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Abstract 
 
 

In this article, we investigate the oscillation of solutions of a class of fractional vector partial differential equations 
with deviating arguments of the form  
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 We will establish the sufficient conditions for H-oscillation of solutions of given system, where H  is a unit 
vector in nR , 1n . We also provide an example to illustrate the main results.  
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1 Introduction 
 

 Fractional differential equations are now recognized as an excellent source of knowledge in modelling 
dynamical processes in self similar and porous structures, electrical networks, probability and statistics, visco elasticity, 
electro chemistry of corrosion, electro dynamics of complex medium, polymer rheology, industrial robotics, 
economics, biotechnology etc. See the recent monograph [2, 11-14, 16, 23, 29] for theory and applications of 
fractional differential equations. Oscillatory solution plays an important role in the quantitative and qualitative theory 
of fractional differential equations. There are several papers dealing with oscillation of scalar fractional ordinary 
differential equations [3-5, 9, 24, 27-28]. However, only a few results have appeared regarding the oscillatory behavior 
of scalar fractional partial differential equations, see [1, 18-22, 26] and the references cited there in.  
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In 1970, Domslak introduced the concept of H-oscillation to investigate the oscillation of solutions of vector 
differential equations, where H is a unit vector in nR . We refer the articles [6-7] for vector ordinary differential 
equations and [8, 15, 17, 25] for vector partial differential equations. To the present time, there exists almost no 
literature on oscillation results for vector fractional ordinary differential equations and vector fractional partial 
differential equations, particularly for vector fractional nonlinear partial differential equations. Motivated by this, we 
initiate the fractional order vector partial differential equations for delay equations. 

 
Formulation of the problems: The oscillatory theory of fractional differential equation was introduced by 

Grace et al [9]  
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 where q
aD  denotes the Riemann-Liouville differential operator of q , where 1.<<0 q  

Chen [4] and Han et al [28] studied the oscillation of the fractional differential equation with Liouville right 
sided fractional derivative of order   of the following form  
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Prakash et al. [18] and Sadhasivam and Kavitha [21] investigated the fractional partial differential equation with 
Riemann-Liouville left sided definition on the half axis R  of the form  
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 To the best of our knowledge, nothing is known regarding the H-oscillatory behavior for the following class of 
vector fractional partial differential equations with forced term of the form  
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)(0,= R , where   is a bounded domain in nR  with a piecewise smooth boundary (0,1),    is a 
constant, 

tD ,  is the Riemann-Liouville fractional derivative of order   of u  with respect to t ,   is the Laplacian 
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   and ))(,( sxU j  is the usual Euclidean norm in 
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Equation (1.1) is supplemented with the following boundary conditions  
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 (1.2) 

where   is the unit exterior normal vector to   and ),( tx  is positive continuous function on  R  and  
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 The study of H-oscillatory behavior of fractional partial differential equation is initiated in this paper. Our 

approach is to reduce multi-dimensional problems for (1.1) to one dimensional oscillation problems for scalar 
functional fractional differential inequalities. The purpose of this paper is to establish some new H-oscillation criteria 
for equation (1.1)  with (1.2)  and equation (1.1)  with (1.3)  by using a generalized Riccati technique and integral 
averaging method. Our results are essentially new.  

 
2 Preliminaries 
 

 In this section, we give the definitions of H-oscillation, fractional derivatives and integrals and some 
notations which are useful throughout this paper. There are serveral kinds of definitions of fractional derivatives and 
integrals. In this paper, we use the Riemann-Liouville left sided definition on the half-axis .R  The following 
notations will be used for the convenience. 
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Definition: 2.1 By a solution of (1.2)(1.1),  and (1.3)  we mean a non trivial function 
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Definition: 2.2 Let H  be a fixed unit vector in nR . A solution ),( txU  of (1.1)  is said to be H-oscillatory in 
G  if the inner product HtxU ),,(  has a zero in ),(  t  for any 0>t . Otherwise it is H-nonoscillatory.  

Definition: 2.3 The Riemann-Liouville fractional partial derivative of order 1<<0   with respect to t  of a 
function ),( txu  is given by  
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 provided the right hand side is pointwise defined on R where   is the gamma function.  
Definition: 2.4 The Riemann-Liouville fractional integral of order 0>  of a function RRy :  on the 

half-axis R  is given by  
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 provided the right hand side is pointwise defined on .R  
Definition: 2.5 The Riemann-Liouville fractional derivative of order 0>  of a function RRy :  on the 

half-axis R  is given by  
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 provided the right hand side is pointwise defined on R  where    is the ceiling function of  .  
Lemma: 2.1 [11] Let y  be solution of (1.1)  and  
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Lemma: 2.2 [10] If X  and Y  are nonnegative, then  
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 where m  is a positive integer.  
 

3 H-Oscillation of the problem (1.2)(1.1),  
 

 We begin with the following Lemma.  
Lemma: 3.1 Assume that )()( 51 AA   hold. Let H  be a fixed unit vector in nR  and ),( txU  be a solution of (1.1) . 
(i)If ),( txuH  is eventually positive, then ),( txuH  satisfies the scalar fractional partial inequality  

   ))(,()(),()(),()(
1=

,, txutatxutatxuDtrD iHi

m

i
HHtt     

 ).,())(,())(,()()(
01=

txftxudssxustftp HjHjH
t

jj

k

j







     (3.1) 

 (ii)If ),( txuH  is eventually negative, then ),( txuH  satisfies the scalar fractional partial inequality  
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Proof. Let ),( txuH  be eventually positive. Taking the inner product of (1.1)  and H, we get  
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Similarly, let ),( txuH  be eventually negative, we easily obtain (3.2). The proof is complete.   
The inner products of (1.3)(1.2),  with H yield the following boundary conditions.  
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Lemma: 3.2 Assume that )()( 51 AA   hold. Let H  be a fixed unit vector in nR . If the scalar fractional partial 

inequality (3.1) has no eventually positive solutions and the scalar fractional partial inequality (3.2) has no eventually 
negative solutions satisfying the boundary conditions )(1.2   or )(1.3  , then every solution ),( txU  of the problem 

(1.2)(1.1),  or (1.3)(1.1),  is H-oscillatory in G. Proof. Suppose to the contrary that there is a H-nonoscillatory 
solution ),( txU  of (1.2)(1.1),  or (1.3)(1.1),  in G, then ),( txuH  is eventually positive or ),( txuH  is eventually 
negative. If ),( txuH  is eventually positive, then by Lemma 3.1 ),( txuH  satisfies the boundry condition )(1.2   or )(1.3 

. This contradicts the hypothesis. The similar proof follows when ),( txuH is eventually negative.  
Theorem: 3.1  Assume that )()( 51 AA   and  
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Proof. Suppose to the contrary that there exists a solution ),( txU  of (1.1) , (1.2)  which is not a H-oscillatory 

in G . Without loss of genearality, we may assume that 0>),( txuH  in ),[ 0  t  for some 0.>0t  Integrating (3.1) 
with respect to x  over  , we obtain  
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Using Green’s formula and boundary condition )(1.2   yield that  
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Therefore, )(tVH  is an eventually positive solution of (3.5). This contradicts the hypothesis. The case where 
0<),( txuH  in ),[ 0  t  can be treated similarly and we are also getting a contradiction. The proof is now complete.  

Theorem: 3.2  Suppose that the conditions )()( 71 AA  and  
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 where j  are defined as in )( 5A . Then every solution of ),( txU  of the problem (1.2)(1.1),  is H-oscillatory in G .  
Proof. Suppose to the contrary that there exists a solution ),( txU  of the problem (1.2)(1.1),  which is not H-
oscillatory in G . Without loss of generality we may assume that 0>),( txuH  in ),[ 0  t  for some 0>0t .  
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 Taking the limit supremum of both sides of the above inequality as  , we get  

   ,<)(~<
)(~)(1

)(~)(~

4
1)(~)(~

limsup 1

2

1=
1





























Wds

s
ssrspsL jj

k

j

 

 which contradicts (3.14) and completes the proof.  
Theorem: 3.3  Suppose that the conditions )()( 71 AA   and (3.13) hold. Futhermore, suppose that there exists a 
positive function ));((0,  RC  and a function ),( RDCP  where  0:),(:= tststD   such that   
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 where j  are defined as in Theorem 3.2. Then all the solutions of ),( txU  of the problem (1.2)(1.1),  is H-oscillatory 
in G . Proof. Suppose that ),( txU  is H-nonoscillatory solution of (1.2)(1.1), . Without loss of generality we may 
assume that ),( txuH  is an eventually positive solution . Then )(tVH  is an eventually positive solution of (3.5). Then 
proceeding as in the proof of Theorem 3.2, to get (3.21)  
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Corollary 3.1  Assume that the conditions of Theorem 3.3 hold with (3.22) replaced by  
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Theorem: 3.4  Suppose that the conditions )()( 71 AA   and (3.23) hold and that there exists a positive 
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that ),( txU  is H-nonoscillatory solution of (1.2)(1.1), . Without loss of generality we may assume that ),( txuH  is an 
eventually positive solution . Then )(tVH  is an eventually positive solution of (3.5). Then proceeding as in the proof 
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 Integrating the last inequality from 4  to  , we get .
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 . Hence the proof.  

 
4 H-Oscillation of the problem (1.3)(1.1),  
 

 In this section we establish sufficient conditions for the oscillation of all solutions of (1.3).(1.1),  
For this we need the following:The smallest eigen value 0  of the Dirichlet problem. ,0=)()(  inxx 

,0=)( onx  is positive and the corresponding eigen function )(x  is positive in .  
 
Theorem: 4.1  Let all the conditions of Theorem 3.2 and 3.3 be hold. Then every solution of ),( txU  of (1.1)  

and (1.3)  H-oscillates in G . Proof. Suppose that ),( txU  is a H-nonoscillatory solution of (1.1)  and (1.3) . Without 
loss of generality we may assume that 0,>),( txuH  in ),[ 0  t  for some 0.>0t  Multiplying both sides of the 
Equation (3.1) by 0>)(x  and then integrating with respect to x  over . , 
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 Using Green’s formula and boundary condition )(1.3   it follows that  
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 In view of (4.4), (4.2)-(4.6), (4.1) yields   0,))(()()()(
1=

  tKftpLtVDtrD Hjj

k

j
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  (4.7) 

 for .1tt   Rest of the proof is similar to that of Theorems 3.2 and 3.3, and hence the details are omitted.  
 

Corollary 4.1  If the inequality (4.7) has no eventually positive solutions, then every solution ),( txU  of (1.1)  
and (1.3)  is H-oscillatory in G .  

Corollary 4.2  Let the conditions of Corollary 3.1 hold; then every solution ),( txU  of (1.1)  and (1.3)  is H-
oscillatory in G . 

 Theorem: 4.2  Let the conditions of Theorem 3.4 hold; Then every solution )(~
HV  of (4.7) is H-oscillatory 

or satisfies   0.=)(~
lim

0

dssVs H





 


 The proofs of Corollaries 4.1 and 4.2 and Theorems 4.2 are similar to that of in 

Section 3 and hence the details are omitted.  
 

5 Examples 
 

 In this section we give an example to illustrate the results established in Sections 3. Example 1. Consider the 
vector fractional partial differential equation  
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Thus all the conditions of Theorem 3.2  are satisfied. Hence, it follows that every solution ),( txU  of (5.2)1),.(5  is 1e -

oscillatory in .G  Infact ,
3
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txU  is one such solution of the problem (5.1)  and (5.2). We note that the 

above solution ),( txU  is not 2e oscillatory in G , where .
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