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A New Fuzzy Regression Model by Mixing Fuzzy and Crisp Inputs

Magda M. M. Haggag'

Abstract

This paper proposes a new form of the multiple regression model (mixed model) based on adding both fuzzy
and crisp input data. The least squares approach of the proposed multiple regression parameters are derived
in different cases. This derivation is based on the fact that each fuzzy datum is a nonempty compact interval
of the real line. The main contribution is to mix both fuzzy and crisp predictors in the linear regression
model. The mixed fuzzy crisp model will be introduced mathematically and by coded via R-language. The
least squares of the regression parameters will be derived and evaluated using distance measures. Numerical
examples using generated data showed best results for the mixed fuzzy crisp multiple regression models
compared to the multiple fuzzy models.

Keywords: Bertolouzza distance, Compact data sets, Euclidean distance, Fuzzy least squares, Fuzzy variables,
Fuzzy regression, tight data.

(1) Introduction

Linear regression models are used to model the functional relationship between the response and the
predictors linearly. This relationship is used for describing and estimating the response variable from predictor
variables. Some important assumptions are needed to build a relationship, such as existing enough data, the validity of
the linear assumption, the exactness of the relationship, and the existence of a crisp data for variables and coefficients.

The fuzzy regression model is a practical alternative if the linear regression model does not fulfill the above
assumptions. A fuzzy linear regression model first introduced by Tanaka et al. (1982). Their approach handled after
that by many authors, such as Tanaka and Lee (1988); Tanaka and Watada (1988); Tanaka et al. (1989); Diamond
(1988, 1990, 1992); Diamond and Koener (1997); D’Urso and Gastaldi (2000); Yang and Lin (2002); D’Urso (2003);
Gonzalez-Rodriguez et al. (2009); Choi and Yoon (2010); Yoon and Choi (2009, 2013); D’Urso and Massari (2013).

Fuzzy regression models have been treated from different points of view depending upon the type of input
and output data. There are three different kinds of models:

e Crisp input and fuzzy output with fuzzy coefficients.
e Fuzzy input and fuzzy output with crisp coefficients.
e Fuzzy input and fuzzy output with fuzzy coefficients.

The least squares method is used to estimate the fuzzy regression model. (See for instance, Diamond (1988,
1990, 1992)).

The objective of this paper is to extend the simple linear regression model to the multiple one and estimate it
with the least squares approach. This extension is based on adding both fuzzy and crisp predictors to the linear
regression model, and the resulting model is called the mixed fuzzy crisp (MFC).
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Our extended model will be evaluated using the extended squared distance of Diamond (1988). Generated
data are applied to compare the estimation results of the proposed MFC model with the usual multiple fuzzy MF
regression model.

This paper will be outlined as follows. Section (2) presents some definition regarding fuzzy random variables
(FRVs), fuzzy distance and possibility distributions will be introduced. In section (3) fuzzy linear regression models
will be considered. The proposed mixed fuzzy and crisp (MFC) linear regression model will be introduced in section
(4). Section (5) considers the numerical applications using generated and real data examples. The concluding remarks
will be discussed in section (6).

(2) Mathematical Preliminaries
Some definitions and notes will be presented in this section for the requirements of this work.

2.1 Sets Representation of Fuzzy Numbers

Let K, (R p)denotes the class of all non-empty compact intervals of R Pand let F. (R p) denotes the class of

all fuzzy numbers of R”.Then, F, (R p) will be defined as follows:
F.(R?)={A:R" > [01]| A, €K, (R* W <[01]; )
where A, is the a-cut set of Aif @ € (0,1], and Aois called the support of A. (Zadeh, 1975).

For a given A,Be FC (R), and be R, the followings hold:
e The sum of A and B is called the Minkowski sum, defined as: S=A® B e FC(R). (Zadeh, 1975).
e The scalar product of b and the set A is defined as: P=b® Ae FC(R) . (Zadeh, 1975).
e A fuzzy number D € FC(R) is called the Hukuhara difference of A and B defined as: D=A—, B, it is

shown that the Hukuhara difference is the inverse operation of addition @, where A=B® D .(Zadeh,
1975).

2.2 Left and Right (L-R) Representation of Fuzzy Numbers
Let A€T(R) is a FRV, where T(R) is a set of trapezoidal fuzzy numbers of F,(R). A trapezoidal fuzzy number A is
defined as A=Tra(A,A,A,A,), where A€R and A,€R arethe left and right limits of the trapezoidal fuzzy number A,

respectively. AlsoA4,€R and A,€KR arethe left and right middle points of A, respectively, as shown in Figure (1). When
A, = A, =A,, a fuzzy number A will be a triangular, i.e., A=Tri(A4,A4,,,), as shown in Figure (2)

If A=a, A=b, Av=¢and A,=d, a stylized representation of a trapezoidal fuzzy number A can be represented in
the following L-R form:

e A trapezoidal fuzzy number A is specified by a shape function with the following membership (Figure (1)):

0, x<a Yo

ad a, a<x=h 1

b—a

1, b<x<c
X)) =3 c—x

, c<x<d
d-c
0, x>d I

0

Figure (1): Trapezoidal Fuzzy Number.
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e When c=b, a triangular fuzzy number A is specified by a shape function with the following membership (Figure

(2):

0 x<a Y
x—a’ a<x<bh
b—a
(x)=11, x=b
€Y p<x<e X
c—b
0 xzc

Figure (2): Triangular Fuzzy Number

2.3 Metrics in Fuzzy Numbers Space

To measure the distance between any two fuzzy numbers A, and B in F, (R), an extended version of the

c
Euclidean (I.5) distance (0 (A, B)) is defined by:

d2(AB)=[[A («)-B (@] da+ [ [A,(«)-By (@) da, @

where AL(a ) and A, (a ) are the lower and upper  -cuts of a fuzzy number A. (Grzegorzewski, 1998 ).
Bertoluzza et al. (1995) have proposed the so-called Bertoluzza metric d(A,B), which is defined as:

d?(A,B)= j[ Ovl][mid (A,)-mid(B,)fda + j[ Oll][spr(Aa)— spr(B, )f da, )
u L u L
where mid(Aa)= A“—ZAO‘ denotes the midpoint of A, and spr(Aa)= % denotes the spread (or radius)

of A,,Va e [0,1]. A;J and AOI; denote the upper bound and lower bound of A, respectively.
The Hausdroff d,, (A, B) metric for A, B € F.(R) is given by:
d,, (A, B)=max{inf A—inf Bjsup A—supB]}, ©)
where 7nfA is the infimum value of A, and s#p.A4 is the supremum value of A.
The d p(A, B) metric for A, Be FC(R) ,and 1< p < oois given by:

b

d, (A, B):{%hnf A—inf B|° +%|supA—supB|p} ™).

where 7nfA and supA are the infimum and supremum values of A, respectively. (See Vitale, 1985).

The distance between fuzzy numbers can be defined as the distance between their membership functions.
The distance d 0 (A, B)between the two fuzzy numbers A4,B is given by:

dp(A,B)=IﬂyA—yB|pdm]%), for I< p<oo, ®)
and "
d,(AB)= essential sup| e (X) — a5 (x) for p=o0, )

where X # ¢ is a Lebesgue measurable set, m is a Lebesgue measure on X. (See Klir and Yuan, 1995).

The membership functions of two fuzzy numbers are the same if the distance between them is zero, i.e.,
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dp(A,B)=0:>,uA(X)=,uB(X) vxe(X -E),
If the two functions diand 4> defined such that:
drand do: XF X XF —> R+,
where X is a fuzzy set and X={x7,x3,...,x,} is a fuzzy random variable (FRV), and A,B € X

Then:

d,(A B>=g|m<xi>—u8<xi1, 0)
and

d,(AB)= 3 (ta (%)~ 215 (x ) )

i=1
Are called fuzzy distances. (Rudin, 1984).
The FRVs used in this paper are considered as functions from a probability space (€,A,P) into the metric
space (F.(R),dy), where 6>0. The sample mean X , and sample variance O ;,n of the FRV X are defined by:

X, =%(xl®x2@...® X.), (12)
and
2 1 3 2 V2
== X, X,).
n n;da( i’ n) (13)

If X and Y are two FRVs | then the Bertoluzza covariance between them is defined as:

cov,(X,Y)=cov, (X,Y)+8cov,, (X,Y), (14)

covmid(x.Y)=I[Oyl]%gmid[(xi)a]mid[(\n )a]da—f[oyl]mid[(f ) Jmid[(¥,), e 13
covmid(X,Y):I[Oyl]%Zmid[(Xi ), Imid[(Y,), de I[ mid|(X, ), Jmid|(V; ), [der

(3) Fuzzy Linear Regression Models
3.1 The Standard Linear Regression Models

Consider the following standard simple linear regression model:
Y, =B, + X, +&, i=12,...n, (16)

where ﬂo , and ,Bl are unknown parameters, X is the predictor, Y is the response variable and & is the error

term of the model, with E(E\ X ) =0 and finite variance. The least squares estimators of [, and f3, are obtained by
minimizing the sum of squared error criterion, Q, as follows:
n
. 2
Q=argmin 3 (Y, - fy = S, ) ()
PosBri=L
The resulting estimators denoted by by, and b are as follows:
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n
_ (Xi Yi )_ nxy
b= andb, = y—b,X. (18)
> x2—nx?
i=1
The multiple linear regression model is one:

Y=Xf+¢, (19)

where Y is an (nX1) column vector of the dependent variable, X is an (nXp) matrix of predictors, fis a (pX1)
vector of unknown parameters to be estimated, and ¢ is an (nX1) vector of errors distributed as N(0,0L,). The least
squares estimator of §, denoted by 4 is given by:

b=(XX)"XY, 20)
which is obtained by minimizing the corresponding criterion, Q as:
Q=argmin(Y —Xp) (Y = Xp). @1)
B

3.2 Simple Fuzzy Linear Regression Models

In the case of using fuzzy data, fuzzy regression models will be used to estimate the unknown parameters.
Consider the following fuzzy simple linear regression models:

yi :ﬂ0+ﬂ1§i +E’ (22)
yi = ﬂo +ﬂ1Xi + E’ (23)
Vi =Bo+ X +E, (24)

where f3,,andf3,, are crisp parameters, X is a crisp variable, f,,and/f, are fuzzy parameters, Y is a fuzzy

response variable, X is a fuzzy predictor. As a lack of linearity of FC(Rp), ¢ is reduced to a non-FRV. (See
Gonzalez-Rodriguez et al. (2009)).

The regression functions of models (22), (23), and (24) will be approximated as follows:

E(Y\X)=4,+5X, (25)
ENY\X)=4,+BX, (26)
E(Y\X):,B0+ﬁlxa 27

The least squares estimators of the parameters in models (22):(24) are derived using using triangular and
trapezoidal fuzzy numbers. The derivation is approximated by optimizing the least squares criterion. In this work, the
least squares optimization criterion which is an extension version of that introduced by Diamond (1988) will be used.

3.3 The least Squares Approach for of the Simple Fuzzy Regression Models Using Triangular Fuzzy
Numbers

The least squares estimators of the parameters in model (22) are obtained by minimizing the least squares
criterion as follows:

QBy. ) =argmin > d*(3,. 5, + A%, @8)

BorBi izl
Diamond (1988) showed that there ate two cases arising when ﬂl >0 or ﬁl < 0. Using the triangular

fuzzy number, the objective function in (28), when ,6'1 >0, will be as follows:
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Q" (fo. )= argmin X d2(5,. B, + BX,)

Bo: B in:1 29)
= arg Tin Z[(yil - ﬂo - ﬂlxil )2 + (yim _:Bo _lBlXim )2 + (yir _ﬁo _ﬁlxir )2]

By differentiating of Eq. (29) with respect to the parameters ﬂ and f,, and equating the equations by zero:

aQ (glzo,ﬂl) _lellz Yi— ﬂo ﬂl |1I) 2X|1m2(ylm ﬁo ﬂl |1m) 2X|1rZ(y|r ﬂO ﬂl llf)

XQ égo ' '81 22”: y|| - :80 - ﬁlxm )_ 2i(yim - ﬁo - ﬂlxilm ) - Zi(yir - ﬂo - ﬁlxilr ) =

. + + . .
The least squares estimators, b, and by of ,31 and 3, respectively, are obtained as follows:

n

Z(Xu Yi + Xim Yim T X Yir )_ 3n)_(y

by ==— ; (30)
Z(xﬁ + X2+ xfr)—f:’m‘(2
i=1

by =y-b/X, 31)

where, yi, Vim, and yir are the left, middle, and right value of y; , respectively, for i=1,2,...,n. Also, xi, Xim, and

n
xir are the left, middle, and right value of x; , respectively, for i=1,2,...,n. V:Z(y” + Yim +yir)/3n , and

n
X = > (X + Xim + %, )/30.
i=1
For the second case, where ,B =< 0, the objective function of (28) will be as follows:

Q (4. 5) afgmlnzd Voo B+ )

Bo Py =1
(32
=argmin S 0= = 20, F + (= = ik} + (= = i ]

and differentiating of Eq. (32), the least squares estimators, B, and b, of ,Bl and 3, respectively, are

obtained as follows:

Z(Xil Yir T Xim Yim T Xir Yir )_3n)_(y
b, == : (33)

n

Z(xfI +x2 +x2 )—3n>‘<2

i=1

=y-bX. (34

Diamond (1988 [5], 1990[6]) showed that for every fuzzy nondegenerate data set that b > b, , and the least
squares estimators will be unique if the fuzzy nondegenerate data set is tight.
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Definition (3.1)

Consider the fuzzy data sets Vi = (y” +Yim Yir ), and ii e (X- Xy X ), for i=1,2,....n, the set is said to be

ily Nim oy “Nir

nondegenerated, if not all observations in a set are made at the same datum.

Definition (3.2)

Consider the fuzzy data sets Vi = (y” +Yim Yir ), and ii e (X- Xy X ), for i=1,2,....n, the set is said to be

il Zim >y “ir
tight if either b <0 or by >0.1f by >0 the data set is said to be tight positive, and if b;” <0 the data set is said
to be tight negative. (Diamond (1988]5]).

The least squares estimators of the parameters in model (23) are obtained by minimizing the squared
distances between the regression model and the regression function as follows:

Q(A,.5.)- argmin > d°(5,. By + i) 35

where 50 = (ﬁm s Boms ﬁOr) and Bl = (ﬂll s Pins ,31,) are two triangular fuzzy numbers.
Eq. (35) can be written as:

Q(ﬁo :Bl): arg Tlin Zn‘,d ? ()7, vﬁo + :Elxi ): arg n;in [(yil _ﬂm - ﬂu X )2 + (yim - ﬂOm - :H1mxi )2 + (yir - ﬂOr - ﬂlrxi )Z] 36)

0+

By differentiating of Eq. (36) with respect to the parameters B, B ., B, and By, Bom» Por » the least

squares estimators, D, b, , b1r and b0| , bOm , bOr are obtained when X; = 0 as follows:
(Xi Yii )_ n)_(yl Z (Xi Yim )_ n)_(ym Z (Xi Yir )_ n)_(yr
b, = i:ln , by = = n , by, = Hn > @37
(xf)— nx? Z(xf)— nx? Z(xf)— nx?
i=1 i=1 i=1
b0| :y|_b1|)_(’ b0| :yl_bll)_( "bOrZYr_blr)_(' 38)

b1r and b0| , b

n

3 (%Y, )- %y, i(xi Yim )~ XY, > (%Y )-nxy,

when X; < 0, least squares estimators, b1| R bl bOr are obtained as follows:

m> Om»>

bll = i=1n > blm == n > blr = Hn > @37
Z(xf)— nx’ Z(xf)— nx? Z(xf)— nx?
i=1 i=1 i-1

b0| = yl _blr)_(’ bOm = ym _blm)_( > bOr = yr _b1|)_(~ 393)

The least squares estimators of the parameters in model (24) are obtained by minimizing the squared
distances between the regression model and the regression function as follows:

Q(EO’ﬁl):arg ryin Zdz(yiaﬁo +Els(-i> 39)
0:P1 i=1
where Bo = (ﬂm ’ﬁOm'ﬂOr) s Bl = (ﬂ“ ,ﬂlm,ﬂlr) , and ¥i= (XiI y Xim s Xir) are triangular fuzzy numbers, and

By + ﬂlii is approximately fuzzy number. (See Arabpour and Tata).
Eq. (39) can be written as:
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Q@ 151): argmin Zn:d z(yi vﬁo "'lei ): ar% n/;in[(YM =B — By )2 + (yim = Bon = BinXim )2 + (yir ~ B _ﬁlrxir)z] (40)

hb i
By differentiating of Eq. (40) with respect to the parameters B, 8, B, and By, By, Bor » the least

squares estimators, b1I R blm, b1r and b0| R bOm, bOr are obtained as follows when ii'S and f, are positive fuzzy

numbets.
Z(Xn Yil )_ n)_(l )_/| Z(Xil Yim )_ n)_(m ym Z (Xir Yir )_ n)_(r yr
blI = i=ln > b1m = =L n > blr = = n > (41)
(Xi2| )_ n%,” > (Xizm )_ nx,” > (Xizr )_ nx,’
i=1 i=1 i=1
bOI = yl _blr )_(I > bOm = ym _blm)_(m > bOr = yr _bll )_(r : (42)

The derivation of the fuzzy simple least squares estimators using trapezoidal fuzzy numbers can be easily found.
3.4 Multivariate Fuzzy Linear Regression Models
3.4.1 Multivariate Fuzzy Linear Regression Models for Fuzzy Predictors and Crisp Parameters

Consider the case of fuzzy simple linear regression models defined in (22), the multiple fuzzy regression
model may be formalized as follows:

yi :ﬂo+ﬂ1iil+ﬂ2ii2+'"+ﬁpiip+g‘i‘ (43)
Suppose using centered values of fuzzy predictors, Eq. (43) can be written in matrix form as follows:
Y =XB+7, (44)

where, Y is an (nXT) vector , X is an (nXp) matrix of p fuzzy predictors, and £ is a (pX7) vector of
unknown p crisp parameters. As a result of the lack of linearity of F, (Rp), £ is reduced to a non-FRV &. (See
Gonzalez-Rodriguez et al. (2009)).

Y, X, f,and & are formalized in matrix form as follows:

Y1 X Xpo o Xy B 2
vi y vi i21 izz .).('ZX ﬁz ~ £
Y=[72] X=| * % P B=|"? 1] and E=|"7],

yn an XnZ anp ﬂp (C,‘n

where Vi = (y“ y Yis Yir ), and iij = (XijI s Xijm s Xijr ), fori=1,2,...,n,and j=1,2,...,p.

The least squares estimator of § in model (44), for triangular fuzzy variables, can be formalized as follows:

P ’ ’ ' -1 ’ ’

ﬁz(xlxl—i_xmxm—i_xrxr) [XI,YI+XmYm+XrYr]’ (45)

where,

X, = |_Xijl —)_(jJ , Xy = I_Xijm —)_(J-J , X, = |_Xijr —)_(J-J, ate (nXp) left, middle, and right fuzzy matrices of
prediCtors‘ YI = (yll ’ y2l 1ty ynl) > Ym = (ylml y2m 1ty ynm) > Yr = (ylr’ y2r 1y ynr) , are (nXl) response vectors
such that:

Vi =Xy B+ Xin By + o+ X1 By » fori=1,2,...,n

Yin = Xiam By + XigmBo +o+ XipuBy»  fori=12,...n
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Yie = Xioe By + Xior Bo + oo+ Xin By s fori=12,...,n
The least squares estimator of § in model (44), for trapezoidal fuzzy variables, can be formalized as follows:

B=(X[X, + XX + XX, + XX XN + XY, + XY, + XY, ], (46)

where,

X, = =% | Xy =100 =% | Xy =% =%, |, X, =Xy =%, |, are (1) left, middie left, middie
right, and right fuzzy matrices of predictors. Y, = (ylI s Yo seees ynl) , Y, = (ylu s You e ynu) ,
Y, = (ylu, You eees ynu), Y, = (ylr, Yorseens ynr), are (nX1) response vectors such that:

Vi =Xy B+ Xin B + -+ X1 By » fori=12,...,n

Yie = Xiw By + Xigu By ot X B, fori=12,...n

Yio = Xiro By + Xigo Bo +eH X0, B, fori=1,2,...,n

Yie = Xie By + Xio By + oo+ X0 By » fori=1,2,...,n
3.4.2 Multivariate Fuzzy Linear Regression Models for Crisp Predictors and Fuzzy Parameters

Consider the case of fuzzy simple linear regression models defined in (23), the multiple fuzzy regression
model can be generalized as follows:

yi =5 +ﬁlxil+ﬂzxi2+"'+ﬁpxip +&. (333)
Suppose using centered values of crisp predictors, Eq. (43) can be written in matrix form as follows:
Y =X[+e¢, (44)

where, Y isan (nx1) fuzzy vector , X is an (#Xp) matrix of p ctisp predictors, and B is a (pxT) vector of unknown

p fuzzy parameters. As a result of the lack of linearity of F, (Rp), ¢ is reduced to a non-FRV ¢ . (See Gonzalez-
Rodriguez et al. (2009)).

Y, X, fB,and ¢ are formalized in matrix form as follows:

Yi Xip X v Xy B 2
vi y Xop Xy v Xy ~ &
Y=|"2] x=| # 7 P B = [f)z and =] 2|,

A Xu X o X p ﬂp &y

whete 5 = Vi, Yins Vie ) and B, = (B, Byns By, ), for i=12,....n, and j=12,....p.
The least squares estimator 3 of /3 in model (44), for triangular fuzzy variables, can be formalized as follows:
ﬁ = (ﬁl ’ﬁm’ﬁr),
where,
, :(X’x)‘l[x ’Y,], (45)
L= (x) x|
=X )Xoy,

» D o

where,
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X = lxij _>_(jJ > and YI :(yll’y2l1'"1ynl) > Ym :(y1m1y2m""’ ynm) > Yr :(ylr’y2r1'"1ynr)’ arc (nXl)

response vectors such that:
Vi = X By + X2 B0 +...+xip,8pI , fori=1.2,....n
Yim = X B + Xi2Bom -+ Xy B> fori=12,...n
Yie =X By + X2 B+ Xy Bor » fori=12,...,n

The least squates estimator of 5 in model (44), for trapezoidal fuzzy vatiables, can be formalized as follows:
p=(6. 5y B )
B =(x'x ) x,],
Ao =0 x) v, ]
Bo=(x'x)[xv,]
:Br = (X'Xfl[X'Yr].

3.4.3 Multivariate Fuzzy Linear Regression Models for Fuzzy Predictors and Fuzzy Parameters

where,

Consider the case of fuzzy simple linear regression models defined in (24), the multiple fuzzy regression
model can be generahzed as follows:

ﬁo +ﬁlxll +IBZX|2 +.o.t ﬁpx +&.
Suppose using centered values of crisp predictors, Eq. (43) can be written in matrix form as follows:
7 "
where, Y isan (nXT7) fuzzy vector , X isan (nXp) matrix of p fuzzy predictors, and ﬂ~ is a (pX7) vector of unknown

p fuzzy parameters. As a result of the lack of linearity of F, (Rp), & is reduced to a non-FRV &. (See Gonzalez-
Rodriguez et al. (2009)).

Y, X, fB,and ¢ are formalized in matrix form as follows:

yl Xll XlZ X1><p ﬂ]_ 81

i 37 > i21 izz izx ~ &

Y =|7? X = . . P , B = 'B_Z ,and € = K ,
Ya Xu X2 0 Xoep ﬂp &y

where Vi =(yi,,yim,yi,), (Xul,Xum, IJr)zmcl ﬂ (ﬂ”,ﬂjm,ﬂjr),fori:l,2,...,n, and j=1,2,...p.
The least squares estimator ,é of ﬂ in model (44), for triangular fuzzy variables, can be formalized as

follows:
B=\6.BnB.)
where,
B = (XX )X ], (43)
B = (Ko X ) X0 )
= (XX )XY

where,
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X, = le —)_(jJ , Xy = lXijm —)_(J-J , X, = lXijr —)_(J-J, ate (nXp) left, middle, and right fuzzy matrices of

predictors. Y, = (y1I s Yo reees ym) , Y = (ylm, Yoo ynm) , Y, = (ylr, Yorseen yn,) , are (nX1) response vectors
such that:

Vi =Xy By + X o+t xip,,b’pl, fori=1.2,....n
Yim = XitmBim + XiomBam -+ XignBom fori=12,...,n
Yie = X Bur + Xige Bor +oooF X Bor s fori=1,2,...,n

The least squates estimator of 5 in model (44), for trapezoidal fuzzy vatiables, can be formalized as follows:
ﬂAI = (X{Xl )_1[x|'Y|]’
B =(X, ) IXY,
Bo=(Xx, )XY
B =X )XY, ]
(4) The Proposed Mixed Fuzzy Crisp (MFC) Regression Model

All the fuzzy multiple regression models that have been considered in the literature handled the cases where
all the predictors are fuzzy or all are crisp.

In this section, a new multiple linear regression model which mixes the fuzzy and crisp predictors in one
model called “Mixed Fuzzy Crisp” (MFC) regression model, is proposed.The least squares approach for the new
model is derived based on positive tight data as defined in (3.2) and triangular fuzzy numbers. Also, the properties of
the resulting regression parameters are introduced in two cases: first, when the parameters are fuzzy, and second when
the parameters are crisp.

4.1 The Proposed Mixed Fuzzy Crisp (MFC) Regression Model Using Crisp Parameters

Consider the case where the multiple linear regression model concludes some fuzzy and some crisp
predictors. The computations will be done using triangular fuzzy number, and can applied to trapezoidal one.
Assuming centered predictors, the proposed simplest form of multiple model that contain two predictors, one is crisp
and the other is fuzzy, with ctisp parameters will be as follows:

yi = ﬂliil + B X, & (47)

where yi :(y”,yim, yir), and iil :(Xm,Xilm,Xilr), for i=1,2,...,n, X, :(X- X, X ), and &; is a non-fuzzy

m? “fim? “tim

error with mean equal zero. The regression function of model (47) will be as follows:
E(Y\X, %) = BX + BoX,.

The derivation of the least squares estimators is done by minimizing the squared distances between the
regression model and the regression function as follows:

Q8. 8,)=arg minidz(vnﬂl‘x}l+ﬂ2xi2)=argmini(‘y'i,ﬁliﬂﬁzxm)z

BB i=1 Bo. P i=1

=arg mi”{i(yn = B _ﬁ1xiz)2 +_Zn:(yim = PiXiam _ﬂzxiz)2 +_Zn:(37ir = P Xy _ﬂlxi2)2i|

Bo. B i=1

(48)

By differentiating of Eq. (48) with respect to the parameters ,31 , and f3,, the following equations are

obtained:
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W = _2Xill i(yil - ﬂlxill _ﬂzxiz)_ 2Xi1mi(yim - ﬂlxilm_ﬂzxiz)_ 2Xilr i(yir - ﬂlxilr_ﬂZXiZ): 0

Z Xiqy (yil - ﬁlxill _ﬂzxiz ) + Xiim (yim - ﬁlxilm_ﬂz Xi2 ) + Xy (yir - ﬂlxilr_ﬂz Xio ) =0
i=1
ﬂlzxﬁl + ﬁzzxm X, +ﬂlzxizlm + IHZZXilmXZ +ﬂlzxi21r + ﬂzzxurxz = me Yt inlmyim + inlryir
i=1 i=1 i=1 i=1 i=1 i=1 i=1 i=1 i=1

n n n n n n
ﬂlZ(Xizll + Xigm + Xy )+ ﬂz(z Xjn X, + z Ximm Xy + z Xilrxzj = z XinYi + z Xitm¥Yim T Z XiaeYir »(49)
i1 i1 i1

n
= ) i-1 i-1
and

3

%ﬁpﬂl) = _2Xizi(y" - :lem_ﬂzxiz)_ 2Xizi(yim - ﬂlxilm_ﬁZXiZ)_ 2Xi2i(yir - ﬂlxilr_ﬂzxiz) =0

n n

inz(yil _ﬂlxill_ﬂzxi2)+ Xiz(yim _:leilm_/BZXiZ)+ ZXiZ(yir _ﬂlxilr_ﬂzxiz): 0

n
i=1 i=1 i=1

ﬂlzxillxiz +ﬂlzxilmxi2 + ﬂlZXieriZ + 3ﬁzzxi22 = zxizyil + inzyim + inzyir
i=1 i=1 i=1 i=1 i=1 i=1 i=1 . (50)

Solving the equations (49) and (50), the least squares estimators, ,81 , and ﬁz , of ﬂl ,and f3 , are obtained

respectively, as follows:

n

(Xill Yiir + Xitm Yim T Xiar Yir )_ 3)_(172 (Xi2 )
-1

pr="— EE— (1)
Z(Xizl + Xizm + Xizr)_S)_(lZZ(XiZ)
i=1 i=1

R Z(Xm Yir T Xitm Yim + Xiar Yir )_ﬁl (Xﬁ + Xi?n + Xizr)

ﬂ?_ — i=1 i=1 ; (52)

£ (o)

where, vil, Vim, and yir are the left, middle, and right value of yi , respectively, for i=1,2,...,n. Also, i, Xiim,

and Xy are the left, middle, and right 1’s wvalue of X, , respectively, for i=12,...n.
n n n n

y= Z(y"Xi2 + YinXio + yirXiz)/ZXi2 ,and X = Z(XiI + X, + xir)IZXiz are the weighted means of Y and
i1 i=1 i< =

X, , respectively, using the observations of the crisp predictor X, as weights. All the above results can be shown for
trapezoidal fuzzy data.

4.2 The Proposed Mixed Fuzzy Crisp (MFC) Regression Model Using Fuzzy Parameters
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Suppose in model (47) that both the parameters g7 and fzare triangular fuzzy numbers, the MFC model will
be defined as follows:

Yi = BiXiy+ PoXip + ;. (33)
where £ =(ﬂ1l’ﬂ1m’ﬂ1r)’ B =(ﬂ2l’ﬂ2m’ﬂ2r) Y :(yil’yim’ yir)’ and X, _(Xlllixllm’ |1r) for i=1,2,.
Xi, (le » Xim s le) and &;is a non-fuzzy error with mean equal zero. The regression function of model (52) will be

as follows.

E(y\il’ Xz) = Blil +152)(2 .

The derivation of the least squares estimators is done by minimizing the squared distances between the
regression model and the regression function as follows:

Q(ﬂl’ﬂZ)z arg n:"n Zd 2(’y-i 'Eliil +B2Xi2)= arg r[“n Z(yl ’Bliil +EZXiZ)2
AP =l BB =l (54)
BBy i=1 i=1

= arQ min{i(yil _ﬂu Xy _ﬂﬂ Xi2)2 +i(yim _ﬂlmxilm _IBZmXiZ)Z +Zn:(yir _ﬂlrxilr _ﬂZrXi2)2:|

By differentiating of Eq. (54) with respect to the parameters B, B, B> and By, Bon s Bor » then

equating the resulting outputs to zero, the least squares estimators, /31| , ﬂlm , ﬂlr and ,3 > ,B ] ,r are obtained as

follows:

. i( |1I yl| 1IYIi(Xi2) R i |1my|m i . i |1ry|r r an:(Xiz)

ﬂll = n n = > :B1m =H n n - > ﬁlr =& n = > (55)
le(xizll )_ )_(12| - (Xiz) Z(Xizlm )_ xfmZ(Xiz) ;(Xizlr)_ ler;(xiz)

. Z i1l yl| Z( |1I) . Zn: |lmy|m ﬁlmZ( |1m) . Z(Xilryir)_ Alr‘ (Xizlr)

,Bm == = ) IBZm == n = > ﬂZI == n = , (56)

DAY (%) (k)

where, vil, Vim, and yir are the left, middle, and right value of yi , respectively, for i=1,2,...,n. Also, i, Xiim,
and xi1r are the left, middle, and right i’s value of il , respectively, for i=1,2,....;n

n n
Using the observations of the crisp predictor X, as weight, VY, ZZ(y“Xiz)/ZXi2 ,

n n n n
Voo = Z(yimxiz)/inz Y, = Z(yirxiz)/inz are the weighted means of Y, Y, , and Y, respectively. Also,
i=1

i=1 i=1 i=1
n n
X, = Z(Xi1| )/ZXi2 , Xy = Z ‘1m /ZXI2 , X, = Z ar /ZXI2 are the weighted means of X, X, , and
i=1 i=1 i=1 i=1
X, , respectively. All the above results can be shown for trapezoidal fuzzy data.
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(5) A Simulation Study

To illustrate the effectiveness of the proposed MFC regression model, a simulation study is conducted to
compare the performance of MEFC regression model with MF regression one. Two groups of models are introduced
with two predictors, in the first group MFC and MF models with crisp parameters are used, and in the second group
MFC and MF models with fuzzy parameters are considered as follows:

5.1 First Group
Model (1) MFC regression model: Y, = B X, + B, X, +&;, fori=1,2,...n

with the following left, center, and right models:

Vi = Xi“ﬂl-{—Xizﬂz, fori=1,2,....n
Yim = xilm,B1+xi2,82, fori=1,2,....n
Yii = Xiie B+ %250, fori=12,...n

Model (2) MF regression model: Y, = B X, + B, X, + & ,

with the following left, center, and right sub-models:

Yy = Xmﬂl +Xi2|ﬁ2> fori=12,...n
Yim = Xilmﬂl + Xi2mﬂ2 , fori=12,...n
Yii = Xilrﬂ1+Xi2rﬂ2, fori=12,...n

The triangular data set of Xy = (Xigy, Xigms Xig ) and Xip = (Xigy s Xioms Xipy ) are generated from the normal
distribution, and repeated 100 times, as follows:
Xy LIN(0.5,2),
X LIN(1,2),
X, UN@24).

The etror term is supposed to distribute as normal with mean zero and variance one, i.e., & [IN(0,7), ,=0.5
and f,=1.5.

The criterion used to compare the model (1) and model (2) is R? , which is defined as:

~ 2(9 ¢

R oL 0h9) 67
d*(¥.y)

where, dz(y, y) is the squared distance between Y = (yl Yoo yr) and ¥ = ()7| Ve ¥, ) Also, d 2(37, )_/) is the

squared distance between Y = (y, VYoo y,) and Y = ()_/I Yoo ¥y )

In Table (1), the multiple fuzzy model (MF) and mixed fuzzy crisp model (MFC) are compared using R?
criterion as defined in (57). Best results are obtained for the MFC model in the form of greater values of the left R?
compared to the left MF for all sample sizes. The improve of the right R? is noted for small sample sizes (n=5).
Generally, the higher values of R2are obtained for smaller sample sizes of the two models MF and MFC. These

results prove the validity of the fuzzy regression for vague and small data.

Table (1): R? (left, center, right) for the multiple fuzzy (MF) regression model, and the proposed mixed fuzzy crisp
(MFC) regression model with different sample sizes, n=5,10,20,50,100,200, yij 1=0.5and p ,=15.
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n=5 Model Left Center Right n=50 Model | Left Center Right
MF 0.9349 0.9496 0.9581 MF 0.9079 0.9415 0.9826
MFC 0.9703 0.9496 0.9895 MFC 0.9567 0.9415 0.9342
n=10 Model Left Center Right n=100 Model | Left Center Right
MF 0.9634 0.9936 0.9927 MF 0.7296 0.9074 0.9733
MFC 0.9899 0.9936 0.9896 MFC 0.9068 0.9074 0.9363
n=20 Model Left Center Right n=200 Model | Left Center Right
MF 0.8489 0.9463 0.9771 MF 0.8052 0.9201 0.9788
MFC 0.9548 0.9463 0.9497 MFC 0.9236 0.9201 0.9409

5.2 Second Group
Model (1) MFC regression model: Y; = B X, + B,X., + &, fori=12,...n
with the following left, center, and right models:

Yir =X By + %2501 5 fori=1,2,...,n
Yin = XitmBuim + Xi2Bom> fori=1,2,...,n
Yir = Xir Bur +%i2Por» fori=1,2,...n

Model (2) MF regression model: Y, = X, + B, X, + &;
with the following left, center, and right models:

Yi =X By +Xia B> fori=12,...,n
Yim = Xilmﬂlm + XiZmﬂZm’ fori=1,2,...,n
Yie = Xilrﬂlr + XinﬁZr > fori=1,2,...,n

The triangular data set of X, = (Xig s Xigm» Xigp ) and Xiy = (Xiy s Xiom» Xioy ) are generated from the normal

ilm?
distribution, and repeated 100 times, as follows:

Xy LIN(©.5,2),
Xim IN(1,2),
X, IN(@2,4).
The error term is supposed to distribute as normal with mean zero and variance one, ie., & UN(0,7),

,E = (0 51.0,1. 5) and E = (0 51.0,1. 5) The criterion R?is used to compare the MFC and MF regression models.
In Table (2), as in the first group, it is found that best results are obtained for the MFC model in the form of

greater values of the left R? compared to the left MF for all sample sizes. The improve of the right R2is noted for
small sample sizes (n=>5). Generally, the higher values of R are obtained for smaller sample sizes for the two models
MF and MFC. These results prove the validity of the fuzzy regression for small data.

Table (2): R? (left, center, right) for the multiple fuzzy (MF) regression model, and the proposed mixed fuzzy crisp
(MFC) regression model with  different sample  sizes, 0n=5,10,20,50,100,200, f,=(0.51.01.5) and

B,=(051.015).
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n=5 Model Left Center Right n=50 Model Left Center Right
MF 0.7343 0.8700 0.9942 MF 0.8233 0.9218 0.9868
MEC 0.8366 0.8700 0.9979 MFC 0.8757 0.9218 0.9742
n=10 Model Left Center Right n=100 Model Left Center Right
MF 0.9006 0.9893 0.9947 MF 0.3830 0.8864 0.9842
MFEC 0.9421 0.9893 0.9936 MFC 0.5826 0.8864 0.9815
n=20 Model Left Center Right n=200 Model | Left Center Right
MF 0.6505 0.9533 0.9910 MF 0.6378 0.9083 0.9884
MFEC 0.8399 0.9533 0.9887 MFC 0.7392 0.9083 0.9834

(6) Conclusions

In this paper the simple linear regression model is extended to the multiple one and estimated with the least
squares approach. This extension is based on adding both fuzzy and crisp predictors to the linear regression model,
and the resulting model is called the mixed fuzzy crisp (MFC). Our extended model is evaluated using the extended

fuzzy R?. Simulated data examples are applied to compare the results of MFC model with the multiple fuzzy (MF)

regression model using triangular fuzzy numbers. Best results are obtained in the form of larger values of R? of MEC
compared to MF especially for small sample sizes. These results support using MFC model for small data size and for
large size of tight data.
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