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Abstract  
 

In linear mixed models the assessing of the significance of all or a subset of the random effects is often of primary 
interest. Many techniques have been proposed for this purpose but none of them is completely satisfactory. One 

of the oldest methods for testing randomness is the F −test but it is often overlooked in modern applications 
due to poor statistical power and non-applicability in some important situations. In this work a two-step 

procedure is developed for generalizing an F −test and improving its statistical power. In the first step, by 

comparing two covariance matrices of a least squares statistic, we obtain a ”repeatable” F −type test. In the 
second step, by changing the projected matrix which defines the least squares statistic we apply the test 
repeteadly to the same data in order to have a set of correlated statistics analyzed within a multiple testing 
approach. The resulting test is sufficiently general, easy to compute, with an exact distribution under the null and 
alternative hypothesis and, perhaps more importantly, with a strong increase of statistical power with respect to 

the F −test.  
 

 

keywords: Linear Mixed Models; Hypothesis testing; Comparison of matrices; F-distribution; Beta binomial 
distribution. 

 

1  Introduction 
 

In longitudinal studies with subjects measured repeatedly across time there has been increasingly more attention 
on linear mixed-effects models (Laird and Ware, 1982) because they can incorporate within-cluster and between-cluster 

variations. Linear mixed effect models (LME models) can be viewed as an extension of linear regression models (LR 
models) where one or more subject-specific latent variables are included to account for within-subject dependency. 
Typically, an additional random effect is included for each regression coefficient which is expected to vary among 
subjects and it becomes important to assess the randomness of all or a subset of parameters. A linear mixed model can 
be regarded as a two-stage model (Laird, 2004) where in the first stage it may be viewed as a set of standard regression 
models with the matrix of covariates and the random effects design matrix ”merged” in a unique matrix and the 
parameter vector which includes both fixed and random parameters or the sum of both (Rocha and Singer, 2017). In the 
second stage a specification of the mean and the variance of the random effects are assumed.When faced with this 
representation, we can ask whether the ”enlarged” parameters vector is fixed, random or has both fixed and random 
elements. In order to address the issue of which model is more suitable, one might use standard model selection 

measures based on information criteria such as the widely used Akaike Information Criteria (AIC; Akaike(1973)), the 

Bayesian Information Criteria (BIC; Schwarz(1978)) or the conditional Akaike Information Criterion (cAIC, Vaida and 
Blanchard(2005)). We refer to the paper of Muller etal.(2013) for a review of these approaches and other methods such 
as shrinkage methods like the LASSO (Tibshirani, 1996), Fence methods (Jiang etal., 2008) and Bayesian methods. The 
validity of all the methods proposed depends on the underlying assumptions.  

 

                                                      
1Department of Statistics, Informatics, Applications, V.le Morgagni, 59, 50134 Florence, Italy. e-mail: marco.barnabani@unifi.it  



16                                  American Review of Mathematics and Statistics, Vol. 7, No. 2, December 2019 

 
The review paper of Muller etal.(2013) gives an overview of the limits and most important findings of 

above-mentioned approaches, extracting information from some published simulation results.  
 

As is known, one of the major drawbacks of these approaches is that they fail to give any measure of the degree 
of uncertainty of the model chosen. The value they produce does not mean anything by itself.Alternatively, because 

model selection is closely related to hypothesis testing, the choice between an LR model and an LME model and the 
evaluation of its uncertainty could be conducted by assessing the significance of all or a subset of the random effects. 
This normally involves the use of hypothesis tests to detect whether one or more variance components are equal to zero. 
Extensive research has been conducted into testing the significance of random effects in linear mixed models. Arguably, 
the main challenge has been how to deal with the fact that under the null hypothesis, the variance lies on the boundary 
of the parameter space, meaning that the likelihood ratio as well as the score and Wald tests are not asymptotically 
chi-squared distributed. Consequently, in large samples they lead to a power lower than that of the standard case and in 
finite samples they tend to produce conservative tests.Over the past two decades, these difficulties in conservatism and 
the somewhat strict model assumptions, along with improvements in statistical power, have spurred the development of 
a number of testing procedures which predominantly rely on simulations to determine the null distribution; see for 
instance Fitzmaurice etal.(2007), Sinha(2009), Samuh etal.(2012) and Drikvandi etal.(2013) among many others.One of 

the oldest methods for testing random effects in linear mixed models is the F −test proposed, originally by Wald(1947), 
for testing all random effects, and subsequently extended by Seely and El-Bassiouni(1983) for testing subsets of random 

effects. Several authors observe that the F −test has some interesting advantages with respect to other approaches (Hui 
etal., 2019), nevertheless it is often overlooked in applications to linear mixed models mainly because empirical evidence 
shows that in some situations this test can have poor power (Scheipl etal., 2008) partly because it is not sufficiently 
general or ”flexible” for being applied in modern applications.With our aim of generalizing and improving the statistical 

power of the F −test, we propose a test statistic that can be set up with the following steps:   
 

1. Compute a ”repeatable” F −type test as follows   
 

1.1 Define a least squares statistic.  
 

1.2 Compute the covariance matrices under the null and the alternative hypothesis of the above statistic.  
 

1.3 Define a test computing the trace of the product of the two covariance matrices.  
 

2. Repeat steps 1.1 − 1.3, changing the projected matrix of the least squares statistic to obtain a set of different tests.  
 

3. Analyze this set simultaneously in a multiple testing approch.  
 

Hypothesis testing approaches based on the equality of two positive definite matrices have a distinguished 
history in multivariate statistics, see for example, Roy(1953), Pillai(1955), Pillai and Jayachandran(1968) and 
Nagao(1973). The multiple testing procedures refer to any instance that involve the simultaneous testing of several 
hypotheses (Hunt etal., 2009).Some of the main advantages of this approach (which are in part the same as those in an 

F −test) include: (i) its generality, being applicable to a general formulation of linear mixed models with or without 
knowledge of the design matrix, (ii) its exactness having a known distribution under the null and the alternative 
hypothesis with every sample size, (iii) its ease of computation, it does not require any estimate of the covariance matrix 

of random components. (iv) its statistical power, our evidence shows a greater power than the F-test.The paper is 
organized as follows. Section 2 introduces some notations and defines the two stage linear mixed model. Section 3 

motivates the F −type test statistic as a comparison between two positive semidefinite matrices. Section 4 deals with the 

F −type test and is divided into three subsections. Subsection 4.1 re-examines the F −test as the product of two 

covariance matrices, subsection 4.2 develops the F − type test statistic and subsection 4.3 examines the exact 

distribution function of the F −type test under the null and the alternative hypothesis. Section 5 outlines the method 
proposed for increasing the power of the test. This section is divided into three subsections. Subsection 5.1 describes the 

base scenarios for all simulations, subsection 5.2 discusses the statistical power of the F −type test, and the multiple 
testing approach used to improve the power of the test is analyzed in subsection 5.3. Section 6 contains the conclusions. 
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2  Two-Stage Random Effects Model: Definitions and Notations 
 

   The linear mixed model for longitudinal data can be described as follows: yi = Xi
∗β + Zivi + ui , i = 1, … , n where 

yi  is a ti × 1 vector of repeated measurements, Xi
∗ is a ti × 𝑙 matrix of explanatory variables, linked to the unknown 

𝑙 × 1  fixed effect β , Zi  are the observed ti × q  covariates linked to the unknown q × 1  random effects vi ∼

N 0, Ωq , Ωq  is a q × q positive semidefinite matrix, Ωq ⪰ 0, ui ∼ N 0, σ2Iti
 . The uij ’s are iid so can be thought 

of as measurement error. We assume that ui and vi  are independent. Following Rocha and Singer(2017) we re-express 
the linear mixed model as a two-stage random coefficients model Laird(2004), 
 

 yi = Xiβi + ui ,        i = 1, … , n (1) 
 

where Xi is a matrix with k columns obtained from the elements of Xi
∗ and Zi ; the columns of Xi are those common 

to Xi
∗ and Zi  plus those that are unique either to Xi

∗ or Zi . The matrix Zi  is a subset of Xi, Zi = XiR′, where R is a 

q × k matrix containing ones and zeros. The elements of βi are given by βj + vij  if column j is common to Xi
∗ and 

Zi , by βj if column j is unique to Xi
∗ or by vij  if column j is unique to Zi . We can therefore write βi = β∗ + vi

∗, 

where null elements may be added to the original β and vi  vectors so that they have the same dimension. 

Regarding (1) as a two stage model, it follows that yi|vi ∼ N(Xiβi; σ
2Iti

) is the first stage model and can be considered 

as a set of separate regression models for each unit. So in the first stage we may be be able to obtain estimates of βi and 

σ2  using just the data from the i − th subject, i.e., bi = (Xi ′Xi)
−1Xi

′ yi  and s2 =
1

df
 ‍n

i=1 (ti − k)si
2 , with (ti −

k)si
2 = yi ′ Iti

− Xi(Xi ′Xi)
−1Xi ′ yi  and df = Nt − nk =  ‍n

i=1 (ti − k) . The estimated parameters, bi ’s, are 

independent and normally distributed with mean βi and variance-covariance matrix  σ2(Xi ′Xi)
−1. 

The βi ’s are random variables; to specify population parameters, at Stage 2 we assume that βi ∼ N(β∗, Ωk), where 

Ωk = R′ΩqR consists of Ωq  augmented with null rows and/or columns corresponding to the null elements in the 

random vectors vi
∗  so that the marginal distribution of bi  is N(β∗; σ2(Xi ′Xi)

−1 + Ωk) . We refer to the model 

described by the two-stage as linear mixed model, H1: Ωk ⪰ 0, and to the model with H0: Ωk = 0 as linear regression 
model. 

Before closing this section, we introduce some additional definitions. Let b =
1

n
 ‍n

i=1 bi  be the sample average of the 

individual least squares estimators. By hypothesis b is normally distributed with mean β∗and variance var(b) =
σ2

n
V +

1

n
Ωk  where V = n−1  ‍n

i=1 (Xi ′Xi)
−1. Simple algebra allows to show that (bi − b) ∼ N(0, σ2Vii +

n−1

n
Ωk), 

Vii =
1

n
V +

n−2

n
(Xi ′Xi)

−1  and E(bi − b)(bj − b)′ = σ2Vij + hij Ωk  with Vij =
1

n
V −

1

n
(Xi ′Xi)

−1 −
1

n
(Xj

′ Xj)
−1  and 

hij =
n−1

n
 if i = j, hij = −

1

n
 if i ≠ j. Vii  and Vij  are k × k matrices. Let denote with V the nk × nk matrix whose 

(i, j)-th block is Vij . V is positive semidefinite and symmetric with rank  n − 1 k. Let V+ = XD
′ (I − PX)XD  be the 

Moore-Penrose pseudoinverse of V with block matrices Vij , XD = diag(X1 , … , Xn). 
 

3  The motivation of the test statistic 
 

Denote with b a statistic linear in y and such that E(b) = 0. Let A = Var(b|H0) and Var(b|H1) be the 

covariance matrices of b  when Ωk = 0  and Ωk ⪰ 0  respectively. Let us suppose that b  is defined so that 

Var(b|H1) can be written as a sum of two matrices, A + B(Ωk) where B(Ωk) denotes a covariance matrix depending 

on Ωk  which is zero if and only if Ωk = 0. Define the following parameter,  
 

 θ =
1

r
tr Var(b|H0) +Var(b|H1) =

1

r
tr A+ A + B   (2) 

 

where r = 𝑟𝑎𝑛𝑘 Var(b|H0)  and B = B(Ωk) for notational simplicity. The parameter θ can be interpreded as a 

measure of the relative change of the covariance matrix of b with respect to the (pseudo)inverse covariance matrix of 

b under H0. In the scalar case θ reduces to 1 + B/A which highlights the interpretation of the above measure. 
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We can show the equality: 
1

r
tr A+ A + B  + =

1

r
trA A + B +. The quantity 

1

r
trA A + B + can be interpreted as a 

measure of the share of A in  A + B + given Ωk . This expression has been proposed and analyzed by Theil(1963) in 
the estimation of regression coefficients with incomplete prior information.In this work we construct a test statistic that 

can be viewed as an estimator of θ and is such that its expected value is proportional to θ. A test of this type is 

developed by defining an ”appropriate” statistic b  the outer product matrix of which, Sb = bb′ , is such that 

E(Sb|H0) = Var(b|H0) is known unless a scalar σ2 and E(Sb|H1) can be written as the sum of E(Sb|H0) plus an 

unknown covariance matrix capturing randomness of parameters, E(Sb|H1) = E(Sb|H0) + B(Ωk) . By (2) we define  

 T =
1

r
tr E(Sb|H0) +Sb  (3) 

 with the expected value equal to  

 E(T) = 1 +
1

r
tr E(Sb|H0) +B(Ωk) ≡ θ (4) 

 

When Ωk = 0 the parameter θ is equal to 1, E(T|H0) = 1 and T moves around 1. If Ωk ⪰ 0, θ is greater than 1, 

E(T|H1) > 1 and T deviates from 1. Because the minimum eigenvalue of Ωk  is greater than or equal to zero and  

trE(Sb|H0)+ > 0, 
1

r
tr E(Sb|H0) +B(Ωk) ≥ 0. The greater this quantity, the farther θ is from one and the greater the 

deviation of T from 1 (everything else being equal). Larger values correspond to less ”null-like” alternatives. As we 

shall see, the expression 
1

r
tr E(Sb|H0) +B(Ωk)  plays the same role as a ”non-centrality parameter” of an F 

distribution.Given the close relationship between θ and semidefiniteness of Ωk , the set of hypotheses can also be 
written as  
 

 H0: θ ≤ 1(Ωk = 0)    againstH1: θ > 1(Ωk ⪰ 0) (5) 
 

The feasibility and the performance of T depend on an appropriate statistic b that we compute by two consecutive 

OLS regressions: OLS regression of a projection of a linear transformation of XD  to get X D  followed by OLS of y on 

X D . Different projection matrices and different linear transformations of XD  in the first stage produce test-statistics 
with a different performance. 
 

4  The 𝐅 −type test statistic 
 

This section describes a test motivated by a comparison of two covariance matrices of a least squares statistic 

and can be viewed as a generalization of the F −test. This section is structured as follows: Subsection 4.1 re-examines 

the F −test motivated by a comparison of two covariance matrices, subsection 4.2 describes the F −type test statistic 
and subsection 4.3 (with Appendix A) studies the exact distribution of the test under the null and the alternative 
hypothesis. 
 

4.1  The 𝐅𝐖-test Statistic 
 

Among the many expression proposed in the literature, in this paper we refer to the F −test given by 
Demidenko etal.(2012) and Demidenko(2013) which is used for comparative purposes.  
  
 

FW =
y ′ PW − PX y

y ′ I − PW y

(Nt − 𝑟𝑎𝑛𝑘(PW ))

(n − 1)q
=

1

(n − 1)q

y′ PW − PX y

s 2
 (6) 

 

where y = [y1
′ , y2

′ , … , yn
′ ]′ , PW = W W′W +W , PX = X X′X +X , W =  X |ZD  is a block matrix with X =

[X1
′ , X2

′ , … , Xn
′ ]′ and ZD = diag(Z1 , … , Zn). 

The FW -test given by (6) can also be formulated by comparing the covariance matrices under H0 and H1 of a statistic 

bF  computed by regressing y on X D = (PW − PX)XD . The least squares statistic  
 

bF =  XD
′  PW − PX XD 

+
XD

′ (PW − PX)y 
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has covariance matrices under H0  and H1  given by E(bFbF
′ |H0) = σ2 XD

′ (PW − PX)XD 
+

= σ2VF
+  and 

E(bFbF
′ |H1) = σ2VF

+ + VF
+V+ In ⊗ Ωk V+VF

+ respectively. Then, the expression (6) can also be obtained as  
 

FW =
1

q(n − 1)
tr E(bFbF

′ |H0)+
bFbF

′

s 2
    with    E(FW ) =

Nt − 𝑟𝑎𝑛𝑘 PW 

 Nt − 𝑟𝑎𝑛𝑘 PW  − 2
θF       (7) 

 

whereq = 𝑟𝑎𝑛𝑘(Zi) and θF = 1 +
1

(n−1)q
trV+VF

+V+  In ⊗
Ωk

σ2 . 

When Ωk = 0, θF = 1 and FW  takes values around the expected value of an F distribution with (n − 1)q and 

Nt − 𝑟𝑎𝑛𝑘(PW ) degrees of freedom. If Ωk ⪰ 0, θF > 1 and FW  deviates from one. The greater FW  the stronger 

the evidence against an LR model.  

The FW  statistic tests randomness in ”relative’ terms in the sense that the alternative hypothesis is determined by the 

ratio between ”randomness” and σ2. That is, it depends on the factor  In ⊗
Ωk

σ2  . 

Motivated by a comparison of two covariance matrices of a least squares statistic, the next subsection describes an 

F −type test that can be seen as a generalization of FW . 
 

4.2   The 𝐅 −type test: 𝐓 
 

Let define QD = In ⊗ Qp×k  where Qp×k , p < k , is a semi-orthogonal matrix such that QQ′ = Ip . Let 

compute a statistic following a two-stage least squares approach. In the first stage we project the block diagonal matrix 

XDQD
′

 on the kernel of X getting X D = (I − PX)XDQD
′

. In the second stage we regress y on X D  obtaining the 

following statistic,  
 b =  QDV+QD

′  
+

QDXD
′  I − PX y 

 
(8) 

 

According to the assumptions of the random model (section 2), b is normally distributed with  
 

 E(b) = 0,        Var(b|H0) = σ2  QDV+QD
′
 

+
= σ2VQ

+ (9) 

 

 Var(b|H1) = σ2VQ
+ + C In ⊗ Ωk C′,    withC = VQ

+QDV+ (10) 

 

In applications Q is a zero-one matrix appropriately defined for extracting p columns from the matrix Xi. Observe 

that if Q = Ik , X D = (I − PX)XD  and b = VXD
′ (I − PX)y is the least squares statistic obtained by stacking bi − b , 

i = 1, … , n one under the other where bi  is the vector of OLS estimator computed on the i − th unit and b =
1

n
 ‍n

i=1 bi  (section 2). If the matrix of covariates Zi  is specified, then Q can be defined so that XiQ′ = Zi , that is 

QD
′ =  XD

′ X
D
 
−1

XD
′ ZD. In this case the statistic b allows to obtain a test statistic very close to FW . In the absence of 

additional information on Zi , the matrix Q can be defined as a unit vector, Q′ =  Xi ′Xi 
−1Xi ′xj  where xj  is the j − th 

column of Xi. As we shall see this is the instrument used to increase the power of the test statistic. 

Then, given b we compute the covariances matrices under H0, under H1 and the test statistic  
   

 T =
1

 n − 1 p
trVQ

bb′

s2
=

1

 n − 1 p
b′  

VQ

s2
 b (11) 

 

where the sample variance s2 is defined in Section 2. The parameter θ is given by  
 

 θ = 1 +
1

(n−1)p
trV+LV+  In ⊗

Ωk

σ2  (12) 
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where L = QD
′

VQ
+QD and p = trVQ VQ

+ = 𝑟𝑎𝑛𝑘(VQVQ
+) = 𝑟𝑎𝑛𝑘(Q). The trace of the matrix V+LV+  In ⊗

Ωk

σ2  can 

be written as the trace of the product of two matrices S
Ωk

σ2 , S =  ‍n
i=1 Lii  where Lii  is the (𝑖, 𝑖) − 𝑡ℎblock matrix of 

V+LV+. Dividing S by (n − 1), we get an ”average” matrix S.Let ηi ≥ 0, 𝑖 = 1, … , 𝑘 be the eigenvalues of the 

productSΩk . The ηi can be interpreted as eigenvalues ”adjusted” in magnitude so that a comparison with σ2 makes 

sense. We define 
1

p
trSΩk =

1

p
 ‍k

i=1 ηi = M(ηi) as an ”average” measure of randomness ”adjusted” by the covariance 

matrix V. Observe that this ”average” becomes a ”true” arithmentic if 𝑟𝑎𝑛𝑘(Ωk) = 𝑟𝑎𝑛𝑘(VQ VQ
+). As we shall see, a 

reduction of the difference between these two ranks determines an improvement of the power of the test. 

In the light of these considerations, the parameter θ (formula (12)) can also be written as  
 

 θ = 1 +
M(η i )

σ2 ,    withE(T) =
df

df−2
θ,        df = Nt − nk (13) 

 

When Ωk = 0, M(ηi) is equal to zero, θ = 1, E(T) =
df

df−2
 and T takes values around the expected value of an 

F(n−1)p,Nt−nk  (see next section). If Ωk ⪰ 0 then 
M(η i )

σ2 > 0 and θ is greater than 1. T deviates from 1 and the 

farther 
M(η i )

σ2  from zero, the greater T, everything else being equal. The greater T the stronger the evidence against an 

LR model. The parameter θ plays the same role as the non centrality parameter of an F-distribution. As we shall see, if 

θ increases, the shape of the distribution of T shifts to the right and a larger percentage of the curve moves to the right 
of the critical value by improving the statistical power. An expression similar to (13) for the non centrality parameter of 

a non-central F distribution can be traced in the book of Searle(1971) (p. 51). 
 

4.3  Probability density function of 𝐓 
 

 In Appendix A we show that for any matrix Q, the sample statistic T has the same distribution as the random 
variable  
 

 W =
T∗

df

df
 s2/σ2 

=
dfT∗

df  s2/σ2 
where T∗ =  trVQ

bb′

p(n − 1)σ2
 (14) 

If Ωk = 0, T ∼ F (n − 1)p, Nt − nk , if Ωk ⪰ 0, we define the probability density function of T using the series 

representation of Moschopoulos(1985) expressed here in terms of a generalized F-distribution (GF-distribution). This 
representation results particularly useful for deriving the distribution function and for computing quantiles after 

switching the order of summation and integration. Appendix A shows that the probability density function of W can be 
expressed as  
 

 
fT w =  ‍

∞

k=0

pkGF  ρ + k,
df

2
,
β1

2
  

 

 
(15) 

where the weights, pk  and the other notations are described in Appendix A. 

The distribution function of the random variable T, FT(w) = P(T ≤ w), is readily available from (15) by term-by-term 
integration, i.e.  
  
 

FT(w) =  ‍

∞

k=0

pk  ‍
w

0

GF  ρ + k,
df

2
,
β1

2
  

 

 
(16) 

The interchange of the integration and summation above is justified from the uniform convergence. 

Quantiles of the test statistic T are easily obtained by finding a root, w, of FT(w) = α, 0 ≤ α ≤ 1 is the probability 
on the left tail. The computation is done with the function ”uniroot.all” of the package ”rootSolve” of R software 
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(Soetaert and Herman, 2009).In most statistical software there is a function that computes the generalized 

F-distribution. In this paper computations are made with R (R Core Team, 2014) where a library (GB2) (or flexsurv) 

allows us to compute density, distribution function, quantile function and random generation for the GF-distribution. 
 

5  Improving statistical power 
 

The construction of the F −type test, T, is based on the following steps: (i) Define a matrix Q and compute 

the least squares statistic b; (ii) compute the covariance matrices of b under the null and the alternative hypothesis; 

(iii) derive T as the trace of the product of the two covariance matrices of b. For any matrix Q, T is an exact test, very 

flexible with a statistical power at least as large as the power of the F −test given by (7). The next subsections discuss a 
method to improve the power. More precisely, Subsection 5.1 describes the ”base” scenario for all simulations (unless 

otherwise specified), Subsection 5.2 analyzes the statistical power of T and discusses how to improve it, and finally, 
Subsection 5.3 defines a test working in a multiple testing approach. 
 

5.1  ”Base” Scenario for simulations 

To allow the maximum of generality and arbitrariness, we define the following scenario for simulations of T, 
unless otherwise specified.  

(i) We set the number of parameters k = 6 and the number of units n = 8. The number of 

observations per units, ti , i = 1, … n, are drawn randomly from a uniform distribution, U(k + 1,3k). 

The vector of ”fixed” regression coefficients, β, is generated randomly from a N(10,2).  

(ii) For each units, the columns of Xi are drawn from an N(𝑚𝑒𝑎𝑛, 𝑠𝑞𝑟𝑡) where 𝑚𝑒𝑎𝑛 is random from 

a uniform distribution, U(10,20) and 𝑠𝑞𝑟𝑡 is random from U(2,10). All the elements in the first 

column are 1 .Given Xi  i = 1, … , n  we construct the variance covariance matrix, V , the 

pseudoinverse, V+ and the block matrices Vij , ∀ij.  

(iii) The two-stage random effect model is specified as follows: first we choose the column rank of Zi , q, 

by sampling a number between zero and k, second, each column of Zi  is the square of the random 

variable generated by the uniform distribution on the interval [0,1] . The q columns of Xi  are 

replaced by Zi  so that Zi ⊆ Xi .  

(iv) The matrix Ωk  is defined starting from a positive definite matrix, Ψ, computed as follows. First, we 
randomly generate eigenvalues from a uniform distribution with a prefixed mean. Following, the 

columns of a randomly generated orthogonal matrix are used as eigenvectors. Ψ is then constructed 

by diagonalization (Qiu and Joe., 2015). The matrix Ωk  is obtained from Ψ by selecting the q 

columns and rows concerning random components and zero elsewhere. Ωk  so defined has rank q 

but a rank less than q is allowed. This approach enables us to simulate fixing a prior the mean of 

eigenvalues of Ωk .  

(v) Given Ωk  and Vii  we costruct the eigenvalues of Ωk  in the metric S−1, after which the arithmetic 

mean M(ηi) is computed.  

(vi) Let τ = M(ηi)/σ2 be the ratio of ”randomness” on σ2. Then, σ2 is computed indirectly, fixing in 

advance τ = 0.1, 0.5, 1, 1.5, . ... Given M(ηi), a small value of τ implies a large σ2 and an LME 

model is dominated by an LR model. The larger the variance σ2, the lower the power of the test, and 
the greater the probability of failing to reject the null hypothesis everything else being equal.It is 

vice-versa when τ is large.  
 

5.2  Discussion of statistical power 
 

Due to the fact that many factors influence the power of the test statistic T, an exaustive analysis is too 

complex. In this section we limit our analysis to those factors that modify the parameter θ. In particular we discuss σ2, 

Ωk  and the number of units n by using the ”base” scenario for simulations unless otherwise specified. The results 

compare FW  with Tj , 𝑗 = 1, … , 𝑘. 
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1. Given Ωk  and σ2, for any matrix Q, the larger the number of units, the greater the power of the test, 

everything else being equal. Note that a larger n reduces the variance of T. As the sample size increases, the 

sampling distribution of T under the null and the alternative hypotheses is concentrated around θ. Fig.: 1(a) 

shows the size-power tradeoff curves of the test statistic T for different n with Q = Ik , rank(Ωk) = 4, 

τ =
M(η i )

σ2 = 0.35. This means that on average, the randomness of the model is 35% of σ2. The plot shows 

the consistency and unbiasedness of the test.  
 

2. Given Ωk , the larger the variance σ2, the closer θ is to one, and the lower the power of the test. Conversely, 

the smaller the variance, the farther θ is from one, and the greater the power of the test. Fig.:1(b) shows the 

size-power tradeoff curves of the test T for different values of θ and n = 7 . The reciprocal of the 

parameter θ, θ−1 = σ2/(σ2 + M(ηi)), may be viewed as a measure of the share of σ2 in ”total” variability. 

It ranges between zero and one. When data come from an LR model θ−1 = 1, when at least one eigenvalue 

is greater than zero, θ−1 < 1. The closer θ−1 is to zero, the stronger the evidence against an LR model. In 

applications θ−1 may have a more immediate interpretation than θ. Fig.:1(b) shows a share that moves from 

θ−1 = 1/1.158 = 0.86 to θ−1 = 1/2.47 = 0.4. 

3. Given σ2, if Ωk ⪰ 0 , 
M(η i )

σ2 > 0, θ is greater than 1 and T deviates from 1. The farther M(ηi) is from 

zero, the greater T is and the stronger the evidence against an LR model. We recall that the magnitude of 

M(ηi) =
1

p
 ‍k

i=1 ηi  depends both on the rank of Ωk  (on how many eigenvalues are zero) and on the rank of 

the projector VQ VQ
+  given by the rank of the matrix Q  (the denominator, p ). The quantity M(ηi) 

”appropriately” captures the randomness of parameters when it is ”true” arithmetic mean, that is, when 

𝑟𝑎𝑛𝑘(Ωk) = 𝑟𝑎𝑛𝑘(VQ VQ
+). If the rank of Ωk  is less than the rank of the projection matrix (information 

unknown in applications) the effect of randomness could be overlooked (undersized). 

 

(a)  (b)  

Figure 1: Size-power tradeoff curves of T: (a) different n, τ = 0.35 and 𝑟𝑎𝑛𝑘(Ωk) = 4; 

(b) different alternative hypotheses, θ, with n = 7 and 𝑟𝑎𝑛𝑘(Ωk) = 4; . 
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An important ”instrument” useful to define ”appropriately”M(ηi) could be the specification of the model. 

Let’s suppose that a matrix Zi  (with rank q) of covariates is defined, then, implicitly we assume that 

𝑟𝑎𝑛𝑘(Ωk) ≤ q. In this case there are two possible options for the choice of Q. We could ignore the 

additional information coming from Zi  and set Q = Ik , or define a semi-orthogonal q × k matrix, Q such 

that Zi = XiQ′. If 𝑟𝑎𝑛𝑘(Ωk) = q, the projection of Zi  on the kernel of X allows to construct a test statistic 

very close to FW  and more powerful than a test computed with Q = Ik . If the rank of Ωk  is less than q, the 

matrix Q does not allow to ”capture” the ”full” randomness. In this case M(ηi) is not a ”true” arithmetic 
mean, the number of non zero eigenvalues of the numerator is less than the denominator. Therefore, any 

attempt to improve the performance of the test goes through the definition of M(ηi) as a ”true” arithmetic 

mean. To achieve this goal we propose to define Q as a row vector. This approach produces a set of k test 

statistics (one for each column of the matrix Xi) that are analyzed within a multiple testing procedure. 
 

5.3  A multiple-testing approach: the statistic 𝐓𝐁 
 

The above analysis of M(ηi) suggests a way to improve the power of the test statistic T: define Q so that 

M(ηi) is a ”true” arithmetic mean. The consequence of this approach is the computation of k test statistics, each of 

which tests the same null hypothesis, H0: Ωk = 0. To emphasize this column-by-column approach, the quantities T 

and θ will be indicated as Tj , θj  j = 1, … , k.Following, we compute a set of k correlated tests, Tj  j = 1, … , k, which 

show the following features, 

i. The expected value and the shape of Tj depend on the parameter θj  which is similar (in value) for each 

individual test. As a consequence the statistics Tj show similar summary statistics (see Table 2).  

ii. They have the same distribution under the null hypothesis: Tj ∼ F n − 1, Nt − nk . Under the alternative 

hypothesis the funcional form is described in section 4.3 and depends on θj  (the ”non-centrality parameter”). 

These parameters are close from each to the others (see Table 2). Figures 2.1 − 2.5 show the simulated Tj 

and the exact density functions under H0 (long dashed lines) and under the alternative hypothesis (solid line).  

iii. Both statistical powers (and p-values) are very close for each statistic Tj (see Table 1) 

iv. All individual tests are more powerful than FW  (see Table 1). 
 

Therefore, given Tj , j = 1, … , k, the problem is how to summarize this set of statistics so that we reject the null 

hypothesis without losing the statistical power of the individual tests. At first we could proceed by computing the 

arithmetic mean T =
1

k
 ‍k

i=1 Tj and then making inference with T. This approach is not analyzed, instead we deal with 

the problem of the ”synthesis” within a ”multiple testing” procedure.Let us transform the p-values associated with each 

individual tests Tj into k realizations of Bernoulli variables and denote with TB  the number of rejections (p-value less 

than a level α) after performing the k tests individually. If Hi , i = 0,1 is true, then TB ∼ BB(k, γ, ϕ) whereBB .  is 

for Beta Binomial, γ denotes the probability parameter and ϕ the over-dispersion parameter. The beta binomial 
distribution is analyzed by simulation using the HRQoL package of R-program Najera-Zuloaga et al. (2017) to estimate 
the parameters. We observed the following results:   

i. All simulations show that the estimate of γ (by method of moments) is always equal to the arithmetic mean of 

the simulated power of the individual tests Tj . This leads us to state that the ”true” probability parameter is 

equal to the arithmetic mean of ”true” statistical powers. Following, we set γ =
1

k
 ‍k

j=1 P(Tj > cv|Hj: θj ≥

1) where cv is the critical value equal for each statistic. Under H0, γ is known, equal to the probability of 

Type I error, γ = α. Under the alternative hypothesis it is unknown but as it is the arithmetic mean of the 
statistical powers of individual test it does not lose the power of the test. 

ii. An analysis of the estimates of the overdispersion parameter is more complex. Our findings show two aspects: 

under H0 we estimate an intraclass correlation coefficient around 0.5, under H1 the larger is θj , the larger is 

the simulated ϕ with a magnitude around the arithmetic mean of θj . These observations induced us to set 

ϕ =
1

k
 ‍k

j=1 θj . Under H0 , ϕ = 1 reflects the intraclass correlation coefficient. 
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The above observations are highlighted in Table 3 and Figures 2. (i) − 2. (iii). 

Therefore, provided that H0 is true, we reject the null hypothesis when TB  is greater than or equal to the 1 − α 

percentile of the beta binomial distribution BB(k, 0.05,1). More precisely, with k = 5 we reject the null hypothesis if 

TB > 2 = 0.0406. We can look at the Table 3 and evaluate the statistical power. It is equal to  ‍5
i=3 P(TB = i|H1) =

0.482 wich is equal to a mean of the simulated power of the individual tests. Therefore, it is an estimate of the true 

 

Figure  2:  - Fig.: 2. (a) and Fig.: 2.1 − 2.5 show simulated histogram of FW  and Tj , j = 1, … ,5 under 

H1. The longdash line is the F-Fisher distribution under H0. The vertical line is the critical value and the solid 

line is the exact distribution. - Fig.: 2. (i) and Fig.: 2. (ii) represent simulated barplot of TB  under H0 and 

under H1. The solid line (with circle) draws the beta binomial distribution. –Fig.: 2. (iii) shows the barplot 

under H1 and beta binomial distributions under H0 (red) and H1 (blue).  
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power γ = 0.503. 
 
 

Number 
replic.= 1000 

Number of units 

n = 10 n = 20 n = 50 n = 100 
Test Statistic  Statistical Power 

FW  0.24 0.37 0.61 0.85 
T1 0.37 0.57 0.83 0.99 
T2 0.34 0.56 0.79 0.98 
T3 0.36 0.59 0.84 0.99 
T4 0.35 0.55 0.82 0.98 
T5 0.36 0.56 0.80 0.99 

 

Table 1: Statistical Power, α = 0.05, rank(Ωk) = 3, τ = 0.18 
 

 

 Test Statistics 

T1 T2 T3 T4 T5 FW   
Summary Statistics   

2.5𝑡ℎ percentile  0.367 0.321 0.365 0.3758 0.329 0.5667  

5𝑡ℎ percentile  0.5435 0.476 0.539 0.555 0.487 0.688  

Median 2.778 2.456 2.749 2.807 2.568 1.779  

Mean 3.558 3.151 3.52 3.581 3.321 2.05  

95𝑡ℎ percentile  9.211 8.18 9.108 9.224 8.706 4.33  

97.5𝑡ℎ percentile  11.253 9.989 11.13 11.26 10.65 5.112  

θj 3.349 2.966 3.133 3.370 3.126 1.953 ϕ = 2.662 

θj
−1 0.298 0.337 0.302 0.297 0.319   

True power  0.523 0.463 0.517 0.523 0.485 0.336 γ = 0.503 
Simulated power  0.504 0.446 0.501 0.498 0.459  γ = 0.482 

 

Table  2: Summary statistics of Tj 
 

 TB  

TB   Simulated  BB(5,0.05,1)  Simulated  BB(5, γ, ϕ) 
 TB |H0  TB |H1  

0 0.885 0.89 0.38 0.411 
1 0.056 0.045 0.081 0.0624 
2 0.019 0.024 0.058 0.045 
3 0.014 0.0167 0.056 0.0446 
4 0.014 0.013 0.082 0.0614 
5 0.012 0.011 0.343 0.375 

 

Table  3: Beta Binomial distribution of TB  
6  Conclusions 
 

 A combination of an F −type test with a multiple testing approach allows for constructing a test statistic 

which generalizes and significantly improves the power of an F −test. Our analysis is based on a two-stage approach 

where in the first stage we construct an F −type test we called ”repeatable” in the sense that by changing the projected 
matrix which defines the least squares statistic we can apply the test repeteadly to the same data. This produces a set of 
statistics associated with a set of p-values used for assessing the significance. In the second stage we transform this set of 
p-values into a sequence of Bernoulli trials, the sum of which (number of rejections) is analyzed with a beta binomial 

distribution. Our simulations show an increase in statistical power by up to 25% − 30% with respect to an F −test.  
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In the light of these results we believe that our two-stage approach based on a combinnation of a ”repeatable” 

F −type test with a multiple testing approach may suggest a procedure for improving statistical power in linear mixed 
models. Future work should entail the refining of the second stage of the procedure by exploiting different ways for 
assessing the Bernoulli trials. 
 

Appendix A  Density and moments of the test statistic 𝐓 

Let consider the following quadratic form T∗ = tr VQ
bb ′

p(n−1)σ2. obtained from (11) by replacing s2 with σ2. 

According to the assumptions of the model, T∗ has the same distribution as 
1

(n−1)p
 ‍n−1

i=1  1 +
λ i

σ2 Zi
2 where Zi

2 are 

independent central χ2 random variables each with one degree of freedom; λi , i = 1, … , n − 1 are the eigenvalues of 

the product VQ  VQ
+ + C  In ⊗

Ωk

σ2 C′  (Mathai and Provost(1992) Section 3.1a. 2,  singular case, p. 35). 

When Ωk = 0, T∗ has a gamma distribution, G  α =
(n−1)p

2
, β =

2

(n−1)p
  and  n − 1 p T∗ is distributed as a χ2 

with (n − 1)p degrees of freedom. 

When Ωk ⪰ 0, T∗ is a sum of gamma distributions each of which with same shape parameter, (n − 1)p/2, but r 

different scale parameters, 2  1 +
λ i

σ2 /((n − 1)p). 

Then, the sample statistic T =  
σ2

s2 T∗ has the same distribution as the random variable  

 

 W =
T∗

d f

d f
 s2/σ2 

=
df T∗

df s2/σ2 
,        df = Nt − nk (17) 

 

 where the numerator is a sum of (n − 1) gamma, G  α = 1/2, βi = 2  1 +
λ i

σ2 
df

(n−1)p
 , the denominator can be 

seen as a gamma, G α = df/2, β = 2 . 

When Ωk = 0, W is the ratio of two chi-squared variates divided by the corresponding number of degrees of freedom, 

thus T ∼ F (n − 1)p, Nt − nk . If Ωk ⪰ 0  the distribution is more complex. Using the single gamma series 

representation proposed by Moschopoulos(1985) we can write the probability density function of W as  
 

fT(w) =  ‍

∞

k=0

pk

G(ρ + k, β1)

G  
df

2
, 2 

 (18) 

where pk = Cδk , β1 = mini{βi} , C =  ‍n−1
i=1  

β1

β i
 
α i

, ρ =  ‍n−1
j=1 αj  and the coefficients δk  can be obtained 

recursively by the formula  

 

 
 

 
δ0 = 1

δk+1 =
1

k+1
 ‍k+1

i=1   ‍n−1
j=1 αj  1 −

β1

β j
 

i

 δk+1−i ,     k = 0,1,2, …  

The expression (18) is the ratio of two independent gamma random variables then we can repropose the probability 

density of W as a generalized F-distribution (GF-distribution) getting,  

fT(w) =  ‍

∞

k=0

pk  GF  ρ + k,
df

2
,
β1

2
  

where GF is for generalized F-distribution. 

Moments of T of order s are given by  
 

 E T𝑠 =  ‍∞
k=0 pk  E XGF

s   
 where  

 E XGF
s  = (β1/2)s Γ(ρ+k+s)Γ(γ−s)

Γ(ρ+k)Γ(γ)
 

 are moments of order s of a GF-distribution. Simple algebra allows us to write  
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 E(Ts) =
(β1/2)s

(γ−1)…(γ−s)
 ‍∞

k=0 pk ρ + k s  (19) 

 

 where (. )s  is the Pochhammer symbol for rising factorial, γ = df/2.  
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