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A New Fuzzy Regression Model by Mixing Fuzzy and Crisp Inputs 

 
Magda M. M. Haggag1 

 
Abstract 
 

 

This paper proposes a new form of the multiple regression model (mixed model) based on adding both fuzzy 
and crisp input data. The least squares approach of the proposed multiple regression parameters are derived 
in different cases. This derivation is based on the fact that each fuzzy datum is a nonempty compact interval 
of the real line. The main contribution is to mix both fuzzy and crisp predictors in the linear regression 
model. The mixed fuzzy crisp model will be introduced mathematically and by coded via R-language. The 
least squares of the regression parameters will be derived and evaluated using distance measures. Numerical 
examples using generated data showed best results for the mixed fuzzy crisp multiple regression models  
compared to the multiple fuzzy models.  
 

 

Keywords: Bertolouzza distance, Compact data sets, Euclidean distance, Fuzzy least squares, Fuzzy variables, 
Fuzzy regression, tight data. 

 

(1) Introduction 
 

Linear regression models are used to model the functional relationship between the response and the 
predictors linearly. This relationship is used for describing and estimating the response variable from predictor 
variables. Some important assumptions are needed to build a relationship, such as existing enough data, the validity of 
the linear assumption, the exactness of the relationship, and the existence of a crisp data for variables and coefficients.  
 

The fuzzy regression model is a practical alternative if the linear regression model does not fulfill the above 
assumptions. A fuzzy linear regression model first introduced by Tanaka et al. (1982). Their approach handled after 
that by many authors, such as Tanaka and Lee (1988); Tanaka and Watada (1988); Tanaka et al. (1989); Diamond 
(1988, 1990, 1992); Diamond and Koener (1997); D’Urso and Gastaldi (2000); Yang and Lin (2002); D’Urso (2003); 
Gonzalez-Rodriguez et al. (2009); Choi and Yoon (2010); Yoon and Choi (2009, 2013); D’Urso and Massari (2013). 
 

Fuzzy regression models have been treated from different points of view depending upon the type of input 
and output data. There are three different kinds of models: 
 

 Crisp input and fuzzy output with fuzzy coefficients. 

 Fuzzy input and fuzzy output with crisp coefficients. 

 Fuzzy input and fuzzy output with fuzzy coefficients. 
 

The least squares method is used to estimate the fuzzy regression model. (See for instance, Diamond (1988, 
1990, 1992)). 
 

The objective of this paper is to extend the simple linear regression model to the multiple one and estimate it 
with the least squares approach. This extension is based on adding both fuzzy and crisp predictors to the linear 
regression model, and the resulting model is called the mixed fuzzy crisp (MFC).  
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Our extended model will be evaluated using the extended squared distance of Diamond (1988). Generated 

data are applied to compare the estimation results of the proposed MFC model with the usual multiple fuzzy MF 
regression model.  

 

This paper will be outlined as follows. Section (2) presents some definition regarding fuzzy random variables 
(FRVs), fuzzy distance and possibility distributions will be introduced. In section (3) fuzzy linear regression models 
will be considered. The proposed mixed fuzzy and crisp (MFC) linear regression model will be introduced in section 
(4). Section (5) considers the numerical applications using generated and real data examples. The concluding remarks 
will be discussed in section (6).  
 

(2) Mathematical Preliminaries 
 

Some definitions and notes will be presented in this section for the requirements of this work. 
 

2.1 Sets Representation of Fuzzy Numbers 
 

Let  p

c RK denotes the class of all non-empty compact intervals of 
pR and let  p

c RF  denotes the class of 

all fuzzy numbers of 
pR . Then,  p

c RF  will be defined as follows: 
 

        ,1,0|1,0:  
p

c

pp

c RKARARF      (1) 
 

where A  is the α-cut set of A if  1,0 , and A0 is called the support of A. (Zadeh, 1975).  
 

For a given  RFBA c, , and Rb , the followings hold: 

 The sum of A and B is called the Minkowski sum, defined as:  RFBAS c . (Zadeh, 1975). 

 The scalar product of b and the set A is defined as:  RFAbP c  . (Zadeh, 1975). 

 A fuzzy number  RFD c  is called the Hukuhara difference of A and B defined as: BAD H , it is 

shown that the Hukuhara difference is the inverse operation of addition  , where DBA  .(Zadeh, 
1975).  
 

2.2 Left and Right (L-R) Representation of Fuzzy Numbers 
 

Let A∈T(R) is a FRV, where T(R) is a set of trapezoidal fuzzy numbers of Fc(R). A trapezoidal fuzzy number A is 

defined as A=Tra(Al,Au,Av,Ar), where Al∈R and Ar∈R are the left and right limits of the trapezoidal fuzzy number A, 

respectively. Also Au∈R and Av∈R are the left and right middle points of A, respectively, as shown in Figure (1). When 

Au = Av =Am, a fuzzy number A will be a triangular, i.e., A=Tri(Al,Am,Ar), as shown in Figure (2) 
 

If Al=a, Au=b, Av=c,and Ar=d, a stylized representation of a trapezoidal fuzzy number A can be represented in 
the following L-R form: 

 

 A trapezoidal fuzzy number A is specified by a shape function with the following membership (Figure (1)): 
 

 
 

Figure (1): Trapezoidal Fuzzy Number. 



Magda M. M. Haggag                                                                                                                                                  11 

 

 

 When c=b, a triangular fuzzy number A is specified by a shape function with the following membership (Figure 
(2)): 

 

 
 
 

Figure (2): Triangular Fuzzy Number 
 

2.3 Metrics in Fuzzy Numbers Space 
 

To measure the distance between any two fuzzy numbers A, and B in  RFc , an extended version of the 

Euclidean (L2) distance (  BAdE , ) is defined by: 
 

            
1

0

21

0

22 ,  dBAdBABAd UULLE ,    (4) 

 

where  LA  and  UA  are the lower and upper  -cuts of a fuzzy number A. (Grzegorzewski, 1998 ). 

Bertoluzza et al. (1995) have proposed the so-called Bertoluzza metric d(A,B), which is defined as: 
 

      
 

    
  

1,0

2

1,0

22 ,   dBsprAsprdBmidAmidBAd ,  (5) 

 

where  
2

LU AA
Amid 



  denotes the midpoint of A , and  

2

LU AA
Aspr 



  denotes the spread (or radius) 

of A ,  1,0 . 
UA and 

LA  denote the upper bound and lower bound of A, respectively. 
 

The Hausdroff  BAdH ,  metric for  RFBA c,  is given by: 
 

   ,supsup,infinfmax, BABABAdH    (6) 
 

where infA is the infimum value of A, and supA is the supremum value of A.  
 

The  BAd p ,  metric for  RFBA c,  , and  p1 is given by: 

  ,supsup
2

1
infinf

2

1
,

1
p

pp

p BABABAd








       (7). 

 

 where infA and supA are the infimum and supremum values of A, respectively. (See Vitale, 1985). 
 

The distance between fuzzy numbers can be defined as the distance between their membership functions. 

The distance  BAd p , between the two fuzzy numbers A,B is given by: 

    p

X

p

BAp dmBAd
1

,    ,             for  p1 ,    (8) 

and 

     xxessentialBAd BA
Xx

p  


sup  ,          for p ,   (9) 

where X  is a Lebesgue measurable set, m is a Lebesgue measure on X. (See Klir and Yuan, 1995). 
 

The membership functions of two fuzzy numbers are the same if the distance between them is zero, i.e., 
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       EXxxxBAd BAp                    0,  ,    

If the two functions d1and d2 defined such that: 

d1 and d2 : 
 RXX FF , 

where XF is a fuzzy set and X={x1,x2,…,xn} is a fuzzy random variable (FRV), and FXBA , . 
 

Then: 

     



n

i

iBiA xxBAd
1

1 ,  ,      (10) 

and 

      



n

i

iBiA xxBAd
1

2

2 ,  ,      (11) 

Are called fuzzy distances. (Rudin, 1984).  
 

The FRVs used in this paper are considered as functions from a probability space (Ω,A,P) into the metric 

space (Fc(R),dθ), where θ>0. The sample mean nX  and sample variance 
2

,n  of the FRV X are defined by: 

 nn XXX
n

X  ...
1

21 ,     (12) 

and 

 ni

n

i

n XXd
n

,
1

1

22

, 


  .     (13) 

If X and Y are two FRVs , then the Bertoluzza covariance between them is defined as: 
 

     YXYXYX sprmid ,cov,cov,cov   ,                (14) 

 

       
 

     
   


1,01,0

1

1
,cov 


dYmidXmiddYmidXmid

n
YX nnii

n

i

mid  (15) 

       
 

     
   


1,01,0

1

1
,cov 


dYmidXmiddYmidXmid

n
YX nnii

n

i

mid  

 

(3) Fuzzy Linear Regression Models 
 

3.1 The Standard Linear Regression Models 
 

Consider the following standard simple linear regression model: 
 

iii XY   10 , i=1,2,…,n,     (16) 
 

where 0 , and 1  are unknown parameters, X is the predictor, Y is the response variable and  is the error 

term of the model, with   0\ XE   and finite variance. The least squares estimators of 0 , and 1 are obtained by 

minimizing the sum of squared error criterion, Q, as follows: 

  



n

i

i XYQ
1

2

110
, 10

minarg 


.     (17) 

The resulting estimators denoted by 0b , and 1b are as follows: 
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 

2

1

2

1
1

xnx

yxnyx

b
n

i

i

n

i

ii













 ,   and xbyb 10  .   (18)  

The multiple linear regression model is one: 

  XY  ,       (19) 
 

where Y is an (n×1) column vector of the dependent variable, X is an (n×p) matrix of predictors, β is a (p×1) 
vector of unknown parameters to be estimated, and ε is an (n×1) vector of errors distributed as N(0,σ2In). The least 
squares estimator of β , denoted by b is given by: 

  YXXXb 
1

,      (20) 

which is obtained by minimizing the corresponding criterion, Q as:  

   


XYXYQ 


 minarg .      (21) 

 

3.2 Simple Fuzzy Linear Regression Models 
 

In the case of using fuzzy data, fuzzy regression models will be used to estimate the unknown parameters. 
Consider the following fuzzy simple linear regression models: 
 

 ~~~
10  ii xy ,      (22) 

 ~~~~
10  ii xy ,      (23) 

 ~~~~~
10  ii xy ,       (24) 

 

where 10 ,  and , are crisp parameters, x  is a crisp variable, 10

~
,

~
 and are fuzzy parameters,  y~ is a fuzzy 

response variable, x~  is a fuzzy predictor. As a lack of linearity of  p

c RF , ~  is reduced to a non-FRV. (See 

Gonzalez-Rodriguez et al. (2009)). 
 

The regression functions of models (22), (23), and (24) will be approximated as follows: 
 

XXYE
~

)
~

\
~

( 10   ,                      (25) 

XXYE 10

~~
)\

~
(   ,             (26)   

XXYE
~~~

)
~

\
~

( 10   ,                          (27)  
  

The least squares estimators of the parameters in models (22):(24) are derived using using triangular and 
trapezoidal fuzzy numbers. The derivation is approximated by optimizing the least squares criterion. In this work, the 
least squares optimization criterion which is an extension version of that introduced by Diamond (1988) will be used. 
 

3.3 The least Squares Approach for of  the Simple Fuzzy Regression Models Using Triangular Fuzzy 
Numbers 

 

The least squares estimators of the parameters in model (22) are obtained by minimizing the least squares 
criterion as follows: 

   



n

i

ii xydQ
1

10

2

,
10

~,~minarg,
10




    (28) 

Diamond (1988) showed that there are two cases arising when 0
1
  or 0

1
 .  Using the triangular 

fuzzy number, the objective function in (28), when 0
1
 , will be as follows: 
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   

      













n

i

iririmimilil

n

i

ii

xyxyxy

xydQ

1

2

10

2

10

2

10
,

1

10

2

,
10

10

10

minarg                  

~,~minarg,








 (29) 

 

By differentiating of Eq. (29) with respect to the parameters 
1

 and 0 , and equating the equations by zero: 

 
     

                 

0222
,

1

1101

1

1101

1

1101

1

10 






 n

i

riirri

n

i

miimmi

n

i

liilli xyxxyxxyx
Q






 

 
     

                 

0222
,

1

110

1

110

1

110

0

10 






 n

i

riir

n

i

miim

n

i

liil xyxyxy
Q






 

The least squares estimators, 


1b  and 


0b   of  
1

 and 0  respectively, are obtained as follows: 
 

 

 












n

i

irimil

n

i

iririmimilil

xnxxx

yxnyxyxyx

b

1

2222

1
1

3

3

,      (30) 

xbyb   10 ,         (31) 
 

where, yil , yim , and yir  are the left, middle, and right value of yi , respectively, for i=1,2,…,n. Also, xil , xim , and 

xir  are the left, middle, and right value of xi , respectively, for i=1,2,…,n.   nyyyy
n

i

irimil 3/
1




 , and 

  nxxxx
n

i

irimil 3/
1




 .  

For the second case, where 0
1
 , the objective function of (28) will be as follows: 

   

      













n

i

ilirimimiril

n

i

ii

xyxyxy

xydQ

1

2

10

2

10

2

10
,

1

10

2

,
10

10

10

minarg                  

~,~minarg,








, (32) 

 

and differentiating of Eq. (32), the least squares estimators, 


1b  and 


0b   of  
1

 and 0  respectively, are 

obtained as follows: 

 

 












n

i

irimil

n

i

iririmimilil

xnxxx

yxnyxyxyx

b

1

2222

1
1

3

3

,      (33) 

            xbyb   10 .         (34)  
   

Diamond (1988 [5], 1990[6]) showed that for every fuzzy nondegenerate data set that 
  11 bb  , and the least 

squares estimators will be unique if the fuzzy nondegenerate data set is tight.  
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Definition (3.1) 
 

Consider the fuzzy data sets  irimili yyyy ,,~  , and  irimili xxxx ,,~  , for i=1,2,…,n, the set is said to be 

nondegenerated, if not all observations in a set are made at the same datum. 
 

Definition (3.2) 
 

Consider the fuzzy data sets  irimili yyyy ,,~  , and  irimili xxxx ,,~  , for i=1,2,…,n, the set is said to be 

tight if either 01 b  or 01 b . If 01 b  the data set is said to be tight positive, and if 01 b  the data set is said 

to be tight negative. (Diamond (1988[5]). 
 

The least squares estimators of the parameters in model (23) are obtained by minimizing the squared 
distances between the regression model and the regression function as follows:  

 

   



n

i

ii xydQ
1

10

2

,
10

~~
,~minarg

~
,

~

10




    (35) 

where   rml 0000 ,,
~

   and  rml 1111 ,,
~

   are two triangular fuzzy numbers. 

Eq. (35) can be written as: 
 

          2

10

2

10

2

10
,1

10

2

,
10

1010

minarg
~~

,~minarg
~

,
~

irririmmimillil

n

i

ii xyxyxyxydQ 


 


    (36) 

 

By differentiating of Eq. (36) with respect to the parameters l1
 , m1

 , r1
  and l0 , m0 , r0 , the least 

squares estimators, lb1 , mb1 , rb1 and lb0 , mb0 , rb0  are obtained when ix ≥ 0 as follows: 
 

 

 












n

i

i

n

i

lili

l

xnx

yxnyx

b

1

22

1
1 , 

 

 












n

i

i

n

i

mimi

m

xnx

yxnyx

b

1

22

1
1 , 

 

 












n

i

i

n

i

riri

r

xnx

yxnyx

b

1

22

1
1 ,         (37)  

  

xbyb lll 10  ,  xbyb lll 10   , . xbyb rrr 10  .           (38)  
 

when ix < 0 , least squares estimators, lb1 , mb1 , rb1 and lb0 , mb0 , rb0  are obtained as follows: 

 

 












n

i

i

n

i

riri

l

xnx

yxnyx

b

1

22

1
1 , 

 

 












n

i

i

n

i

mimi

m

xnx

yxnyx

b

1

22

1
1 , 

 

 












n

i

i

n

i

lili

r

xnx

yxnyx

b

1

22

1
1 ,         (37)  

  

xbyb rll 10  ,  xbyb mmm 10   ,  xbyb lrr 10  .       (38)  
 

The least squares estimators of the parameters in model (24) are obtained by minimizing the squared 
distances between the regression model and the regression function as follows:  

   



n

i

ii xydQ
1

10

2

,
10

~~~
,~minarg

~
,

~

10




   (39) 

where   rml 0000 ,,
~

  ,  rml 1111 ,,
~

  , and  irimili xxxx ,,~   are triangular fuzzy numbers, and 

ix~
~~

10    is approximately fuzzy number. (See Arabpour and Tata). 

Eq. (39) can be written as: 



16                                                               American Review of Mathematics and Statistics, Vol. 6(2), December 2018 
 

     

          2
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2

10

2

10
,1

10

2

,
10

1010

minarg
~~

,~minarg
~

,
~

irrririmmmimilllil

n

i

ii xyxyxyxydQ 


 


    (40) 

 

By differentiating of Eq. (40) with respect to the parameters l1
 , m1

 , r1
  and l0 , m0 , r0 , the least 

squares estimators, lb1 , mb1 , rb1 and lb0 , mb0 , rb0  are obtained as follows when  sxi '
~ and 

1

~
  are positive fuzzy 

numbers. 
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
n

i

mim

n

i

mmimil

m

xnx

yxnyx

b

1

22

1
1 , 

 

 












n

i

rir

n

i

rririr

r

xnx

yxnyx

b

1

22

1
1 ,         (41) 

   

lrll xbyb 10  ,  mmmm xbyb 10   ,  rlrr xbyb 10  .      (42)  

The derivation of the fuzzy simple least squares estimators using trapezoidal fuzzy numbers can be easily found.   
 

3.4 Multivariate Fuzzy Linear Regression Models 
 

3.4.1 Multivariate Fuzzy Linear Regression Models for Fuzzy Predictors and Crisp Parameters 
 

Consider the case of fuzzy simple linear regression models defined in (22), the multiple fuzzy regression 
model may be formalized as follows: 

 

iippiii xxxy  ~~...~~~
22110  .  (43) 

 

Suppose using centered values of fuzzy predictors, Eq. (43) can be written in matrix form as follows: 
 

 ~~~
 XY ,     (44) 

 

where, Y
~

 is an (n×1) vector , X
~

 is an (n×p) matrix of p fuzzy predictors, and   is a (p×1) vector of 

unknown p crisp parameters. As a result of the lack of linearity of  p

c RF , ~  is reduced to a non-FRV  . (See 

Gonzalez-Rodriguez et al. (2009)). 
  

 Y
~

, X
~

,  , and   are formalized in matrix form as follows: 











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

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
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~
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
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



























pnnn

p

p

xxx

xxx

xxx

X

~~~

~~~

~~~

~

21

22221

11211









, 























p








2

1

, and  





















n







~

~

~

~ 2

1


,  

where  irimili yyyy ,,~  , and  
ijrijmijlij xxxx ,,~  , for i=1,2,…,n, and j=1,2,…,p.  

The least squares estimator of β in model (44), for triangular fuzzy variables, can be formalized as follows: 
 

   rrmmllrrmmll YXYXYXXXXXXX 
1

̂ ,    (45) 
 

where, 
 

 jijll xxX   ,  jijmm xxX   ,  jijrr xxX  , are (n×p) left, middle, and right fuzzy matrices of 

predictors.  nllll yyyY ,...,, 21  ,  nmmmm yyyY ,...,, 21  ,  nrrrr yyyY ,...,, 21 , are (n×1) response vectors 

such that: 

 piplliliil xxxy   ...2211 ,  for i=1,2,…,n 

pipmmimiim xxxy   ...2211 ,  for i=1,2,…,n 
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piprririir xxxy   ...2211 ,  for i=1,2,…,n 
 

The least squares estimator of β in model (44), for trapezoidal fuzzy variables, can be formalized as follows: 
 

   rruullrruull YXYXYXYXXXXXXXXX 



1ˆ ,  (46) 

 

where, 

 jijll xxX   ,  jijuu xxX   ,  jij xxX   ,  jijrr xxX  , are (n×p) left, middle left, middle 

right, and right fuzzy matrices of predictors.  nllll yyyY ,...,, 21  ,  nuuuu yyyY ,...,, 21  , 

  nyyyY ,...,, 21 ,    nrrrr yyyY ,...,, 21 , are (n×1) response vectors such that: 

 piplliliil xxxy   ...2211 ,  for i=1,2,…,n 

pipuuiuiiu xxxy   ...2211 , for i=1,2,…,n 

pipiii xxxy    ...2211   for i=1,2,…,n 

piprririir xxxy   ...2211 ,  for i=1,2,…,n 
 

3.4.2 Multivariate Fuzzy Linear Regression Models for Crisp Predictors and Fuzzy Parameters 
 

Consider the case of fuzzy simple linear regression models defined in (23), the multiple fuzzy regression 
model can be generalized as follows: 

iippiii xxxy  
~

...
~~~~

22110 .    (333) 
  

Suppose using centered values of crisp predictors, Eq. (43) can be written in matrix form as follows: 

 
~~

XY ,        (44) 

where, Y
~

 is an (n×1) fuzzy vector , X  is an (n×p) matrix of p crisp predictors, and 
~

 is a (p×1) vector of unknown 

p fuzzy parameters. As a result of the lack of linearity of  p

c RF , ~  is reduced to a non-FRV  . (See Gonzalez-

Rodriguez et al. (2009)). 
  

 Y
~

, X , 
~

, and   are formalized in matrix form as follows: 
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
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
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
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
, and  


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
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
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


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n







2

1

,  

where  irimili yyyy ,,~  , and  jrjmjlj  ,,
~
 , for i=1,2,…,n, and j=1,2,…,p.  

The least squares estimator ̂  of 
~

in model (44), for triangular fuzzy variables, can be formalized as follows: 

 rml  ˆ,ˆ,ˆˆ  , 

 
where, 

   ll YXXX 
1

̂ ,    (45) 

   mm YXXX 
1

̂ , 

   rr YXXX 
1

̂ , 

where, 
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 jij xxX   ,  and  nllll yyyY ,...,, 21  ,  nmmmm yyyY ,...,, 21  ,  nrrrr yyyY ,...,, 21 , are (n×1) 

response vectors such that: 

 plipliliil xxxy   ...2211 ,  for i=1,2,…,n 

pmipmimiim xxxy   ...2211 ,  for i=1,2,…,n 

pripririir xxxy   ...2211 ,  for i=1,2,…,n 
 

The least squares estimator of 
~

in model (44), for trapezoidal fuzzy variables, can be formalized as follows: 

 rvul  ˆ,ˆ,ˆ,ˆˆ  , 

where, 

   ll YXXX 
1

̂ ,       

   uu YXXX 
1

̂ , 

   vm YXXX 
1

̂  

   rr YXXX 
1

̂ . 
     

3.4.3 Multivariate Fuzzy Linear Regression Models for Fuzzy Predictors and Fuzzy Parameters 
 

Consider the case of fuzzy simple linear regression models defined in (24), the multiple fuzzy regression 
model can be generalized as follows: 

iippiii xxxy   ~~
...~~~~~~

22110 .     
 

Suppose using centered values of crisp predictors, Eq. (43) can be written in matrix form as follows: 

 
~~~

XY ,     (44) 

where, Y
~

 is an (n×1) fuzzy vector , X
~

 is an (n×p) matrix of p fuzzy predictors, and 
~

 is a (p×1) vector of unknown 

p fuzzy parameters. As a result of the lack of linearity of  p

c RF , ~  is reduced to a non-FRV  . (See Gonzalez-

Rodriguez et al. (2009)). 
  

 Y
~

, X
~

, 
~

, and   are formalized in matrix form as follows: 
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
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

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
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



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
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
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
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









p







~

~

~
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1


, and  





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










n







2

1

,  

where  irimili yyyy ,,~  ,  
ijrijmijlij xxxx ,,~   and  jrjmjlj  ,,

~
 , for i=1,2,…,n, and j=1,2,…,p.  

The least squares estimator ̂  of 
~

in model (44), for triangular fuzzy variables, can be formalized as 

follows: 

 rml  ˆ,ˆ,ˆˆ  , 

where, 

   lllll YXXX 
1

̂ ,      (45) 

   mmmmm YXXX 
1

̂ , 

   rrrrr YXXX 
1

̂ , 

where, 
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 jijll xxX   ,  jijmm xxX   ,  jijrr xxX  , are (n×p) left, middle, and right fuzzy matrices of 

predictors.  nllll yyyY ,...,, 21  ,  nmmmm yyyY ,...,, 21  ,  nrrrr yyyY ,...,, 21 , are (n×1) response vectors 

such that: 

 pliplllilliil xxxy   ...2211 ,   for i=1,2,…,n 

pmipmmmimmiim xxxy   ...2211 ,  for i=1,2,…,n 

priprrrirriir xxxy   ...2211 ,   for i=1,2,…,n 
 

The least squares estimator of 
~

in model (44), for trapezoidal fuzzy variables, can be formalized as follows: 

         lllll YXXX 
1

̂ ,     

         uuuuu YXXX 
1

̂ , 

   vvvvv YXXX 
1

̂  

         rrrrr YXXX 
1

̂ . 
 

(4) The Proposed Mixed Fuzzy Crisp (MFC) Regression Model  
 

All the fuzzy multiple regression models that have been considered in the literature handled the cases where 
all the predictors are fuzzy or all are crisp.  

 

In this section, a new multiple linear regression model which mixes the fuzzy and crisp predictors in one 
model called “Mixed Fuzzy Crisp” (MFC) regression model, is proposed.The least squares approach for the new 
model is derived based on positive tight data as defined in (3.2) and  triangular fuzzy numbers. Also, the properties of 
the resulting regression parameters are introduced in two cases: first, when the parameters are fuzzy, and second when 
the parameters are crisp.  

 

4.1 The Proposed Mixed Fuzzy Crisp (MFC) Regression Model Using Crisp Parameters 
 

Consider the case where the multiple linear regression model concludes some fuzzy and some crisp 
predictors. The computations will be done using triangular fuzzy number, and can applied to trapezoidal one. 
Assuming centered predictors, the proposed simplest form of multiple model that contain two predictors, one is crisp 
and the other is fuzzy, with crisp parameters will be as follows: 

iiii xxy   2211
~~ .      (47) 
 

where  irimili yyyy ,,~  , and  rimilii xxxx 1111 ,,~  , for i=1,2,…,n,  imimimi xxxx ,,2  , and i is a non-fuzzy 

error with mean equal zero. The regression function of model (47) will be as follows: 

   221121
~),~\~( xxxxyE   .           

 

The derivation of the least squares estimators is done by minimizing the squared distances between the 
regression model and the regression function as follows: 
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21
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10

1010
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
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 (48) 

By differentiating of Eq. (48) with respect to the parameters 
1

 , and 2 , the following equations are 

obtained: 
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and, 
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Solving the equations (49) and (50), the least squares estimators, 
1

̂ , and 
2

̂ ,  of  
1

 , and 
2

 are obtained 

respectively, as follows: 
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where, yil , yim , and yir  are the left, middle, and right value of yi , respectively, for i=1,2,…,n. Also, xi1l , xi1m , 

and xi1r  are the left, middle, and right i’s value of 1
~x  , respectively, for i=1,2,…,n. 
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i

irimil xxxxx
1
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1

1 /  are the weighted means of y~  and 

1
~x  , respectively, using the observations of the crisp predictor 2x  as weights. All the above results can be shown for 

trapezoidal fuzzy data. 
 

 
4.2 The Proposed Mixed Fuzzy Crisp (MFC) Regression Model Using Fuzzy Parameters 
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Suppose in model (47) that both the parameters β1 and β2 are triangular fuzzy numbers, the MFC model will 

be defined as follows: 
 

iiii xxy   2211

~~~~ .      (53) 
 

where  rml 1111 ,,
~

  ,  rml 2222 ,,
~

  ,  irimili yyyy ,,~  , and  rimilii xxxx 1111 ,,~  , for i=1,2,…,n, 

 imimimi xxxx ,,2  , and i is a non-fuzzy error with mean equal zero. The regression function of model (52) will be 

as follows: 
 

221121

~~~
),~\~( xxxxyE   .                      

 

The derivation of the least squares estimators is done by minimizing the squared distances between the 
regression model and the regression function as follows: 
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 (54)  

  

By differentiating of Eq. (54) with respect to the parameters l1
 , m1

 , r1
 , and l2 , m2 , r2 , then 

equating the resulting outputs to zero, the least squares estimators, l1
̂ , m1

̂ , r1
̂  and l2

̂ , m2
̂ , r2

̂  are obtained as 

follows: 
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where, yil , yim , and yir  are the left, middle, and right value of yi , respectively, for i=1,2,…,n. Also, xi1l , xi1m , 

and xi1r  are the left, middle, and right i’s value of 1
~x  , respectively, for i=1,2,…,n.  

Using the observations of the crisp predictor 2x  as weight,   



n

i

i

n

i

iill xxyy
1

2

1

2 / , 

  



n

i

i

n

i

iimm xxyy
1

2

1

2 / ,   



n

i

i

n

i

iirr xxyy
1

2

1

2 / are the weighted means of ml yy , , and ry  respectively. Also, 

  



n

i

i

n

i

lil xxx
1

2

1

11 /  ,   



n

i

i

n

i

mim xxx
1

2

1

11 / ,   



n

i

i

n

i

rir xxx
1

2

1

11 / are the weighted means of ml xx 11 , , and 

rx1  , respectively. All the above results can be shown for trapezoidal fuzzy data. 
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(5) A Simulation Study 

 

To illustrate the effectiveness of the proposed MFC regression model, a simulation study is conducted to 
compare the performance of MFC regression model with MF regression one. Two groups of models are introduced 
with two predictors, in the first group MFC and MF models with crisp parameters are used, and in the second group 
MFC and MF models with fuzzy parameters are considered as follows: 
 

5.1 First Group 
 

Model (1) MFC regression model: iiii xxy   2211
~~ ,   for i=1,2,…,n 

with the following left, center, and right models: 
 

2211  iliil xxy  ,   for i=1,2,…,n 

2211  imiim xxy  ,   for i=1,2,…,n 

2211  iriir xxy  ,   for i=1,2,…,n 
 

Model (2) MF regression model:   iiii xxy   2211
~~~  , 

 

with the following left, center, and right sub-models: 
 

2211  liliil xxy  ,   for i=1,2,…,n 

2211  mimiim xxy  ,  for i=1,2,…,n 

2211  ririir xxy  ,   for i=1,2,…,n 
 

The triangular data set of  ),,(~
1111 rimilii xxxx   and ),,(~

2222 rimilii xxxx   are generated from the normal 

distribution, and repeated 100 times, as follows: 
 

lx1 ⁓N(0.5,2), 

mx1 ⁓N(1,2), 

rx1 ⁓N(2,4). 
 

The error term is supposed to distribute as normal with mean zero and variance one, i.e., ⁓N(0,1), 1 =0.5 

and 2 =1.5. 

The criterion used to compare the model (1) and model (2) is 
2~

R , which is defined as: 
 

 
 yyd

yyd
R

,~
ˆ,~

1
~

2

2
2  ,     (57) 

 

where,  yyd ˆ,~2
is the squared distance between  rcl yyyy ,,~   and  rcl yyyy ˆ,ˆ,ˆˆ  . Also,  yyd ,~2

 is the 

squared distance between  rcl yyyy ,,~   and  rcl yyyy ,, .  
 

In Table (1), the multiple fuzzy model (MF) and mixed fuzzy crisp model (MFC) are compared using 
2~

R  

criterion as defined in (57). Best results are obtained for the MFC model in the form of greater values of the left 
2~

R  

compared to the left MF for all sample sizes. The improve of the right 
2~

R  is noted for small sample sizes (n=5). 

Generally, the higher values of 
2~

R are obtained for smaller sample sizes of the two models MF and MFC. These 
results prove the validity of the fuzzy regression for vague and small data.   
 

Table (1): 
2~

R (left, center, right) for the multiple fuzzy (MF) regression model, and the proposed mixed fuzzy crisp 

(MFC) regression model with different sample sizes, n=5,10,20,50,100,200, 1 =0.5 and 2 =1.5.  
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5.2 Second Group 

Model (1) MFC regression model: iiii xxy   2211

~~~~ ,   for i=1,2,…,n 

with the following left, center, and right models: 

lilliil xxy 2211   ,   for i=1,2,…,n 

mimmiim xxy 2211   ,  for i=1,2,…,n 

rirriir xxy 2211   ,   for i=1,2,…,n 
 

Model (2) MF regression model:   iiii xxy   2211
~~~~~  

with the following left, center, and right models: 
 

llilliil xxy 2211   ,   for i=1,2,…,n 

mmimmiim xxy 2211   ,  for i=1,2,…,n 

rrirriir xxy 2211   ,  for i=1,2,…,n 
 

The triangular data set of  ),,(~
1111 rimilii xxxx   and ),,(~

2222 rimilii xxxx   are generated from the normal 

distribution, and repeated 100 times, as follows: 

lx1 ⁓N(0.5,2), 

mx1 ⁓N(1,2), 

rx1 ⁓N(2,4). 

The error term is supposed to distribute as normal with mean zero and variance one, i.e.,  ⁓N(0,1), 

 5.1,0.1,5.0
~

1  and  5.1,0.1,5.0
~

2 . The criterion 
2~

R is used to compare the MFC and MF regression models.   

In Table (2), as in the first group, it is found that best results are obtained for the MFC model in the form of 

greater values of the left 
2~

R  compared to the left MF for all sample sizes. The improve of the right 
2~

R is noted for 

small sample sizes (n=5). Generally, the higher values of 
2~

R are obtained for smaller sample sizes for the two models 
MF and MFC. These results prove the validity of the fuzzy regression for small data. 
 

Table (2): 
2~

R (left, center, right) for the multiple fuzzy (MF) regression model, and the proposed mixed fuzzy crisp 

(MFC) regression model with different sample sizes, n=5,10,20,50,100,200,  5.1,0.1,5.0
~

1  and 

 5.1,0.1,5.0
~

2 .  

 
 
 
 
 
 

n=5 Model  Left Center Right n=50 Model  Left Center Right 

 MF 0.9349 0.9496 0.9581  MF 0.9079 0.9415 0.9826 

 MFC 0.9703 0.9496 0.9895  MFC 0.9567 0.9415 0.9342 

          

n=10 Model  Left Center Right n=100 Model  Left Center Right 

 MF 0.9634 0.9936 0.9927  MF 0.7296 0.9074 0.9733 

 MFC 0.9899 0.9936 0.9896  MFC 0.9068 0.9074 0.9363 

          

n=20 Model  Left Center Right n=200 Model  Left Center Right 

 MF 0.8489 0.9463 0.9771  MF 0.8052 0.9201 0.9788 

 MFC 0.9548 0.9463 0.9497  MFC 0.9236 0.9201 0.9409 
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(6) Conclusions 
 

In this paper the simple linear regression model is extended to the multiple one and estimated with the least 
squares approach. This extension is based on adding both fuzzy and crisp predictors to the linear regression model, 
and the resulting model is called the mixed fuzzy crisp (MFC). Our extended model is evaluated using the extended 

fuzzy 
2~

R . Simulated data examples are applied to compare the results of MFC model with the multiple fuzzy (MF) 

regression model using triangular fuzzy numbers. Best results are obtained in the form of larger values of 
2~

R of MFC 
compared to MF especially for small sample sizes. These results support using MFC model for small data size and for 
large size of tight data. 
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