, , HJ,, and H;,,, correspondingly.

43
3B 12Bcos—= A9 A9 1 3B
b). If v=3, and U>0, = <U<—1%, cos—<cos—2, and cos=2>-, or U>0, —<U<
. w w p 2 7 4 w
A7
12Bcos—- A9 A9 A9 1 12BcosaL 3B A9 A9 29 1
—2 cos—1>cos—2, and cos=>- or U>0, ——=2<U<=—, cos=>cos=% and cos=<-, or
w 2 2 7 4 w w 2 2 2 4
49 19 49
12Bcos— A9 A9 1 12360571 1ZBCOSTZ A9 A9
U>0 and —= U<—, cos—<cos—, cos—=<-,0rU>0, —=<U<———=, cos— < cos—=,
w W0 2 2 4 w w 2 2
A7
A9 1 1ZBcos— 12Bcos—- /10 A9 A9 1 .
cos72 >4 or U>0, T <U< TZ cos= > cos 72 c0571 > then the essential spectrum of the

third five-electron quartet state operator 3173 is consists of the union of four segments: g, ( H3 ) =la;+c¢ +
elb1+d1+/1Ufal+cl+2z3,61+d1 +Z3]U[€1 +el+z12,d1+/1+212]Ucl+2z12+23,d1+z12+23, or
ess<3H3) =[a;+c +e,by+d; +filU[ag + ¢ +23,b; +dy +23]U[ag; + e +23,b; + f + 23] U
[a; + 25 + 23, by + 22 + 23], OF O, ( 3H§’) =la;+c; +e,b+di+filUla; +e +25,by+ fi +22]U [c; +
2

ey +z8,dy+fi+zH Uleg + 22+ 23, fi + 22 +22] , and discrete spectrum of operator GHY  is empty:
2

Odisc ( 31:7;) = @
2

0
43
3B 12Bcos—- A9 A9 19 1 3B
Cf = n —_ << —-= =1 2 an 2s - or P <cy<
c) v=3 and U>0 s SUsS——% c052<cosz,ad cos—>0r U>0, -<U=<
1ZBcosﬁ A9 A9 A9 1 IZBcosﬁ 123cosﬁ A9 A9 A9 1
——2  cos=+t>cos=% and cos=% > orU>0 ——+<U<—1, cos—1<cos—2, and cos=2 < -,
w 2 2 2 7 4 w w 2 2 4
49 29 AO
12360572 123c0571 A9 A9 Ay 1 IZBCOS—
orU>0, —2<U<——=2, cos=t>cos=%,and cos=<-, or U>0, ——=% U<—
w w 2 2’ = 2 4 w
A
49 49 12Bcos=* 3B 49 49 49 1
00571 < cos 72, and cos < -, or U>0, TZ SU<3 cos;1 > cos 72, and cos72 < then the

essential spectrum of the thlrd flve electron quartet state operator 3H§ is consists of the union of two segments:
2

ess<3H3)=[a1+C1+el,b1+d1+f1]U[C1+31+le,d1+f1+212], or ess(3H3)=[a1+C1+el,b1+
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d1 +f1] U [a1 +e +Z22,b1 +f1 +Z22], or 0'855(3ﬁiq) = [a1+C1+31,b1 +d1 +f1] U [a1+C1 +Z3,b1 +d1 +
2

23], and discrete spectrum of operator *Hy is empty: gy, ( A ) = 0.
2 2

3B A9 A9 19 1 3B A9
d. fv=3 and U>0, 0<U<-=, and cos=t<cos=% cos==>-0or 0<U<=, and cos=>
W 2 2 2 74 w 2 -
A A
A9 A9 1 12Bcos =L A9 A9 A9 1 12Bcos=%
COS72, COS7Z>Z, orU>0 0<U< = z andcos71<cos72, 60571<Z, orU>0 0<UK< - 2

A3 43 4y 1 : i fi gd i
and cos71 > cos 72 60572 < then the essential spectrum of the third five-electron quartet state operator 3H§q is
2

single segment: g, ( 3ﬁ§) = [a, + ¢; + ey, by + d; + f1], and discrete spectrum of operator  *Hj is empty:
2 2
Odisc ( 31‘7;) = @
2

6. Conclusion

In this paper we consider five-electron systems in the sextet and first, and second, and third quartet states. In the

five-electron systems the total spin S take the values S = % % and % The states with total spin value S = g so-called
the sextet state. We proved in the sextet state the spectrum of the system purely continuous and consists of the segment
[m,,M,] = [5A — 4Bv,5A + 4Bv], and in the system five-electron bound states or five-electron anti-bound states are

absent. The state with total spin value S = % so-called the quartet states, in the system exists four type quartet states. In

the first five-electron quartet state, corresponds the basic function the form g2/ . = a}, .at atiataf00. We

proved, in the case, when v=1, the essential spectrum of the first five-electron quartet state operator is consists of the
union of seven segments, and the discrete spectrum of the first five-electron quartet state operator is consists of no more
one point. In the system exists no more one five-electron bound states or no more one five-electron anti-bound states. In
the two-dimensional case, we have the analogous results. In the three-dimensional case, the essential spectrum of the first
five-electron quartet state operator is consists or the union of seven segments, or the union of four segments, or of the
union of two segments, or of single segments, and the discrete spectrum of first five-electron quartet state operator is
consists no more one point. Consequently, in this case the system have no more one five-electron bound states or no more
one five-electron anti-bound states. In the second five-electron quartet state, corresponds the basic function the form

Zq,?;l/, fL,r,t,lEZ" = a; ray a7 1a a9 We prover, in one-dimensional case, the essential spectrum of the second
five-electron quartet state operator is consists of the union of seven segments, and the discrete spectrum of the second
five-electron quartet state operator is consists of no more one point. In the system exists no more one five-electron bound
states or no more one five-electron anti-bound states. In the two-dimensional case, we have the analogous results. In the
three-dimensional case, the essential spectrum of the second five-electron quartet state operator is consists or the union of
seven segments, or the union of four segments, or the union of two segments, or of single segments, and the discrete
spectrum of second five-electron quartet state operator is consists no more one point. Consequently, in this case the
system have no more one five-electron bound states or no more one five-electron anti-bound states. In the third

five-electron quartet state, corresponds the basic function the form 3qfn/’ rzl,r,t,lEZ” = aja0.af airafi00. If v=1,

then the essential spectrum of the five-electron third quartet state operator is consists of the union of seven segments, and

discrete spectrum five-electron third quartet state operator is consists of no more one point. In two-dimensional case, we

have the analogous results. In the three-dimensional case the essential spectrum of five-electron third quartet state

operator is consists of the union of seven, or of the union of four, or of the union of two, or of single segments, and the

discrete spectrum of this operator is consists of no more one point. Consequently, in this case the system have no more

one five-electron bound states or no more one five-electron anti-bound states.

Comparing of theorems 8,9,10,11,13,14 with theorems 16,17,18,19,22,23, as well as with theorems 31,32,33,34,37,38,

show that the spectra of these three Quartet States are the different, i.e. these three Quartet States has a different origins.
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