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Fredholm Properties for Pencils

Nifeen Altaweel'

Abstract

This paper is to interest the Fredholm properties of the operator Pencil. In particular, we detect and approximate
the spectra of Fredholm operator Pencils via Green’s kernel (contour integral) with consider Exponential solutions
of differential equations with operator coefficients. A motive for this article is to gain a deeper understanding the
development of aspects of the theory of ordinary differential equations with operator coefficients by concentrating
on some specific examples of trapped modes. The results of this paper, it is established directly that Fredholm
operator Pencil and the index calculated without the need to consider adjoint operator. Also, we leverage some
concepts to go from the semi-Fredholm property to the Fredholm propery.
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1 General Background

1.1 Spaces and Operators

A polynomial operator Pencil also called operator polynomial, which is an expression of the form
Ba(p) = p"Ag + p" T Ay + .+ Ay, (1)

where A; (7 =0,1,...,n) is operator acting in a Hilbert space H and g € C is the spectral parameter.

This is a linear subspace of the Hilbert space H with the norm given by

o

2 24k 2

lullf, =300+ A2)Fay]?,
G=0

for uw € Hy. and operator B, will be introduced below: An operator Pencil
'8/\ :C— B{HQ.‘HO}.‘

which is defined as,

Ba(u) =p* +A -\, (2)

In order to define the function space om which A given in (2) and values of parameters v and 3, which are related
to approximate eigenvalues of an operator Pencil B4 we need to introduce the exponential weighted function
spaces modelled on Sobolev spaces to examine the operator Pencil. These spaces defined by the following finite

NOoTrm:

) 2
Diu Diu dt;
Hy_;

k0
lulfis = Zf J2at
! g=0 e

2 k  poo
dt + j 26t
‘Hk_j jz=ﬂ 0

d on R, and e, 3 € R. (See [5], [6],

where 1—1-’;:_ 5 denotes the set of u: R — H;, for k € Ny, the operator [); = —-iE

[7])-
1.2 Fredholm Operator Pencil

We define basic facts of the Fredholm operator Pencil and its adjoint; these are collected without proof. Then,

we can structure of the formula of Bil(pz} near the pole.
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Definition 1.1. We can consider the operator Pencil B4 such that
By :C — B(Hs, Hy)
Ba(p)=p>+A—-X\ for peC.
is called Fredholm for all p € C, and it is invertible at least one value of u (see, for example, [9] and [10]).
Theorem 1.1. Let { be in the domain C. Suppose the operator Pencil B, (i) satisfies the following conditions:
1) Balp) € ©(Ha, Hy) for all p € €.

2) There exists a number p € () such that the operator Ba(p) has a bounded inverse.

Then, the spectrum of operator pencil B4 (pt) consists of isoloted eigenvalues with finite algebraie multiplicity.

See, for example, [9] and [10].

In what follows, we consider the operator Pencil again and the definition of adjoint operator.

Definition 1.2. The adjoint operator Pencil B} : C — B{H{,H§) is a Fredholm operator for all § € C and

invertible at least one value and therefore its spectrum is discrete. See [9].
Proposition 1.2. Let B4 be a Fredholm operator Pencils. Then,
e < Cis an eigenvalue of B4 if and only if fig is an eigenvalue of BY.
e The geometric and algebraic multiplicity of g and T coincide.
Proof. The reader ean see the proof of this proposition in [9] and [10]. O

The main purpose in the following part is defined the inverse operator 8;1 of operator pencil B, near an
eigenvalue pg, we need the notion of Holomorphie function. Then, we consider some properties of this operator

which will be used to investigate some arguments of this thesis.

Definition 1.3. Let £} be a domain in Complex plane C. An operator function

T(u) : @ — B(H. Hy)
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is ealled Holomorphic on {2 when it can be represented as a power series

Tp) =D Ti(p—po), ;€ B(Ha Hy),
i=0
which is convergent in B(Ha, Hy) in a neighbourhood of pg € Q (see [9]).

Theorem 1.3. Let up be an eigenvalue of B4 and let J and mq, ..., ms be its geometric multiplicity and partial

multiplicity respectively. Suppose that
{orsh, =0, mp—1, k=1,..,J
is a canonical system of Jordan of B, corresponding to pg.

(i) There exits a unique

{theeh s=0,mp—1, k=1,..,J
is a canonical system of Jordan of B corresponding to fig.

Such that in a neighbourhood of g, the resolvent operator (inverse operator) ean be represented as

J om—1
Byl =Y Gy 10 (3)
k=1 h=0 (e — #O o
where,
R
Piy= Z( Ui s) Ho Pk h—s> (4)
a=f{

and T is a Holomorphie function in the neighbourhood of .

ii) The system {1 <} is a canonical system of Jordan of B corresponding to g satisfies the bi-orthogonal
. A H

condition that is,
d mp+s

Z Z (nJ[:ﬂU 'fgkmk+3 Tty W}d s) = 0pdg {5}

s=0n= s+1
fork,j=1,...J,and d =0,...,my — 1.

(ili) Suppose 150, ....%5,m;—1 for § = 1,..., J is a collection of Jordan chain of B*(A) corresponding to Jig which

is subject to (5), then the collection v;0, ..., m;—1 is a canonical system satisfying (i).

Proof. The reader can see the proof in [9] and [10]. O
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2 Green’'s Kernel

What is a Green’s function? Mathematically, it is the kernel of an integral operator that represent the inverse
of a differential operator (see [4]). In this section, we construct bases to define the Green’s function with some
properties.

The following assertion will use to define a Green’s function of the resolvent operator and the bounded map

Ba(Dy): Wi, =W,

Lemma 2.1. Suppose a0 ¢ I'(By) = S(o(B,4)), that is the line $(o(B4)) does not contain eigenvalues of the
operator Pencils B4 ().

Then the Green’s function is defined hy

1 ; _
GO =5 [ B .
Fu=o

However, the following proposition, we observe the integral of the inverse operator is convergent in the norm of

B(Hy,Hs) to determine G(t).

Proposition 2.2, For a € I'(B4), i.e., the line ¥(c(B,4)) does not contain eigenvalues of the operator pencils

Ba(p). Then for ¢ # 0, the limit

i

: itp pr—1
Jim e © B (p)dp,

exists in B(Ho, Ha).

Remark 1. From above arguments, we have the operator

1 i1t pr—
GO =5 [ B3 (n)dn
Fp=o

explained in sense of the Cauchy integral. To get that,

1

G(t) = ot

¢ D, BT () dp

Sp=n

with absolute convergent in B(Hy, Ho).
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2.1 Representations for G(t)

Now, we observe the difference between G(t) and G'7)(t).
G(t) does not depend on o, we can set X, = {u € o(Ba) : Sp = a} and we consider Sp = 3.

A new Green’s kernel is defined by

Giﬁ)(t_) = lf e”“B;‘(,u,)d#.
2m Fu=4
To understand this relation between G(t) and G (t), we have the following theorems.

Theorem 2.3. Let the operator is defined by

Pt) = 5 [ 0BT (.

:ﬁs

v

where S, is a small circle centred at the eigenvalue p,,. Then, we have that

LT (i)
Pv{t)zfz Z i Prp, (6)
k=1 h=0
where, P j, is defined in (4), ie.,
h
Peh =3 (o trs) Hok hs: (7)
s=0

and J be a geometric multiplicity of pg.

Theorem 2.4. Suppose there are no eigenvalues of the operator Pencil B4 on the lines Gp = £, and X,, =

{n € o(Ba): Su < a). Then

G(t) = z ei“‘PU{t) + G(-SJ{t)., (8)
BEX,
G(t) = — Z ei“ipt_.(t} + Gw)(t}. (9)
BEX .

Therefore, the formula (8) and (9) are the new representation of G(t) as t — *oc. See for example, [9] and [11].

Theorem 2.5. For k=1,2,...,J and s =0,...,mp — 1, and these conditions hold for all p € ¥, then we have

my—1 mE—1

. o .. h
S O Bocica = 3 (Dt D).
h=0 : h=0
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Theorem 2.6. For k = 1,2,...,J and s = 0,...,m; — 1, and these conditions hold for all p then the Green’s
kernel has new representation
J mp—1
GH) -G =—i Y > eol(., Yr.s) HoPh h—s-

PESa, k=0 h=0

We can consider the function G'?)(t) by the following lemma:

Lemma 2.7. For a ¢ I'(B4) ={u € 6(Ba) : Su = a}. Then,

. and we set X,

p

Res(e™™ B3 (1t); p) if t>0

iz;te):n‘

A

G('j)(t) =

X ers Res(e™ B " (1); p) if. “#2.0;

\

The following Lemma, we can generalise the new representation of G?(t).

Lemma 2.8. Suppose a, 3 € R\I'(B4). and We have note that X3, € ¥, X, CXz ,and¥,; =Y, \¥5, =

¥z \ Es_ . Then,

i3 en, Res(e™By! — i ,ex. . Res(e™ Byt (u):p)

GO(t) — G (1) = {

—iY e, Res(e™By'(u)ip) +iY,ex, Res(e™ By (u):p)

It follows,
GOt = GOty = —i Y Res(e® By ()ip) forall ¢
PEZQ a
Lemma 2.9. If
Ba (1) = (. Yk h—s)Ho Pr.s (1 — pio) "™ + T ()

for g is neighbourhood of pg. Then,

Ba(p)or,s = 0.

t=>0

t <0,

(10)
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Corollary 2.10. Similarly, the adjoint of B4 we have that
Bi (). = 0.
We have Theorem 2.6 achieves to find the solution for the difference two solutions of non-homogeneous equation
Ba(Dou = f. (11)
We have o < 3 and ¥, 5 denote the linear span of the set of all exponential solutions corresponding to po € a(Ba).
Then, we have the following propositions:

Proposition 2.11. Let o < § € R\ I'(B,4) and suppose [ € W’g‘a n W'gﬁ. Choose the unique u,, € W‘E__a and
ug € W',_'%‘.S such that

Ba(Di)ua = f and Ba(Dy)us = f.

Then, the difference uy — ug lies in ¥4 5 (see, for example, [2] and [9]).

Proposition 2.12. For o, 5 € R\ I, and we have the maps
A{fl) _ DE 4+ A—A: H’ﬁ__a — ufg.a'-
AR =D LA )W, ——+‘P§ﬁ=

are isomorphisms.

Let fe W), NWJ 5, and u, € W2, ug € 1—1-’_;1’5 be the solutions of
A%y, =f and A(ﬁ)uﬁ =T,

respectively. Then,
Uy (t) —ug(t) = Z / ePoli=51 Py f(s)ds.
pED o, B R

Proof. By Lemma 2.1, and Theorem 2.6 we can observe directly,

ua(®) — us(t) = [

R

G (t — ) f(s)ds — f GO (t —s)f(s)ds

:3

_ f (G@ — GB)(t — 5)f(s)ds
E

mg—1

= XX [ s
R

peZa,8 h=0
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Remark 2. For {@sk‘s}fz"o_l is a canonical system of Jordan of B4 corresponding to pp, and {1 j—s }:T:D_l isa
canonical system of Jordan of B corresponding to fig for k= 1....,J and s = 0,...,mm;, — 1, and these conditions

hold for all p € ¥, 5, by Theorem 2.6, we can set

u, (t) = —ie™tpy
and

vu(t) = €T by s,
fork=1,....Jand s =0,...,mp — 1.

Thus, u, and v, are called exponential solutions of B4 (D;)u, = 0, and B (D;)v, = 0, respectively, (see [9]. pp.

10— 11).

Proposition 2.13. We have u,(t) = —ie'*'py s, and v,(t) = P4y ., and by using Proposition 2.12, we

can get

Il

APyt f - (4@ = [ (69 - @)t - 9)f(5)ds
R

mi—1

> 2 /R(—ifi"mvk.h-s)<€’imsﬁ’k.55f(S))rlodS

peXa,f h=0

= Z (Vs ) Ho-

peXa,fB

3 Main Results

Theorem 3.1. Let ., 8 € R\ I'(B4). Then, Ba(Dy): H”iﬁ — W2 4 is semi-Fredholm with a finite-dimensional

o

kernel.
Theorem 3.2, Let # € B. Then, the map A¥) = B4(D,) : ﬁfg‘ﬁ - 1-1"_3__5 has a finite-dimensional kernel.
Proposition 3.3, For o < 3, we can consider the maps

AlE) = By(Dy) : Wi — W5,

and

AP = By(Dy): W2, — Wi,
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and we have that solutions {u, : p € ¥, g} and {v, : p € ¥, g} of the equations By (Di)u, =0 and By (Dy)v, =

0, respectively, and are linearly independent sets.

To observe the following claims:

e Claim (i):

Ker A" = {u e W] 5: APy =0} = {0}.

e Claim (ii):

Ran A% = {f e W2 5 (vu, f) =0 forall p€ Xag).

e Claim (iit):

Ker AP = Span{uy, : p € Xa 5}

e Claim (iv): We have

Ran A52) — ]r.’i,-’g.al
Corollary 3.4. Let a, 5 € R\ I'(B,4), Suppose
A W2 WD

and

) . 2 70
AB . p[,rﬁ‘ﬁ —~ W 35
are isomorphism maps. Then, A and A are Fredholm maps with index 0.

We finish this part, by the last result in the eurrent thesis which shows how the index of the Fredholm maps

Ale@B) and A% varies when we change o and 3.

Theorem 3.5. Suppose o < 5 € R\I". Then the maps
AleB) . W’g__ﬁ — 1-1-"2‘3

and

A WE s W,
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are Fredholm maps with

Index A©@A) Wgﬁ — W’g‘ﬁ = — |25 = — Index AP W’gﬂ — 'WD‘Q.
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