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On the Oscillation of Solutions of Fractional Vector Partial Differential Equations
with Deviating Arguments

V. Sadhasivam' and J. Kavitha?

Abstract

In this article, we investigate the oscillation of solutions of a class of fractional vector partial differential equations
with deviating arguments of the form

D% [r()D%U (x.1)]= a®)AU (x t) + Zm:ai (H)AU (x, p; 1))
=

k t
—Zp SO [ J'O(t - s)’“”U (x0, (s))”dsJU (x,0;(t)
=1
+F(x,t),(x,t) eG=QxR,,
subject to the boundary condition
%—U+ ux U (xt) =0, (xt)edQxR,.
Y

We will establish the sufficient conditions for H-oscillation of solutions of given system, where H is a unit
vector in R", n>1. We also provide an example to illustrate the main results.

Keywords: Fractional, partial, oscillation, vector differential equation, deviating arguments.

1 Introduction

Fractional differential equations are now recognized as an excellent source of knowledge in modelling
dynamical processes in self similar and porous structures, electrical networks, probability and statistics, visco elasticity,
electro chemistry of corrosion, electro dynamics of complex medium, polymer rheology, industrial robotics,
economics, biotechnology etc. See the recent monograph [2, 11-14, 16, 23, 29] for theory and applications of
fractional differential equations. Oscillatory solution plays an important role in the quantitative and qualitative theory
of fractional differential equations. There are several papers dealing with oscillation of scalar fractional ordinary
differential equations [3-5, 9, 24, 27-28]. However, only a few results have appeared regarding the oscillatory behavior
of scalar fractional partial differential equations, see [1, 18-22, 26] and the references cited there in.
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In 1970, Domslak introduced the concept of H-oscillation to investigate the oscillation of solutions of vector

differential equations, where H is a unit vector in R". We refer the articles [6-7] for vector ordinary differential
equations and [8, 15, 17, 25] for vector partial differential equations. To the present time, there exists almost no
literature on oscillation results for vector fractional ordinary differential equations and vector fractional partial
differential equations, particularly for vector fractional nonlinear partial differential equations. Motivated by this, we
initiate the fractional order vector partial differential equations for delay equations.

Formulation of the problems: The oscillatory theory of fractional differential equation was introduced by
Grace et al [9]

DIx+ fy(t,x) = v(t) + f,(t, x)
lim J379x(t) = b,

toat
where D7 denotes the Riemann-Liouville differential operator of g, where 0<q<1.

Chen [4] and Han et al [28] studied the oscillation of the fractional differential equation with Liouville right
sided fractional derivative of order « of the following form

(roleyy (t)j’ ~qf [ [0 y(s)dsj =0, t>0,

r9e (y)) p(t)f[j (5= y(s)ds] t>0,

Prakash et al. [18] and Sadhasivam and Kavitha [21] investigated the fractional partial differential equation with
Riemann-Liouville left sided definition on the half axis R, of the form

[r(t)D x|+ a(x, t)fU (t—v)“u(x v)dv] at)Au(xb), (xt) e QxR, =G,

with the Neumann boundary condition

MY _ o (x,1) c0QxR,.
oN
_[p(t)g(D“tu(x )]+ Zq (x0) f, U’ (t—s)“u(x, s)ds] at)Au(xt) + F(xt), (xt) e QxR, =G,

j=1
subject to the boundary condition
MY L x Ut =0, (xt) € FOXR,.
ov

To the best of our knowledge, nothing is known regarding the H-oscillatory behavior for the following class of
vector fractional partial differential equations with forced term of the form

D% [r()D%,U (x.1)|= a®)aU (x t) + Zm:ai (H)AU (x, p; 1))

i=1
k

- Zp [0 j[ J';(t —5)™@ ||u (x0, (s))"dsJU (x,0; (1))
j=1

+F(x,t), (x,t)eG=QxR,,

R, =(0,»), where Q is a bounded domain in R" with a piecewise smooth boundary 6Q,« < (0,1) is a
constant, DY, is the Riemann-Liouville fractional derivative of order o of u with respect to t, A is the Laplacian

n au(xt)
r=1

operator in the Euclidean n- space R" (i) Au(xt)= " and U (x,o;(s))] is the usual Euclidean norm in

R".



V. Sadhasivam & J. Kavitha 47

Equation (1.1) is supplemented with the following boundary conditions

wjﬁl(x’t)u (x,t) =0, (x,t)edQxR,, (1.2)
/4

where y is the unit exterior normal vector to 6Q and u(x,t) is positive continuous function on éQxR, and
U(x,t)=0, (xt)edQxR,. (1.3)
In what follows, we always assume without mentioning that
(A) rt) eC*(R,;R,),a(t),a(t) e C(R,;R,),i=1,2,..m;
(Ay) oj,pi eC(R,; R),tli)rgaj ()= t|i_)r2pi (t)=,i=1,2,.m,j=12,..,k;

(A;) p; €C(G;R) and p;(t) =min,_5p;(xt),jel, = {L2...k};
(A) FeC(G;R"), f,y (x,t) eC(G;R) and J'QfH (x,)dx <0;

(As) f; eC(R,;R) are convex and non decreasing in R with uf;(u) >0 for u=0 and there exist positive
fi(u)
J

constants «; such that >a; forallu=0,jel,.

The study of H-oscillatory behavior of fractional partial differential equation is initiated in this paper. Our
approach is to reduce multi-dimensional problems for (1.1) to one dimensional oscillation problems for scalar
functional fractional differential inequalities. The purpose of this paper is to establish some new H-oscillation criteria
for equation (1.1) with (1.2) and equation (1.1) with (1.3) by using a generalized Riccati technique and integral

averaging method. Our results are essentially new.
2 Preliminaries

In this section, we give the definitions of H-oscillation, fractional derivatives and integrals and some
notations which are useful throughout this paper. There are serveral kinds of definitions of fractional derivatives and
integrals. In this paper, we use the Riemann-Liouville left sided definition on the half-axis R,. The following

notations will be used for the convenience.
U (%,1) = (U (x,1), H), iy (x,t) = (F(x,t),H),

Vy () :ﬁIQUH (x,t)dx, where|Q|= dex. (2.1)

Definition: 2.1 By a solution of (1.1),(1.2) and (1.3) we mean a non trivial function
U(x,t) eC*(G;R")NC3(G x[t ;,);R") NC(G x[t ;,0);R") and satisfies (1.1) on G and the boundary conditions
(1.2) and (1.3), where t , = min{o, min {inf i (t)}}, t, = min{o, min {inf aj(t)}}.

1<i<m (t=0 1<j<m (t=0

Definition: 2.2 Let H be a fixed unit vector in R". A solution U (x,t) of (1.1) is said to be H-oscillatory in
G if the inner product (U(x,t), H) has a zero in Qx(t,) forany t >0 . Otherwise it is H-nonoscillatory.

Definition: 2.3 The Riemann-Liouville fractional partial derivative of order 0 <a <1 with respectto t of a
function u(x,t) is given by

0 1

DYu(x,t) ::EF(I—a)J.;(t —V)"u(x,v)dy, (2.2)

provided the right hand side is pointwise defined on R, where I is the gamma function.
Definition: 2.4 The Riemann-Liouville fractional integral of order « >0 of a function y:R, - R on the
half-axis R, is given by
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1%y(t):= ﬁ-’z(t—v)aly(v)dv for t>0, (2.3)

provided the right hand side is pointwise defined on R, .
Definition: 2.5 The Riemann-Liouville fractional derivative of order « >0 of a function y:R, — R on the
half-axis R, is given by

[a]
DYy(t):= %m(l E‘ﬂ’“ykt) for t>0, (2.4

provided the right hand side is pointwise defined on R, where [« | is the ceiling function of « .
Lemma: 2.1[11] Let y be solution of (1.1) and

K(t):= '[)t(t—s)"" y(s)ds for ae(0,1) and t>0. (2.5)

Then
K'(t)y=T(1-a)D?y(t) for ae(0,l) and t>0. (2.6)

Lemma: 2.2 [10] If X and Y are nonnegative, then
mxy™ XM <(m-1)y"™, (2.7)
where m is a positive integer.

3 H-Oscillation of the problem (1.1),(1.2)

We begin with the following Lemma.
Lemma: 3.1 Assume that (A)) - (A;) hold. Let H be a fixed unit vector in R" and U (x,t) be a solution of (1.1).
()If uy (x,t) is eventually positive, then u, (x,t) satisfies the scalar fractional partial inequality

D% [r)D 1y ()] - a)Auy (x.0) — Y 3 (AU (x, 91 1)
i=1

k t
+ ij ) f; Uo(t —8) “uy (x,0j (s))ds]uH (x,0;(1) < fy(xt). (3.2)
j=1
(i)If uy (x,t) is eventually negative, then u, (x,t) satisfies the scalar fractional partial inequality

D% [r)D 1y, ()] - a)Auy (x.0) — Y 3 (AU (x. 91 1)
i=1

k t
+ij (1) ijO(t -8) “uy (x,0j (s))ds]uH (x,0;(1) = fiy (xt). (3.2)
j=1
Proof. Let u,, (x,t) be eventually positive. Taking the inner product of (1.1) and H, we get

D [rD (U (x, ), H)|= a®AU (), H) + > a AU (x, oy (1), H)

i=1
_gpj (x.) f,-U;(t -9 U (xo, (s))||dsJ<U (%05 (), H)+(F(x1t), H),
that is,

D% D2y ()] a)au, () + D a AUy (x,91(1)
i=1

k
=D Pt j[ J';(t —s)’“”U (x0, (s))”ds]uH (x,0;(0)+ fy (x,1). (3.3)
=1
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By (A;), we have
p;(x.t)f j[ j;(t —s)’“"U (x.0, (s))"dsjuH (x,0; (1))

> p;(0)f j[ j;(t - s)’“"U (x,0; (s))"dsjuH (x,; (),
since f; eC(R,,R),j=12.k, wehave u, (x,05(s)) <|U(x,5;(s))|, therefore

p; (0T, [ j;(t —5)@ ||u (x,0; (s))”dsjuH (x,0; (1))

> p;(t) fj[jg(t—s)“uH (x,aj(s))dsjuH (x,0;), i =12,..k. (3.4)
Using (3.4) in (3.3), we get

D% [r)D 1y ()] - a)Auy (x.0) — Y (AU (x.911)
i=1

k
+ ij ® fj U;(t -S) %uy (x,aj (s))ds]uH (x,aj ) < fy (x.1).
j=1

Similarly, let u,, (x,t) be eventually negative, we easily obtain (3.2). The proof is complete.
The inner products of (1.2),(1.3) with H yield the following boundary conditions.

auHaf(X’t)+y(x,t)uH(x,t):0, (x,t) € QX R, , L2y
y
Uy (=0, (xt)edQxR,. (L.3)

Lemma: 3.2 Assume that (A)) —(A) hold. Let H be a fixed unit vector in R". If the scalar fractional partial

inequality (3.1) has no eventually positive solutions and the scalar fractional partial inequality (3.2) has no eventually
negative solutions satisfying the boundary conditions (1.2)' or (1.3)', then every solution U(x,t) of the problem

(1.1),(1.2) or (1.1),(1.3) is H-oscillatory in G. Proof. Suppose to the contrary that there is a H-nonoscillatory
solution U(x,t) of (1.1),(1.2) or (1.1),(1.3) in G, then uy (x,t) is eventually positive or uy (x,t) is eventually
negative. If uy, (x,t) is eventually positive, then by Lemma 3.1 uy, (x,t) satisfies the boundry condition (1.2)" or (1.3)’
. This contradicts the hypothesis. The similar proof follows when u, (x,t) is eventually negative.

Theorem: 3.1 Assume that (A)-(As) and

(Ae)minde{O'j(t)}za(t)zt.

(A;)uy (x,t)>L hold .
If the fractional differential inequality

Kk
D¢ D2V, O+ LD p; 0 (K 1) <0, (35)
j=1
has no eventually positive solutions and the fractional differential inequality
K
DDV, O]+ LY p, O F; (K, (1) 20, (36)
i=1

has no eventually negative solutions, then every solution U (x,t) of (1.1) and (1.2) is H-oscillatory in G .
Proof. Suppose to the contrary that there exists a solution U (x,t) of (1.1), (1.2) which is not a H-oscillatory

in G. Without loss of genearality, we may assume that u, (x,t)>0 in Qx[t,,o) for some t, >0. Integrating (3.1)
with respect to x over Q, we obtain
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JQDf [F&)D2u,, ®ix - act) '[QAUH (x,t)dx— gai (t) '[QAUH (%, p; (1)) dx

k t
+ij(t)jgfj[jo(t—s)“uH (.0, (s))dsJuH (x,0;(1))dx < J'QfH (x,0dx, t>t,. 3.7)
=1
Using Green’s formula and boundary condition (1.2)" yield that
_[ oug(xt) o _
J.QAUH (x,t)dx = LQ s = LQy(x,t)uH (x,)dS <0, t>t, (3.8)

and

[ 8w (x, (00 = Lg%f‘“”ds = [[_utx D (x, 1 0)dS <0,

i=12,.mt>t,. (3.9)
By using Jensen’s inequality (Ag),(A;) and (2.1), we get

Iij[j;(t -5) Uy (x,0, (s))dsjuH (x, 0 (1))dx

> Lf, ( L( j;(t —8) U, (X0, (s))dsjdx}
> Lf j[ j;(t —s)’“( [Lus o, (s))dxjds]

> L o, [ j;(t _5)@ ( [MEEAO Iﬂdx)ljdsj

> L Iﬂdxf j [ j;(t ~8)"V,y (o, (s))dsj

> LJ'defj (K@) t=t,. (3.10)
Also by (A,),
J'QfH (x,t)dx < 0. (3.11)
In view of (2.1), (3.8)-3.11), (3.7) yield
k
D¢ DV O+ LD p; 0 (K 1) 0. (3.12)
j=L

Therefore, V, (t) is an eventually positive solution of (3.5). This contradicts the hypothesis. The case where
Uy (x,t) <0 in QxJty,0) can be treated similarly and we are also getting a contradiction. The proof is now complete.
Theorem: 3.2 Suppose that the conditions (A;) - (A;)and
[ W(L]ds = (3.13)
t,\ 1 (S)
hold

Futhermore, assume that there exists a positive function § € C*((0,%);R,) such that

4 k = S
IimsupJ.[Lg(s)Zajﬁj(s)_ r(s)lo'(s) ds = oo, (3.14)
g 171

AT (1-)d (s)

£—w

where o are defined as in (A;) . Then every solution of U (x,t) of the problem (1.1),(1.2) is H-oscillatory in G .

Proof. Suppose to the contrary that there exists a solution U(x,t) of the problem (1.1),(1.2) which is not H-
oscillatory in G . Without loss of generality we may assume that u, (x,t) >0 in Qx][t,,) for some t, >0.
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That is, V (t) is an eventually positive solution of (3.5). Then there exists t, >t, such that V,, (t) >0 and K (t)>0
for t >t,. Therefore, it follows from (3.5) that

K
D2 [(ODIVy O] -LY p; O (Ky ) <0 for telt, o) (3.15)
j=1
Thus DV (t) =0 or D{Vy (t) <0,t>t, for some t, >t,. We now claim that
DXV, (t)>0, for t>t. (3.16)

Suppose not, then DYV, (t) <0 and there exists t, e[t;,) such that DV, (t,) <0. Since r(t)DIVy (t) is strictly
decreasing on [t;, ). Itis clear that

rt)DVy (1) < r(tp) DIV (t,) = —,
where ¢ >0 is a constant for t e[t,,). Therefore from (2.6), we have

KI'-| (t) - a —C 0
Fl-a) =DV, () < (_r(t)J for telt,,o).
Then, we get
1) _ Ki) .
(WJS Cr(l_a) for te[tz, )

Integrating the above inequality from t, to t, we have

r(LJdSS_KH(t)—KHaz)
t,\ r(s) cr'(l-a)
< Kn(t)

cIr'(l-a)
Letting t — oo, we get

t,\ 1(s) cIr'(l-a)
This contradicts (3.13). Hence D%V (t)>0 for t e[t;,) holds.

Define the function W (t) by the generalized Riccati substitution

% for telty,). (3.17)

Then we have W(t) > 0 for t e[t;,»). From (2.6),(2.7), (3.5)and (A;) it follows that

AW () = fi()t)Df roDev, ]+ D2 {fi()t)}r(t)vaH ®
H H

: fi (Ky (1)) {K ()DES(t) — S ()DZK y (t)
<-S()L (t J H + + "NH
(t) ;p,o o <0
Dfa(t)W(t) _ DJ?KH (t)
5(t) Kn (1)
Let W (t) =W (£),5(t) =5 (£), pj (1) = B;(€). Ky (1) = Kyy (£) .
Then DYW (t) :VV'(g), DZ5(t) = 5'(5) . Then the above inequality becomes

for telt,, ).

W(t) = 5(1)

}r(t)vaH (t

k
< —La(t)zaj p; () + W (t). (3.18)
j=1

AL! S - N g'(é) A }Zl'ﬂ (5) A
W <-Lé P —=W(§)-—= W
(€) (é)jEZIOt,P,(é)Jr 56 (€) R\ () (€)
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La@Za 5,0+ 2 C)yj (g TV E) (3.19)

5(5) S ()T (&)

| M) i L [ T@ 5
Takin == |—2x27_ 5 . 3.20
o vere T’ (320)

Using Lemma 2.2 and (3.20) in (3.19), we have

W) < - L5(§)Za 56+ LT '© (3.21)

4T(1-)5 ()
Integrating both sides of the above inequality from &, to &, we obtain

&
J'[Lg(s)za p (s)- 1@@

4T(1-a)s(s)
&l

Taking the limit supremum of both sides of the above inequality as & — o, we get

IlmsupJ.[LS(s)za B (s)- 1@@

4T(1-a)s(9)

ds <W (&) -W (&) <W (&)

ds <VV(§1) < o0,

£—w

which contradicts (3.14) and completes the proof.
Theorem: 3.3 Suppose that the conditions (A))—(A;) and (3.13) hold. Futhermore, suppose that there exists a
positive function § € C*((0,0);R,) and a function P € C(D,R) where D :={(t,s):t>s>t,} such that

1. P(t,t)=0 for t>t,,

2. P(t,s)>0 for (t,s)eD,, where Dy:={(t,s):t>s>t,} and P has a continuous and non-positive

aP(t,s)
0S

partial derivative P/(t,s) = on D, with respect to the second variable and satisfies

1 r(s)o'(s)
li P(&,s)| Lo (s ds = oo, 3.22
ugnjgpp(é j(cf ) ()Eap() 44—“ T e (3:22)
where «; are defined as in Theorem 3.2. Then all the solutions of U(x,t) of the problem (1.1),(1.2) is H-oscillatory

in G. Proof. Suppose that U (x,t) is H-nonoscillatory solution of (1.1),(1.2). Without loss of generality we may
assume that u, (x,t) is an eventually positive solution . Then V,, (t) is an eventually positive solution of (3.5). Then
proceeding as in the proof of Theorem 3.2, to get (3.21)

1 r(é)(cS (cf)!
W'(E) <-Ls .
) (é)za B T )
multiplying the previous mequallty by P(&,s) and integrating from & to & for & e[&), ),

we obtain j P, s)[L&(s)Za B (s) = FE5') ]dsg—[P(g,s)vV(s)El+ j:P;(g,s)vV(s)ds
1

4T(1-a)5(s)

<P(5, &)W (&) + j P& SIW (s)ds < P(& &)W (&).

I P& S)[w(s)Za 5.9 LTOBOF |

Therefore

4T(1-a)s (5) ds <Wle) <=

which is a contradiction to (3.22).The proof is complete.
Corollary 3.1 Assume that the conditions of Theorem 3.3 hold with (3.22) replaced by

Ip(f S)L5(S)Zaj Pj(s)ds =0

limsup

£ P(é )
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¢ v S
limsup ! IP(é,s)r(S)g(i) ds <
1

too P(6,&) : C(1-a)s(s)

then every solution U (x,t) of (1.1),(1.2) is H-oscillatory in G. Next, we consider the case

» 1
jt O FRaR (3.23)

which yields that (3.13) does not hold. In this case, we have the following result.

Theorem: 3.4 Suppose that the conditions (A;)-(A;) and (3.23) hold and that there exists a positive

function § eC*((0,);R,) such that (3.14) holds. Futhermore, assume that for every constant & >¢&,, where
& = max{g, &, )

© 5
1 & s _
J. mZaj ij(s)ds du = oo (3.24)
o =g
-~ é ~
Then every solution of V, (&) of (3.5) is H-oscillatory or satisfies [im |(£—s)*Vy (s)ds = 0. Proof. Suppose
é—)oo
0

that U (x,t) is H-nonoscillatory solution of (1.1),(1.2) . Without loss of generality we may assume that u,, (x,t) is an
eventually positive solution . Then V,, (t) is an eventually positive solution of (3.5). Then proceeding as in the proof

Theorem 3.2, there are two cases for the sign of D{V,, (t). The proof when D¢V, (t) is eventually positive is similar
to that of Theorem 3.2 and hence is omitted. Next, assume that DV, (t) is eventually negative. Then there exists
t; >t, such that DYV, (t) <0 for t >t;. From (2.6), we get
KLt)=T(1-a)DiV, () <0, for t>t,.
Then K (&) =T(1-a)V},(€)<0 for &>&. Thus we get [im Ky (€):=M; >0 and K, (£)=M,. We claim that
f—)oo
M, = 0. Assume not, that is, M; >0 then from (A;), we get
Kk
D2 [rD2vy 0] LY ;0 15(Ky )

=1

k
g—LMlzajpj(t), for te[ty,o0).
=1

Let r(t) = F(£),Vy (1) =V, (£), p; (1) = B;(£) .

Then D2V, () =V, (). D¢ DV, )] = (F(VY (&)
Using these values, the above inequality becomes

' [
(F((g)\7;| (5)) g—LMIZajﬁj(g), for & e[&;,). Integrating both sides of the last inequality from &, to &, we have
j=1

/ k
J'é (F(s)Vy, (5)) s < —LMlzajf B;(s)ds
<3 T

- - Kk K
FENA ()< HENH ()~ LMy Y o [ By (s < k= LM; Yo | By (o)
i=1 3 j=1 3



54 American Review of Mathematics and Statistics, Vol. 5(1), June 2017

~LM Za j B, (s)ds

k
_ H(é) _ =1
< LMl;a'[ B;(s)ds. Hence from (2.6), we get T =V} (&) < =9
Za j ((s)ds
Integrating the last inequality from &, to &, we get KH(§)<KH(§4) I l-a)LM, j Tdu.

Letting & —> o, from (3.24), we get |im Ky (£) = —». This contradicts KH (&) > 0. Therefore we have M, =0, that
f—)oo

is, lim Ky (£)=0. Thatis, lim Jj(g—s)*aVH (s)ds = 0. Hence the proof.
E—o oo

4 H-Oscillation of the problem (1.1),(1.3)

In this section we establish sufficient conditions for the oscillation of all solutions of (1.1),(1.3).
For this we need the following:The smallest eigen value g, of the Dirichlet problem. Aw(x)+ Bwo(x)=0 in Q,
o(x)=0 on oQ, is positive and the corresponding eigen function ¢(x) is positive in Q.

Theorem: 4.1 Let all the conditions of Theorem 3.2 and 3.3 be hold. Then every solution of U (x,t) of (1.1)
and (1.3) H-oscillates in G . Proof. Suppose that U(x,t) is a H-nonoscillatory solution of (1.1) and (1.3). Without
loss of generality we may assume that u, (x,t) >0, in Qx[t,,0) for some t, >0. Multiplying both sides of the
Equation (3.1) by ¢(x) >0 and then integrating with respect to x overQ.,

we obtain for t >t,, JQDf [F&yD2u,, (x.0) p(x)dx —a(t) '[QAUH (X, 1)p(x)dx — Zm:ai (t) '[QAUH (%, p; (1)$(X)dx
i=1

k
£ 0y (1) J'Qf j[ J';(t ~8) Uy (X0, (s))ds]uH (X, (Op(x)dx < J'QfH (%, )p(x)dx. 4.1)
j=1
Using Green’s formula and boundary condition (1.3)" it follows that
J'QAuH (X, )(x)dx = J'QuH (X, )AF(X)dx = —, J'QuH (X D)P(X)dx <0, t=1 4.2)
and
[ 8 00 91 8000 = [ Uiy (x, o1 O)AG0)0X= = [ 0y (x p1 (D)#0)Ex 0,
t>t,i=1,2,.m (4.3)

By using and Jensen’s inequality, (A,) and (A;) we get ijj[ I;(t—s)’“uH (x,aj(s))dsjuH(x,aj(t))qﬂ(x)dx

> Lf j( L( j;(t ) Uy (%0, (s))¢(x)dsjdx} > Lf, [ j;(t _5) @ ( IQuH (X, (s))¢(x)dxjdsj
> L[ p(axt j[ j;(t —s)’“( [l s (.0, (5000 IQ¢(x)dx)1jdsj. Set
-1
Vy () = jQuH (x,t)q}(x)dx( qus(x)dx) Lt (4.4)
Therefore, ijj[I;(t—s)“uH (X0, (s))dsjuH (X0 ()$(X)dx > LIQ¢(x)dxfj(KH ), t=2t, jel,. (4.5)

By (A, J'QfH (X, )p(x)dx < 0. (4.6)
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k
In view of (4.4), (4.2)-(4.6), (4.1) yields DZ[r®)DVi ]+ LY p; (0, (Ky @) <0, 4.7)
j=1
for t >t,. Rest of the proof is similar to that of Theorems 3.2 and 3.3, and hence the details are omitted.

Corollary 4.1 If the inequality (4.7) has no eventually positive solutions, then every solution U (x,t) of (1.1)
and (1.3) is H-oscillatory in G .

Corollary 4.2 Let the conditions of Corollary 3.1 hold; then every solution U (x,t) of (1.1) and (1.3) is H-
oscillatory in G.

Theorem: 4.2 Let the conditions of Theorem 3.4 hold; Then every solution \7H (&) of (4.7) is H-oscillatory
5

or satisfies [im [(& —s)’“\7,_, (s)ds = 0. The proofs of Corollaries 4.1 and 4.2 and Theorems 4.2 are similar to that of in
é—)oo

Section 3 and hence the details are omitted.

5 Examples

In this section we give an example to illustrate the results established in Sections 3. Example 1. Consider the
vector fractional partial differential equation

1 2 1 2 1 2
Df"t[t?’Df'tU(x,t)]=%t3AU(x,t)+ ZT’Zt3 +%t3 AU (x,t - 7)

2
F(g)
_%U;(t - s)i?1 U(x, s— %) dsJ U(x,t - %) + F(x.1), (5.1)
(x,t) e G, where G =(0,7)x(0,7)x(0,0) , with the boundary condition
_(u(0,1)) _(uy(m,t))_(0O
000 =[ 20904001 (0) e -
1 z 1 1.2 2r 13?2 T
Here « :E,m =1,k=1,n=2,r(t) =t3, p(x1) :ﬁ’ a(t) :Zt?’, a,(t) = 7 t3 +Zt3,p1(t) =7,0,(t) =E,
3
1
2—ﬂlt§sin Xcost
Fx) = B
QY a5 2
2r 2

. . . 1 1
and f (u)=u. Itiseasy to see that p,(t) =min,__5p,(x,t) =min, g ,1——=—.
1( ) Yy pl() XEQpl( ) x€[0, ]\/g ﬁ
1 2r : .
Let H=¢, = 0 , We observe that fel(x,t)z—t3sm xcost and

e
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1
4 =
id t3 cost

j fo, (x,)dx = -
? BrE)?

<t< 7

2
Take & =1,y :1,5(3) =s. Itis clear that conditions (A) —(A;) and (3.13) hold. Therefore,

& ~ 3, &
ILg(s)alﬁl(s)— F$)(s) ]ds:jLi— L s 5w as &5

! ar(t-e)s(s) | 3| V3 4F(2)S§

<0,

NN

3
Thus all the conditions of Theorem 3.2 are satisfied. Hence, it follows that every solution U (x,t) of (5.1),(5.2) is e, -

oscillatory in G. Infact U (x,t) = (Sm\);%mt], is one such solution of the problem (5.1) and (5.2). We note that the

. . . . 0
above solution U (x,t) is not e, —oscillatory in G, where e, = (1]
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