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Abstract 
 

 

Electrocardiography (ECG) is the process of recording the electrical activity of the heart over a period of 
time using electrodes placed on the skin. The time intervals between its various peaks, may contain useful 
information about the nature of disease afflicting the heart. In the last years, different methods have been 
used by the researchers to detect arrhythmias from electrocardiogram (ECG) signal. In this paper we propose 
an arrhythmia detection coefficient based on the coefficient of variation and on the principle of wavelet 
shrinkage. This coefficient is tested in RR time series from databases of the PhysioBank. 
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I. Introduction 
 

A wavelet is a wave-like oscillation with an amplitude that begins at zero, increases, and then decreases back 
to zero. The nonparametric regression is the most important application of wavelet to the statistic, and it is based on 
the principle of wavelet shrinkage, which aims to reduce (and even remove) the noise present in a signal (see Donoho and 
Johnstone, 1994; Donoho and Johnstone, 1995; Donoho et al., 1995; Vidakovic, 1999 and Vargas and Veiga, 2017). 
The wavelet transform splits the data into lowpass (approximation) portions and highpass (detail) portions. Wavelet 
shrinkage reduces the magnitude of terms in the highpass portions. Finally, the wavelet transform is inverted to get the 
denoised version of the data. 

 

Electrocardiography (ECG) is the process of recording the electrical activity of the heart over a period of 
time using electrodes placed on the skin. The time intervals between its various peaks, may contain useful information 
about the nature of disease afflicting the heart. The RR time series is the series of heartbeat interval, where R is a peak 
point respect to each heartbeat of the electrocardiography (ECG) wave, and RR is the interval between successive R. 
Different techniques have been used by the researchers in recent years to detect arrhythmias from 
electrocardiogram(ECG) signal (see Albuquerque et al., 2018; Elhaj et al., 2016;  Alickovic and Subasi, 2016; Marwin, 
2015; Taizhi et al., 2014 and Gallet et al., 2013).In this paper we proposed the CADWS, a Coefficient of Arrhythmias 
Detection based on the Wavelet Shrinkage and on the coefficient of variation. To test it we compared 16 healthy 
versus 16 unhealthy (with cardiac arrhythmia) RR time series from MIT-BIH database. It is proposed the CADWS as 
an additional diagnostic tool for cardiac arrhythmia. 

 

The paper is organized as follows. Section II provides a background on wavelet analysis.  The CADWS 
coefficient is proposed in Section III. In Section IV we present the analysis of the 16 healthy and 16 unhealthy (with 
cardiac arrhythmia) RR time series. Section V gives the conclusions. 
 

II. Wavelet 
 

In this section we give a brief overview on wavelets, presenting the discrete wavelet transforms (DWT), the 
wavelet shrinkage principal (see Donoho and Johnstone, 1994; Donoho et al., 1995 and Vidakovic, 1999).Two 
functions are very important in the wavelet analysis: the mother and father wavelets. These wavelets generate a family 
of functions that can reconstruct a signal. 
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Definition 2.1 (Mother and Father Wavelets).A mother wavelet 𝜓(∙) and a father wavelet (or scale function) 𝜙(∙) 

are real functions 𝜓, 𝜙: ℝ → ℝ such that 
 

 𝜓 𝑡 𝑑𝑡 = 0,
ℝ

 𝜙 𝑡 𝑑𝑡 = 1
ℝ

 

 

and satisfy some integrability conditions, that is, 𝜓, 𝜙 ∈ 𝐿2 ℝ ∩ 𝐿1 ℝ . 
 

Given the wavelets 𝜓(⋅)and 𝜙(⋅), we construct wavelet sequences through translations and dilatations of 
mother and father wavelets, respectively, given by 

𝜓𝑗 ,𝑘 𝑡 = 2−
𝑗

2𝜓 2−𝑗 𝑡 − 𝑘 , 

𝜙𝑗 ,𝑘 𝑡 = 2−
𝑗

2𝜙 2−𝑗 𝑡 − 𝑘 . 
 

The functions {𝜓𝑗 ,𝑘 ⋅ , 𝑗, 𝑘 ∈ ℤ} and {𝜙𝑗 ,𝑘 ⋅ , 𝑗, 𝑘 ∈ ℤ} form bases that are not necessarily orthogonal. The 

advantage of working with orthogonal bases is that they allow the perfect reconstruction of a signal from the 
coefficients of the transform. In general, the most used orthogonal wavelets are: Haar, Daublets, Symmlets and 
Coiflets. 
 

Definition 2.2 (Discrete Wavelet Transform).Let 𝑿 =  𝑋1 , 𝑋2 , ⋯ , 𝑋𝑛 ′   be an i.i.d. random sample, 

with𝐽 =  log2(𝑛) , where  ⋅  indicates the integer part function. The  discrete wavelet transform (DWT) of 𝑿, with respect 

to the mother wavelet 𝜓(⋅), is defined as 
 

𝑑𝑗 ,𝑘 =  𝑋𝑡𝜓𝑗 ,𝑘(𝑡)

𝑛

𝑡=1

, 
 
(2.1) 

 

for all 𝑗 = 1,2, ⋯ , 𝐽 and 𝑘 = 1,2, ⋯ ,  
𝑛

2𝑗 . We can write the transform (3) in matrix form by 

 𝒅𝑗 = 𝑾𝑗𝑿, (2.2) 
 

where 𝑾𝑗 =  𝜓𝑗 ,𝑘 𝑡  
𝑘,𝑡

 is a  
𝑛

2𝑗 × 𝑛  matrix. Assuming appropriate boundary conditions, the transform is 

orthogonal,and one can obtain the inverse discrete wavelet transform (IDWT) given by 

𝑿 = 𝑾′𝒅, 
where𝑾′ denotes the transpose of 𝑾. 
 

To compute the DWT, one does not actually perform the matrix multiplication (2.2). Instead, one uses a fast 

“pyramid” algorithm with complexity 𝑂(𝑛) (see Meyer, 1993). 
 

Wavelet shrinkage usually refers to reconstructions obtained from the shrunk wavelet coefficients. Let the 
simplest regression model 
 

𝒚𝒋 = 𝒇 𝒕𝒋 + 𝝐𝒋, 𝒋 = 𝟏, 𝟐, ⋯ , 𝒏, 
 

(2.3) 

where the 𝑡𝑗 's are equally spaced points and the 𝜖𝑗 's are independent Gaussian random variables with zero mean and 

variance 𝜎𝜖
2.Donoho and Johnstone (1994) and Donoho et al. (1995) have proposed a simple recipe based on thre 

sholding in the wavelet domain. Their wavelet estimation procedure has three steps: Take the discrete wavelet 

transform of the observations 𝑦𝑗  for all 𝑗 ∈ {1,2, ⋯ , 𝑛}. Obtain, the coefficients without noise and apply the inverse 

discrete wavelet transform using the detail coefficients to recover the estimator of the function, 𝑓 𝑗 (⋅) , for all 𝑗 ∈

{1,2, ⋯ , 𝑛}. 
 

III. CADWS coefficient 
 

 Here we present the coefficient of arrhythmias detection (CADWS) based on the coefficient of variation and 
on the principle of wavelet shrinkage (see Donoho and Johnstone, 1994; Donoho and Johnstone, 1995 and Donoho 
et al., 1995). 
 

To obtain the CADWS coefficient to a given RR time series {𝑋𝑡}𝑡=1
𝑛 , it is necessary the following steps. 
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The first step consists to apply the wavelet shrinkage procedure, that is, transform the observations 𝑋𝑖 , 

𝑖 ∈  {1,2, ⋯ , 𝑛}, into the symmlet wavelet ``s8" domain by applying a discrete wavelet transform (see definition 2.2), 

with level𝐽 =  log2(𝑔(𝑛) − 3) , to obtain a sequence of wavelet coefficients𝒅4 , 𝒅5 , ⋯ , 𝒅𝐽 . Then shrink the wavelet 

coefficients towards zero, to obtain new detail coefficients 𝑑 4 = 𝛿−𝜆
𝐻  𝑑4 , ⋯ , 𝑑 𝐽 = 𝛿−𝜆

𝐻 (𝑑𝐽 ) , 

where𝜆 = 𝜎  2log(𝑔 𝑛 − 3), 𝜎 is the estimated level of noise given by 
 

𝜎 =
𝑚𝑒𝑑𝑖𝑎𝑛{ 𝑑𝐽−1,𝑘  : 0 ≤ 𝑘 < 2𝐽 }

0.6745
 

 

and the 𝛿𝜆
𝐻 is the hard (H) shrinkage function defined by 

 

𝛿𝜆
𝐻 =  

0, 𝑖𝑓 𝑥 ≤ 𝜆

𝑥, 𝑖𝑓 𝑥 > 𝜆.
  

Then apply the inverse discrete wavelet transform, to get the wavelet shrinkage estimator𝑋 𝑖of 𝑋𝑖 , for all 𝑖 ∈  {1,2, ⋯ , 𝑛}. 
 

Finally we have the CADWS coefficient based on the coefficient of variation and on the wavelet shrinkage procedure, 
 

CADWS =
100

𝑋 
  

|𝑋 𝑖 − 𝑋 |

𝑛

𝑛

𝑖=1

  

 

where𝑋 𝑖  is the wavelet shrinkage estimator of 𝑋𝑖 , 𝑋  is the median of {𝑋𝑖}𝑖=1
𝑛  and 𝑋 =  

𝑋𝑖

𝑛
𝑛
𝑖=1 . 

 

IV. Application 
 

The RR time series is the series of heartbeat interval, where R is a peak point respect to each heartbeat of the 
electrocardiography (ECG) wave, and RR is the interval between successive R. In this section, in view of the CADWS 
coefficient (see Section II), we analyze RR time series of 16 healthy and 16 unhealthy (with cardiac arrhythmia) 
selected from databases available from PhysioBank (https://www.physionet.org/cgi-bin/atm/ATM) in order to 
check the difference between healthy and unhealthy RR time series. In the Physion Bank for the healthy RR time 
series we use the database named as MIT-BIH Normal Sinus Rhythm Database (nsrdb) and for unhealthy RR time series 
we use database named as MIT-BIH Arrhythmia Database (mitdb). The results are presented in Table 4.1. From Table 

4.1 we can see that for healthy RR time series we have always CADWS≥  8. While for unhealthy RR times series we 

have always CADWS<  8. 
 

Table 4.1: Results of the CADWS coefficient in RR Time Series of Healthy and Unhealthy Records. 
 

Healthy Record in the nsrdb Unhealthy Record in the mitdb 

Record’s Number CADWS Record’s Number CADWS 

16265 16,33 102 1,85 

16272 9,43 103 1,86 

16273 10,28 104 0,10 

16420 8,92 105 3,00 

16483 10,44 106 7,41 

16539 10,41 107 7,41 

16773 14,56 108 4,47 

16786 10,96 109 4,47 

16786 10,96 111 1,46 

16795 14,01 112 1,88 

17052 13,48 113 2,09 

17453 9,51 114 7,31 

18177 9,66 115 3,12 

18184 8,15 116 2,25 

19093 9,36 117 0,54 

19090 8,79 118 5,03 
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V. Conclusions 
 

We propose the CADWS coefficient, based on the coefficient of variation and on the wavelet shrinkage 
procedure. The CADWS coefficient is like an additional diagnostic tool that may provide an indication of cardiac 
arrhythmia. To test it we compared 16 healthy versus 16 unhealthy (with cardiac arrhythmia) RR time series randomly 

selected from MIT-BIH database. For all healthy RR time series we observe CADWS≥  8. While for unhealthy RR times 

series we have always CADWS<  8. 
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