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Abstract 
 
 

This paper shows the theoretical development of hierarchy by kernels and an algorithm used to obtain an 
interesting class or partition from a hierarchy. Also shown is the theorem about the Kernels Optimal Criterion and 
how it is expressed as a function of the masses of the points of the vector space and product scale points, the 
inertia of the cloud formed by those two points or hierarchical nodes, which are called subcores or sub-kernels. 
The application is made on the terminal efficiency of postgraduate degrees at ESIA, IPN Mexico, along its first 48 
years of academic and scientific life and the development of students´ graduation.  
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Properties of the kernel 
 

The purpose of this paper is to analyze, under the precepts of data analysis, the relationship which exists or 
lies between a hierarchical kernel and the sub-kernels at the time of build a hierarchical classification, not to mention 
influence have these at the time of the interpretation of the hierarchical tree. A vector space is a set V provided with 
two operations: the addition of elements of V and the multiplication of elements of V with a scalar. A mapping T of a 
vector space V into a vector space W is called a linear transformation of V into W if, for any vectors , V and an 
arbitrary real number r, the following hold: i) T(+) = T + T and ii) T(r) = rT(). Si W = V, the transformation 
T is often called an operator on V. Associated with any linear transformation T: VW, are two very important space 
in data analysis: the rank space or range denoted by RT; and the kernel or the null space of T, denoted by NT, defined 
in (1) as: 

NT = {ܶߙ = ߙ|0 ∈ ܸ}          (1) 
 

We also know that if V is the space on which T operated, we define Ki to be the kernel of the operator T - i; 
that is, Ki is the subspace of vectors V, such that (T + i) = 0, and so its nonzero members are the Eigen values 
of T that belong to i. (Benzécri JP and Benzécri F, 1980) pp. 94-121.  

 
Theoretical development of hierarchy by kernel 
 

Based on the fact that factorial correspondence analysis represents, on the same graphic, both sets comprising 
a tabular correspondence arrangement; sets I of individuals and Q of classes defined for each variable J, and that when 
such must be taxonomies, a rigid class system must be fixed, then the global and spatial vision provided by factorial 
analysis allows us to establish through some kind of aggregation method, a type of hierarchy of the data under 
analysis. The method herein shown is tributary to three options: i) calculation of the distance between elements where 
factorial coordinates are known; ii) juxtaposition of mass or weight to each element; and iii) calculation of a distance 
between element classes, depending on an aggregation criterion based on cores. Since our data include factorial values 
related to Q classes, we shall retain a small number of A cardinality factors, not higher than 75% of factorial data. 
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Let us define factorial set of values through set: {ܨఈ(ݍ)ݍ ∈ ߙ݀݊ܽܳ ∈  with which it is possible to ,{ܣ
calculate many tabular arrangements for distances between elements. In our case, we shall introduce the following 
distance. Let q and q´ be two classes of a variable jJ such that q and q´Q. Classes q and q´ belong to a normed 
factorial space with a fixed set of coordinates. If ݀:ܨ ⟶  ℝ  then (F, d) is a metric space. Factorial distance between 
 .is the addition of lengths of projections of line segment between factorial values on the axes system (´ݍ)ܨ and (ݍ)ܨ
This is mathematically expressed as follows (Casanova, 2001; Marion and Signonello, 2011): 

 
݀ଶ(ݍ, (´ݍ = ∥ ,ݍ ´ݍ ∥ଶ=  ∑ (ݍ)ఈܨ) − ଶఈ∈஺((´ݍ)ఈܨ     (2) 

 
Where q and q´ are classes of variable jJ, d is the distance between classes,  is the axis, A is the set of axes and 
 are factorial values of classes. In accordance with the second option of the aggregation method(´ݍ)ఈܨ and (ݍ)ఈܨ
defined, the distance between classes is juxtaposed by inertia  of the set of dots along axis , which is represented by 
the own value related to the corresponding axis, because of this equation (2) may be re-expressed as follows: 

 
݀ଶ(ݍ, (´ݍ = ∥ ,ݍ ´ݍ ∥ଶ=  ∑ (ݍ)ఈܨ)ఈିଵߣ − ଶఈ∈஺((´ݍ)ఈܨ      (3) 

 
Where q and q´ are the classes of variable jJ, d is the distance between classes,  is the axis, ߣఈିଵ is the inverse of 
distance between classes on axis  and ܨఈ(ݍ) represents factorial value of class q on axis (Marion and Signonello, 
2011; Diday and Noirhomme, 2008).Once the distance between values has been defined, the diameter index of nodes 
of classification  of such hierarchy must be calculated, through: 

(݊)ߥ =  ௙ೌ ∗ ௙್
௙ೌ ା ௙್

∥ −(ܽ)ఈܨ (ܾ)ఈܨ  ∥ଶ     ∀  ݊ ∈  (4)    ݋݀݋ܰ
 
 
Where a and b are barycenter’s of elements of the index, faandfb are the mass in a and b barycenter’s, and 

ܽ ,ఈ(ܾ)are factorial values of a and b barycenter’s. In additionܨ ఈ(ܽ) andܨ ∪ ܾ = ݊ andܽ ∩ ܾ = Φ.  Every time, the 
distance between elements that are hierarchized must be recalculated with those to be hierarchized, because of this the 
following diameter index ߥ(݊) is:  

(݊)ߥ =  ௙ೌ ∗ ௙್
௙ೌ ା ௙್

∥ (ܽ)ఈܨఈିଵߣ − (ܾ)ఈܨఈିଵߣ  ∥ଶ     ∀  ݊ ∈  (5) ݋݀݋ܰ
 

Where ߥ(݊) is diameter index, ௔݂and ௕݂are masses of a and b barycenter’s, ܨఈ(ܽ) and ܨఈ(ܾ) are factorial values of a 
and b barycenter’s, and ߣఈିଵis the square root of total distance of the A set of dots, along axis . Now, from equation 
(4) it may be seen that the addition of values of diameter indexes is equal to the addition of total distance  of the set 
of dots along  axis, that is: 

∑ (݊)ߥ =  ∑ ఈఈ∈஺௡∈ே௢ௗ௢ߣ         (6) 
Where ߥ(݊) diameter is indexed and  is the total distance of the set of axes. From equation (5) it may be seen that 
the addition of the values of diameter indexes is equal to A’s cardinality. 

∑ (݊)ߥ = ௡∈ே௢ௗ௢(ܣ)݀ݎܽܥ           (7) 
 

The algorithm 
 

Classification algorithm looks for two minimum values of the table of factors of classes of the sub-kernels to 
be hierarchies. 
,ݍ)ߜ (´ݍ =  ௙೜∗ ௙೜´

௙೜ା ௙೜´
∥ (ݍ)ఈܨ − (´ݍ)ఈܨ  ∥ଶ ,ݍ  ∀     ´ݍ ∈ ܳ (8) 

From this aggregation, defined as݇ = ݍ ∪  a new partition or kernel of the set of Q classes must be updated ,´ݍ
making: ࣪ = ܳ ∪ {݇} − ,ݍ}   Distances between this new element k and q´´ are recalculated, showing the .{´ݍ
following minimum value of the factors table, through formula (4), thus making ߥ(݊) = ,ܽ)ߜ  ܾ).The minimum of 
the new table is investigated, aggregated and a new partition is updated below. The above is carried out until there is 
no more than the two last cores to be added, taking into account that the link is the base set (Diday and Noirhomme, 
2008; Diday,2008). 
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Theorem Kernels Optimal Criterion. If aggregation kernels are groups of factors with same cardinality and  
the space of kernels or cores, the optimal election criterion is: 

(ܲ,ܮ)݀ =  ෍ ௜ܣ)݀ −  ௜ܲ)
௞

௜ୀଵ
 

Where L is the total set of kernels or cores, Ai is the it core containing a certain number of objects of P population. 
Demonstration. Let L = {ܣଵ, … ௜ܣ ,{௛ܣ, ⊂ ℒ be the ith kernels or core containing q elements of population. ܲ =
 { ଵܲ, … , ௛ܲ} is partition of space  into k-classes. Let ℒ௞be the set of kth cores and ௞࣪ the set of partitions of  
kernels space into classes. ݀(ܣ௜ , ௜࣪) measures dissimilarities between kernel or core Ai and class ௜࣪ . Based on the 
above, the principal problem is to look for a L* ℒ௞and a population P  ௞࣪ that minimize d dissimilarity. Let 
,ଵݍ)݀  :ଶ) be a measure for dissimilarities between couples of individuals or classes. Let us suppose thatݍ

,ଵݍ)݀ (ଶݍ =  ෍ ෍ ଵݍ)݀ − (ଶݍ 
௤మ∈௒௤భ∈௑

 

Where X and Y are parts of the set of  individuals, then: 
,ଶݍ)݀ ({ଵݍ} = ݀(ܻ, (ܻ,{ଵݍ})݀     ଵ)     andݍ =  (ܻ,ଵݍ)݀

In case that kernels or cores are groups of individuals, the algorithm shall be specified, since such is based on 
choosing two functions: assignation function and representation function. For the assignation function, given the 
kernels or cores{ܣଵ, … ܲ ௛}, partitionܣ, =  { ଵܲ, … , ௛ܲ} deducted is defined by: 

௜ܲ =  ൛ݍଵ ∈  Ω ݀(ܣ௜ (ଵݍ, ≤  ݀൫ܣ௝, ,݅  ∀ ଵ൯ݍ ݆ ൟ 
In case of equality, ݍଵ shall be assigned to the lowest index class. Partitions P thus deducted from L are shown 
byܲ = where f is an application of ℒ௞in ,(ܮ)݂ ௞࣪ ; that is:݂: ℒ௞ ⟶ ௞࣪ , and it is called assignation function. For the 
representation function, given partition P, L = {ܣଵ, …   :௛} kernels or cores are deducted asܣ,

௜ܣ = ଵݍ}  ∈ ℒ ݍଵ ∈ ,ଵݍ)݀ݕݐ݅ݎ݈ܽ݅݉݅ݏݏ݈ܾ݅݀݁݅ݏݏ݋݌ݐݏ݁ݓ݋݈݁ܿݑ݀݋ݎ݌ ℎܿ݅ݓ{ݍ} ௜࣪)}    (9) 
In order to ensure the unit of Ai, the set of q elements of  space minimizing∑ ,ଵݍ)݀ ௜࣪) ∀  ௜࣪ ⊂௤భ∈஺೔ Ω, exists and 
is unique. Therefore, the representation function exists.QED 

 
Sub-kernels 
 

Let a vector space V of W, if it exists UV not empty then U is a vector subspace of V if it complies with 
the properties given in § 1. Therefore, sub-kernel means a subset NNT.Now that we have seen the principal theorem 
of hierarchical cores and the implementation of his algorithm, let's see how it is expressed, depending on the masses 
of the points of the vector space and the scalar product of these points, the inertia of the cloud formed by those two 
points or hierarchical nodes, which in our case are called subcores or sub-kernels forming the principal node of the 
hierarchy. Usually the inertia In(g) (or In(h)) part of the cloud N (I) is given by: 

(݃)݊ܫ =  ∑൛ݎ௜௜´‖݅௏ −  ݅௏´ ‖ଶ݅, ݅ ´ܸൟ = ∑൜௠೔௠೔´ 
ଶ௠೒

‖݅௏ −  ݅௏´ ‖ଶ݅, ݅ ´݃ൠ (10) 

In the first part of (10), the double sum includes (Card g)2 terms (or (Card h)2 terms). For the proof of (10), it is 
enough with to replace ݅௏ −  ݅௏´  by (݅௏ −  ݃௏) − (݅௏´ −  ݃௏) and to develop the square with what you get, when the 
sums: 

½ In(g) + ½ In(g) + 0 = In(g) 
For the people, not familiar with the data analysis, it is understood by class or tax on to the taxonomic division of 
finite size (Benzécri JP et al, 1976) pp. 94. Finally, to express the inertia of the subspace I fitted with a system of classes 
or sub-kernels; as shown in Figure 1. The set (a, b, c, d, e, f, g, h) are parts of I that have properties such as a and b, as 
well as d and eor g and h; among many others, are two to two empty intersections and their union is I, i. e, the set a, b, 
f, c, d, e is a partition of I in a number of sub-kernels; which, in the case of Figure 1, are five sub-kernels or classes. In 
addition is that, for example: f = ab, g = fc y I = gh.  
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Figure 1. Taxonomic system of subkernels sub-kernels. 
 

 
 
 
Given any two parts of I, denoted by d(a, b), the inertia of the point cloud consisting of points aV and bV with 

their respective masses ma and mb, is possible to write that the indices of diameter are: (I) = d(g, h), ….., (f) = d(a, b). 
In addition, (a) (f) (g) (I). With the above, it is possible to express the inertia In(I) depending on the index 
diameter of the kernel I index; (I) and their sub-kernels in the following manner:  

In(I) = d(g, h) + In(g) +In(h) = N (I) + In(g) +In(h) 
That mind a classic decomposition of total inertia In(I) in inertiasinter kernels of the cloud N (I) and the 

inertia produced by the addition of the inter kernels of g and h; In(g) + In(h). This last also can be expressed as the 
inertia associated with centers of gravity of the kernels. 

 
Application 
 

Currently, one of the criteria used to assess the functioning of academic and research activities is terminal 
efficiency, as one of the principal indicators showing the achievements of the corresponding education institution. 
Since the ESIA, ALM Unit, IPN is has been one of the schools of civil engineering with more students in Mexico, it is 
very important to know its terminal efficiency, both for licentiate and postgraduate degrees (Casanova, 2010; 
Casanova, 2012). On the top of the table, the number of graduates for each master’s degree in sciences that is 
officially known up to 2007, throughout 48 years, is shown. On the bottom of table 1, the terminal efficiency of the 
master’s degree in civil engineering up to date, which substituted the five previous ones in 2007 is shown. The 
institution does not update your data automatically, due complicated administrative processes. 

 
The factorial method chosen to describe data under study is the principal component analysis, ACP, since it 

allows the direct search of simultaneous representation of sets under study I years of graduation and J master degrees 
in the sciences (Casanova, 2001). The ACP applied on gross data KIJ has the following factorial characteristics: 
variances on the first five principal axes or own values are: X1 = 3.3186, X2 = 1.4787, X3 = 0.7817, X4 = 0.4838 y X5 
= 0.4223, while the inertia percentages explained by such axes are, respectively: 47.4%, 21.1%, 11.2%, 6.9%, and 
6.0%. Principal components are well defined. The first includes master’s degrees in sciences in environmental 
engineering, hydraulics, and structures. The second principal component includes the master’s degrees in science that 
did not belong to this SEPI for a long time, hydrocarbons administration, economy and geology while the third 
component is planning. 
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Table 1. Historical terminal efficiency of master’s degrees in sciences. 
 

 
Figure 2, shows the hierarchy of relationship between the years of graduation of master’s degrees in the 

sciences. Reading and interpretation is based on the value of hierarchical level index, shown on the left of the 
dendrogram, such being understood as the consecutive order of values from the product of the weight of the class 
under analysis and its diameter (distance d(i, i´) is the diameter of the smallest part of a hierarchy containing both i and 
a i´) (Casanova, 2010).  

 
Fig. 2. Hierarchical classification of terminal efficiency of postgraduate degree ESIA IPN, Mexico with 

hierarchical kernels theory. 
 

 

 

Master Degree in Science Number of 
graduated 
students 

Period Year of 
defense of the 
first specialty 
thesis 

Terminal 
efficiency 
annual index 

Structures 58 1962-2010 1970 1.20 
Hydraulics 51 1962-2010 1975 1.06 

Planning 66 1966-2010 1977 1.37 
Soil Mechanics 32 1981-2010 1987 0.66 
Environmental Engineering 114 1977-2010 1979 2.37 
Doctorate degree 
Environmental Hydraulics 5 1998-2010 2000 0.50 
Master degree in Engineering 
Structures 3 2009-2010 2010 1.5 
Hydraulics 5 2009-2010 2010 2.5 
Planning 5 2009-2010 2010 2.5 
Geotechnics 0 2009-2010 - 0 
Environmental Engineering 10 2009-2010 2010 5 
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Conclusions 
 

This work is presented in accordance with its development. The theory developed on hierarchical cores is 
shown, where the method shown is tributary to three options: i) calculation of distance between elements where 
factorial coordinates are known; ii) juxtaposition of mass or weight to each element; and iii) calculation of a distance 
between element classes, depending on an aggregation criterion based on hierarchical cores. From the point of view of 
the theory developed, it may be seen that from various starting points, the problem of looking for stable classes may 
be resolved. Starting points may be chosen by the user, with the help of a hierarchical classification. The theorem 
demonstrated and called Cores Optimal Criterion Theorem allows to implement f and ݂ିଵ functions from a kth core 
randomly estimated with the algorithm. In relation to the application of the theory, it is possible to say that the 
hierarchical dendrogram built is formed by three branches, whose interpretation is absolutely congruent with 
knowledge on the topic.  
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