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Abstract. 
 

 

This paper concerns the study of a semilinear parabolic equation subject to Neumann boundary conditions, 
with a potential and positive initial datum. Under some assumptions, we show that the solution of the above 
problem quenches in a finite time and estimate its quenching time. Finally, we give some numerical results to 
illustrate our analysis. 
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1-Introduction 

Let Ω be a bounded domain in 𝑅𝑁with smooth boundary ∂Ω. Consider the following initial-boundary value problem 

𝑢𝑡 = ∆𝑢 − 𝑐 𝑥, 𝑡 𝑢−𝑝 𝑥  𝑖𝑛  Ω ×  0, T ,                                                                        (1)  
𝜕𝑢

𝜕ν
= 0  𝑜𝑛 ∂Ω ×  0, T ,                                                                                                     (2) 

u x, 0 =  u0 x >  0 𝑖𝑛  Ω ,                                                                                               (3) 
 
where ∆ is the Laplacian, ν the exterior normal unit vector on ∂Ω. We suppose that the initial datum  

u0 ∈ C2(Ω ) and u0(x)  >  0 𝑖𝑛 Ω . 
Here the potential 𝑐(𝑥, 𝑡) is a nonnegative locally Hölder continuous function defined for 𝑥 ∈ Ω   and 𝑡 ≥ 0.  

The exponent p ∈ C0(Ω), 0 < 𝑝0 = 𝑖𝑛𝑓𝑥∈Ω    𝑝 𝑥 < 𝑠𝑢𝑝𝑥∈Ω    𝑝 𝑥 = 𝑝+. Here (0, T) is the maximal time interval of 

existence of the solution 𝑢, and by a solution, we mean the following. 
 

Definition1.1.  A solution of (1)-(3) is a function 𝑢(𝑥, 𝑡)continuous in 𝛺 ×  0, 𝑇 , 𝑢 𝑥, 𝑡 > 0 𝑖𝑛 𝛺 ×  0, 𝑇 , 
and twice continuously differentiable in 𝑥 and once in 𝑡 in 𝛺 × (0, 𝑇). 

The time T may be finite or infinite. When T is infinite, then we say that the solution 𝑢 exists globally. 

When T is finite, then the solution 𝑢 develops a quenching in a finite time, namely lim𝑡⟶𝑇u𝑚𝑖𝑛 (t)  =  0, where  

u𝑚𝑖𝑛  t = min𝑥∈𝛺 u x, t . In this last case, we say that the solution 𝑢 quenches in a finite time and the time T is 

called the quenching time of the solution 𝑢. 
 

Since the pioneering work of Kawarada in 1975 (see, [25]), the study of the phenomenon of quenching for 
semilinear heat equations has attracted a considerable attention (see, for example [3]-[4], [6]-[8], [11], [14], [24], [26], 
[28]-[30], [36] and the references cited therein). More precisely, in [7] Boni has studied the problem (1)-(3) for the 
phenomenon of blow-up. He has given some sufficient conditions under which solutions to such equation tend to 
zero or blow up in a finite time. In the same way, some authors have proved the existence and uniqueness of solution 
(see, [16], [27]). In [8], Boni and Kouakou have treated a similar problem with variable exponent. They have estimated 

the quenching time and studied its continuity as a function of the initial datum 𝑢0. The originality of this work is that 
it is the first attempt of studying the phenomenon of quenching with variable exponent and a potential depending 
both on space and time. Using standard methods, the local in time existence and uniqueness of solutions can be easily 
proved (see, [7], [16]).  
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Our aim in this paper consists in showing that, under some hypotheses, the solution of (1)-(3) quenches in a 

finite time. If we set 𝑔(𝑥, 𝑢) = 𝑐(𝑥, 𝑡)𝑢−𝑝(𝑥), then we observe that the function 𝑔 is continuous in both variables and 
locally Lipschitz in the second one. Let us notice that, because the initial datum of the problem considered is 
sufficiently regular, the solution of this problem exists and is regular. In addition, we note that the regularity of 
solution is as important as the regularity of the initial data, and the maximum principle holds (see, [16], [27], [33]). This 

paper is structured as follows. In the following section, we show that under some assumptions, the solution 𝑢 of (1)-
(3) quenches in a finite time and estimate its quenching time and finally, in the last section, we give some numerical 
results to illustrate our analysis. 
 

2- Quenching time 
 

In this section, using an idea of Friedman and McLeod in [17], we may prove the following result on the 

quenching of the solution 𝑢 of (1)-(3). 
 

Theorem 2.1. Suppose that there exists a constant A ∈ (0, 1] such that the initial datum at (3) satisfies 

∆𝑢0 𝑥 − 𝑐(𝑥, 𝑡)(𝑢0(𝑥))−𝑝(𝑥)≤−𝐴𝑐(𝑥, 𝑡)(𝑢0(𝑥))−𝑝0  in  Ω.                                       (4) 

Then, the solution 𝑢 of (1)-(3) quenches in a finite time T which obeys the following estimate 

𝑇 ≤
 𝑢0𝑚𝑖𝑛  𝑝0+1

𝐴𝑀(𝑝0+1)
, 

where M is some positive constant. 
 

Proof. We know that (0, T) is the maximal time interval of existence of the solution 𝑢. Therefore, to prove our 

theorem, we have to show that T is finite and satisfies the above inequality. For this fact, we introduce 𝐽(𝑥, 𝑡) a 
function defined as follows 

J 𝑥, t = u𝑡 𝑥, t +  Ac 𝑥, t  u 𝑥, t  
−𝑝0  in Ω × [0, T). 

The derivative of  J in 𝑡 yields J𝑡 = u𝑡𝑡 − p0Ac(𝑥, t)u−𝑝0−1𝑢𝑡  and by a simple calculation we obtain 

𝐽𝑡 − ∆𝐽 =  𝑢𝑡 − ∆𝑢 𝑡 − 𝐴𝑝0𝑐 𝑥, 𝑡 𝑢−𝑝0−1𝑢𝑡 − 𝐴𝑐 𝑥, 𝑡 ∆𝑢−𝑝0    𝑖𝑛   𝛺 ×  0, 𝑇 .                 (5) 

It is not hard to see that ∆u−𝑝0=p0(p0+1)u−𝑝0−2|∇u|2−p0u−𝑝0−1∆u  in  Ω×(0,T), which implies that 

∆u−𝑝0≥ −p0u−𝑝0−1∆u  in  Ω × (0, T). Applying this inequality in (5), we find that 

𝐽𝑡 − ∆𝐽 ≤  𝑢𝑡 − ∆𝑢 𝑡 − 𝐴𝑝0𝑐 𝑥, 𝑡 𝑢−𝑝0−1(𝑢𝑡 − ∆𝑢) 𝑖𝑛 𝛺 ×  0, 𝑇 .                                      (6) 

Use (1) and (6) to obtain 

𝐽𝑡 − ∆𝐽 ≤ 𝑐 𝑥, 𝑡 𝑝 𝑥 𝑢−𝑝 𝑥 −1𝑢𝑡 + 𝐴𝑝0(𝑐 𝑥, 𝑡 )2𝑢−𝑝0−1−𝑝(𝑥) 𝑖𝑛 𝛺 ×  0, 𝑇 .     

Due to the fact that p0 ≤ p(x) in Ω, we discover that 

𝐽𝑡 − ∆𝐽 ≤ 𝑐 𝑥, 𝑡 𝑝 𝑥 𝑢−𝑝 𝑥 −1(𝑢𝑡 + 𝐴𝑐 𝑥, 𝑡 𝑢−𝑝0 ) 𝑖𝑛 𝛺 ×  0, 𝑇 .    

Making use of the expression of 𝐽, we derive the following inequality 

𝐽𝑡 − ∆𝐽 ≤ 𝑐 𝑥, 𝑡 𝑝 𝑥 𝑢−𝑝 𝑥 −1𝐽  𝑖𝑛  𝛺 ×  0, 𝑇 .        

The boundary condition (2) allows us to write 

𝜕𝐽

𝜕𝑣
=  

𝜕𝑢

𝜕𝑣
 
𝑡
− 𝐴𝑝0𝑐 𝑥, 𝑡 u−𝑝0−1

𝜕𝑢

𝜕𝑣
= 0 on  𝜕Ω ×  (0, T). 

According to (4), we have 

𝐽 𝑥, 0 = ∆𝑢0 𝑥 − 𝑐 𝑥, 𝑡  𝑢0 𝑥  
−𝑝 𝑥 

+ 𝐴𝑐 𝑥, 𝑡  𝑢0 𝑥  
−𝑝0

≤ 0   𝑖𝑛  𝛺. 

One concludes by the maximum principle that 𝐽(𝑥, 𝑡)≤ 0 in Ω × (0, T), that is 

𝑢𝑡 𝑥, 𝑡 + 𝐴𝑐 𝑥, 𝑡  𝑢 𝑥, 𝑡  
−𝑝0 ≤ 0 𝑖𝑛  𝛺 ×  0, 𝑇 .                                                              (7) 

By the definition of 𝑐(𝑥, 𝑡), we have 𝑐(𝑥, 𝑡)≤ M where M is some positive constant. 

Thus, the estimate (7) may be rewritten as follows 

𝑢𝑝0𝑑𝑢 ≤ −𝐴𝑀𝑑𝑡   𝑖𝑛   𝛺 ×  0, 𝑇 .                                                                                             (8) 

Integrate the above inequality over (0, T) to obtain  

𝑇 ≤
 𝑢 𝑥, 0  

𝑝0+1

𝐴𝑀 𝑝0 + 1 
  for  𝑥 ∈ Ω. 
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We deduce that 

𝑇 ≤
 𝑢0𝑚𝑖𝑛  

𝑝0+1

𝐴𝑀 𝑝0 + 1 
. 

We observe that the quantity on the right-hand side of the above inequality is finite. Consequently, 𝑢 quenches at the 
time T and the proof is finished. 
 
3-Numerical results 
 

To compute the numerical results, we need to consider the radial symmetric solution of the following initial-
boundary value problem 

𝑢𝑡 = ∆𝑢 − 𝑐 𝑥, 𝑡 𝑢−𝑝 𝑥   𝑖𝑛  𝐵 ×  0, 𝑇 , 
𝜕𝑢

𝜕ν
= 0 𝑜𝑛  𝑆 ×  0, 𝑇 , 

𝑢 𝑥, 0 = 𝑢0 𝑥   𝑖𝑛 𝐵, 
where 𝑐 𝑥, 𝑡 = 𝐶  𝑥 , 𝑡 , 𝑝 𝑥 = 𝜓  𝑥  , 𝑢0 𝑥 = 𝜑  𝑥  , 𝐵 =  𝑥𝜖𝑅𝑁;  𝑥 < 1 , 𝑆 =  𝑥𝜖𝑅𝑁;  𝑥 = 1 . 
Another form of the above problem is 
 

𝑢𝑡 = 𝑢𝑟𝑟 +
𝑁 − 1

𝑟
𝑢𝑟 − 𝐶 𝑟, 𝑡 𝑢−𝜓 𝑟 , 𝑟 ∈  0,1 , 𝑡 ∈  0, 𝑇                                                                                    (9)

𝑢𝑟 0, 𝑡 = 0, 𝑢𝑟 1, 𝑡 = 0, 𝑡 ∈  0, 𝑇 ,                                                                                                                  (10) 
 

𝑢 𝑟, 0 = ϕ r , r ∈  0,1 ,                                                                                                                                               (11) 
 

where, we take 𝐶 𝑟, 𝑡 =
𝑟+1

𝑡+1
, ψ(r) =1 +

𝜀𝑟

𝑟+1
 with  𝜀 𝜖[0, 1] and ϕ(r) = 4 + 3 cos(πr). In order to compute 

the numerical solution, we need to construct an adaptive scheme. For this fact, define the grid 𝑥𝑖 = 𝑖𝑕, 0 ≤ 𝑖 ≤ 𝐼, 
where I is a positive integer and h=1/I. Approximate the solution 𝑢 of (9)-(11) by the solution 

𝑈𝑕
(𝑛)

=  𝑈0
(𝑛)

, ⋯ , 𝑈𝐼
(𝑛)

 
𝑇
of the following explicit scheme 

 

𝑈0
(𝑛+1)

− 𝑈0
(𝑛)

∆ 𝑡𝑛
= 𝑁

2𝑈1
(𝑛)

− 2𝑈0
(𝑛)

𝑕2
− 𝐶0

 𝑛 
 𝑈0

 𝑛 
 
−𝜓0

, 

 

𝑈𝑖
(𝑛+1)

− 𝑈𝑖
(𝑛)

∆ 𝑡𝑛
=

𝑈𝑖+1
(𝑛)

− 2𝑈𝑖
 𝑛 + 𝑈𝑖−1

(𝑛)

𝑕2
+

(𝑁 − 1)

𝑖𝑕

𝑈𝑖+1
(𝑛)

− 𝑈𝑖−1
(𝑛)

2𝑕
− 𝐶𝑖

 𝑛  𝑈𝑖
 𝑛  

−𝜓 𝑖
, 1 ≤ 𝑖 ≤ 𝐼 − 1, 

 

𝑈𝐼
(𝑛+1)

−𝑈𝐼
(𝑛)

∆ 𝑡𝑛
=

𝑈𝐼−1
(𝑛)

− 𝑈𝐼
(𝑛)

𝑕2
+ (𝑁 − 1)

𝑈𝐼
(𝑛)

− 𝑈𝐼−1
(𝑛)

2𝑕
− 𝐶𝐼

 𝑛  𝑈𝐼
 𝑛  

−𝜓𝐼
, 

 

 𝑈𝑖
(0)

= 𝜑𝑖 ,   0 ≤ 𝑖 ≤ 𝐼, 
 

Where 𝐶𝑖
(𝑛)

=
𝑖𝑕+1

𝑡𝑛+1
,  𝜓𝑖=1 +

𝜀𝑖𝑕

𝑖𝑕+1
  and  𝜑𝑖  = 4 + 3 cos(πih). For the time step we take 

∆𝑡𝑛 = 𝑚𝑖𝑛  
(1 − 𝑕2)𝑕2

2𝑁
, 𝑕2(𝑈𝑕𝑚𝑖𝑛

 𝑛 )𝑝++1  

 

with 𝑈𝑕𝑚𝑖𝑛
(𝑛)

= 𝑚𝑖𝑛0≤𝑖≤𝐼𝑈𝑖
(𝑛)

.
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This condition permits to the discrete solution to reproduce the properties of the continuous one when the time 𝑡 
approaches the quenching time T and ensures the positivity of the discrete solution. An important fact concerning 

the phenomenon of quenching is that, if the solution 𝑢 quenches at the time T, then, when the time 𝑡 approaches the 

quenching time T, the solution 𝑢 decreases to zero rapidly. We also approximate the solution 𝑢 of (9)-(11) by the 

solution 𝑈𝑕
(𝑛)

of the implicit scheme below 

 

𝑈0
(𝑛+1)

− 𝑈0
(𝑛)

∆ 𝑡𝑛
= 𝑁

2𝑈1
(𝑛+1)

− 2𝑈0
(𝑛+1)

𝑕2
− 𝐶0

 𝑛 
 𝑈0

 𝑛 
 
−𝜓0−1

𝑈0
 𝑛+1 

, 

 

𝑈𝑖
 𝑛+1 

− 𝑈𝑖
 𝑛 

∆ 𝑡𝑛
=

𝑈𝑖+1
 𝑛+1 

− 2𝑈𝑖
 𝑛+1 

+ 𝑈𝑖−1
 𝑛+1 

𝑕2
+
 𝑁 − 1 

𝑖𝑕

𝑈𝑖+1
 𝑛+1 

− 𝑈𝑖−1
 𝑛+1 

2𝑕
− 𝐶𝑖

 𝑛 
 𝑈𝑖

 𝑛 
 
−𝜓 𝑖−1

𝑈𝑖
 𝑛+1 

, 

 1 ≤ 𝑖 ≤ 𝐼 − 1, 
 

𝑈𝐼
(𝑛+1)

− 𝑈𝐼
(𝑛)

∆ 𝑡𝑛
=

𝑈𝐼−1
(𝑛)

− 𝑈𝐼
(𝑛)

𝑕2
+ (𝑁 − 1)

𝑈𝐼
(𝑛)

−𝑈𝐼−1
(𝑛)

2𝑕
− 𝐶𝐼

 𝑛  𝑈𝐼
 𝑛  

−𝜓𝐼−1
𝑈𝐼

 𝑛+1 , 

 

 𝑈𝑖
(0)

= 𝜑𝑖 ,   0 ≤ 𝑖 ≤ 𝐼. 
 
As in the case of the explicit scheme, here again, we transform our scheme to an adaptive one by choosing 

∆𝑡𝑛 = 𝑕2(𝑈𝑕𝑚𝑖𝑛
 𝑛 

)𝑝++1. 

Let us again remark that for the above implicit scheme, the existence and positivity of the discrete solution is also 
guaranteed using standard methods (see for instance [6]). It is not hard to see that 

𝑢𝑟𝑟  0, 𝑡 = 𝑙𝑖𝑚𝑟→0

𝑢𝑟(𝑟, 𝑡)

𝑟
. 

On the other hand, according to (10), we have  
𝑢𝑟(𝑟, 𝑡)

𝑟
= 0. 

Hence, if  𝑟 = 0 and 𝑟 = 1, we obtain 

𝑢𝑡 0, 𝑡 = 𝑁𝑢𝑟𝑟  0, 𝑡 − 𝐶 0, 𝑡 𝑢−𝜓 0  0, 𝑡 , 𝑡 ∈  0, 𝑇 , 

𝑢𝑡 1, 𝑡 = 𝑁𝑢𝑟𝑟  1, 𝑡 − 𝐶 1, 𝑡 𝑢−𝜓 1  1, 𝑡 , 𝑡 ∈  0, 𝑇 . 
 

These observations have been taken into account in the construction of our schemes when 𝑖 = 0 and 𝑖 = 𝐼. 
We need the following definition. 

Definition 3.1. We say that the discrete solution 𝑈𝑕
(𝑛)

 of the explicit scheme or implicit scheme quenches in a finite time if 

𝑙𝑖𝑚𝑛→∞𝑈𝑕𝑚𝑖𝑛
(𝑛)

= 0 and the series  ∆𝑡𝑛
∞
𝑛=0  converges. The quantity  ∆𝑡𝑛

∞
𝑛=0  is called the numerical quenching time of the discrete 

solution 𝑈𝑕
(𝑛)

. 
 

In the following tables, in rows, we present the numerical quenching times, the numbers of iterations, the 
CPU times and the orders of the approximations corresponding to meshes of 16, 32, 64, 128, 256. We take for the 

numerical quenching t ime Tn =  Δt𝑗
n−1

𝑗=0
 which is computed at the first time when 

 

∆𝑡𝑛 =  𝑇𝑛+1 − 𝑇𝑛  ≤ 10−16 . 
The order(s) of the method is computed from  
 

𝑠 =
log⁡(

𝑇4𝑕−𝑇2𝑕

𝑇2𝑕−𝑇𝑕
)

log(2)
. 

 
 



Rémi K. Kouakou & Firmin K. N’gohissé                                                                                                                    7 
 
 

 

Numerical experiments for 𝜓𝑖=1 +
𝜀𝑖𝑕

𝑖𝑕+1
, 𝑁 = 2 

 

First case: ε = 0 
Table 1: Numerical quenching times, numbers of iterations, CPU times (seconds) and orders of the approximations 
obtained with the explicit Euler method 
 

I 𝑡𝑛  𝑛 CPU time s 

16 2,094707 3975 - - 

32 2,188877 16064 1 - 

64 2,239645 64921 5 0.89 

128 2,266009 252408 51 0.94 

256 2,279445 992631 3180 0.97 
 

Table 2: Numerical quenching times, numbers of iterations, CPU times (seconds) and orders of the approximations 
obtained with the first implicit Euler method 
 

I 𝑡𝑛  𝑛 CPU time s 

16 2,094457 3974 1 - 

32 2,188816 16064 2 - 

64 2,239630 63920 16 0.89 

128 2,266006 252408 242 0.94 

256 2,279444 992630 7620 0.98 
 

Second case: ε = 1/10 
Table 3: Numerical quenching times, numbers of iterations, CPU times (seconds) and orders of the approximations 
obtained with the explicit Euler method 
 

I 𝑡𝑛  𝑛 CPU time s 

16 2,135560 3973 - - 

32 2,233026 16080 1 - 

64 2,285571 64050 7 0.89 

128 2,312858 253140 62 0.94 

256 2,326764 996283 3012 0.97 
 

Table 4: Numerical quenching times, numbers of iterations, CPU times (seconds) and orders of the approximations 
obtained with the first implicit Euler method 
 

I 𝑡𝑛  𝑛 CPU time s 

16 2,135296 3973 - - 

32 2,232961 16079 2 - 

64 2,285554 64050 17 0.89 

128 2,312854 253140 275 0.94 

256 2,326763 996283 7740 0.97 
 

Third case: ε = 1/1000 
Table 5: Numerical quenching times, numbers of iterations, CPU times (seconds) and orders of the approximations 
obtained with the explicit Euler method 
 

I 𝑡𝑛  𝑛 CPU time s 

16 2,095107 3975 - - 

32 2,189310 16064 2 - 

64 2,240095 63922 7 0.89 

128 2,266468 252414 53 0.94 

256 2,279908 992663 4560 1.08 
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1+r 

Table 6: Numerical quenching times, numbers of iterations, CPU times (seconds) and orders of the approximations 
obtained with the first implicit Euler method 
 

I 𝑡𝑛  𝑛 CPU time s 

16 2,094857 3974 - - 

32 2,189248 16064 2 - 

64 2,240080 63921 22 0.89 

128 2,266451 252414 256 0.94 

256 2,279908 992663 2743 0.97 

 

Remark3.1. If we consider the problem (9)-(11) in the case where the potential 𝐶 𝑟, 𝑡 =
𝑟+1

𝑡+1
, the exponent of the nonlinear 

source 𝛹 𝑟 = 1 +
𝜀𝑟

1+𝑟
 with ε = 0, and the initial datum ϕ(r) = 4 + 3 cos(πr), we see that the numerical quenching time of the 

discrete solution for the explicit scheme or the implicit scheme is slightly equal to that in which the exponent of the nonlinear source 
increases slightly, that is when ε is a small positive real (see, Tables 1-6 for an illustration). This result confirms the theory established 
in the previous section. 
 
In what follows, we give some plots to illustrate our analysis. In Figures 1 and 2, we can appreciate that the discrete 
solution quenches in a finite time. We also remark that the representation of the discrete solution when ε=0 is 
practically the same that the one when ε=1/10. 
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