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Abstract 
 
 

A system (mechanical, electrical, computer hardware and software etc) is generally designed as an assembly of 
subsystems, each with its own reliability attributes. The cost of the system is the sum of the costs for all the 
subsystems. This paper examines possible approaches to allocate the reliability values based on minimization 
of the total cost on the intersection between Tzitzeica semispace and a unit hypercube. The original results 
include: (i) a critical point is a fixed point of a suitable application, (ii) theorems for restoring Riemannian 
convex functions; (iii) the first cost with exponential behavior is Euclidean convex; the second cost with 
exponential behavior is Riemannian convex; our particular posynomial cost is Euclidean convex, (iv) an 
additively decomposable cost function is convex on a product Riemannian manifold. 
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1. Introduction 
 

We look for optimal reliability allocation problem as a mathematical problem though its origins are in 
engineering. The assignation of reliability values between the various subsystems and elements can be made on the 
basis of complexity, criticality, estimated achievable reliability, or any other factors considered appropriate by the 
analyst making the allocation. Many systems are implemented by using a set of interconnected subsystems. While the 
architecture of the overall system can often be fixed, individual subsystems may be implemented differently. A 
designer needs to either achieve the target reliability while minimizing the total cost, or maximize the reliability while 
using only the available budget. Intuitively, some of the lowest reliability components may need special attention to 
raise the overall reliability level.  

 
Such an optimization problem may arise while designing a complex software or a computer system. Such 

problems also arise in mechanical or electrical systems. A number of studies have examined such problems [1], [4]. 
The model allocates reliability to a component according to the cost of increasing its reliability. The most costly 
components (with cost representing volume, cost, weight or any other quantity of concern) will be assigned the lowest 
increases in reliability. With this approach reliability can now be allocated to the components of any type of system, 
complex or not, and for a mixture of failure distributions for the components of the system.Two major factors have 
contributed to this situation. First, the model requires the system's analytical reliability equation as an input. Although 
this poses no major problem in simple systems, it can become quite a challenge (and very time consuming) in complex 
systems.  
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Second, the model  also requires cost as a function of the component's reliability as an input, and this is not 
always available to engineers. The parameters of the proposed cost function can be altered, allowing the engineers to 
investigate different allocation scenarios. Thereafter, reliability and design engineers can decide and plan on how to 
achieve the assigned minimum required reliabilities for each of the components. 
 
2. Optimization for series system 

 
 Consider a series system consisting of n components connected reliability-wise in series. We use the 
notations: 10  iR  is the reliability of component i ;  ii RC  is the cost of component i ; 

    


n

i iiin RCaRRC
11,...,  is the total system  cost, where 0ia ; sR  is the system reliability; GR  is the system 

reliability goal. 

 In general the functionality of each subsystems can be unique, however there can be several choices for, many 
of the subsystems providing the same functionality, but differently reliability levels. The objective is to allocate 
reliability to all or some of the components of that system, in order to meet that goal with a minimum cost. An 
important problem P  is formulated as a nonlinear programming problem, with additively decomposable cost function and a 
nonlinear constraint: 

 P: Find 

min    



n

i
iiin RCaRRC

1
1,..., , 0ia , 

subject to 

G

n

i
is RRR 

1

, 10  iR , ni ,...,2,1 . 

 It is reasonable to assume that the partial cost function  ii RC  satisfies some conditions [6]: differentiable, 

positive function, increasing 







 0

i

i

dR
dC

. 

 The Euclidean convexity of the the partial cost function  ii RC  is equivalent to the fact that its derivative 

i

i

dR
dC

 is monotonically increasing, i.e., 02

2


i

i

dR
Cd

. 

 The foregoing formulation is designed to achieve a minimum total system cost, subject to GR , a lower limit 
on the system reliability. 
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2.1. Convexity of Tzitzeica hypersurfaces 

 We use the space nR  with coordinates  nRR ,...,1  and the constant 0c . The constant level sets 

 


n

i i cR
1

 attached to the foregoing constraint function 

  



n

i
ins RRRR

1
1,...,  

are Tzitzeica hypersurfaces in nR . Since 

02

2





i

s

R
R

, 
ji

s

ji

s

RR
R

RR
R




 2

, 

we find 


















 



n

i i

i
n

i i

i
s

j

j

ji i

i
ss R

dR
R

dRR
R

dR
R

dRRRd
1

2

2

1

2 2 . 

 The restriction of this Hessian to the tangent hyperplane 0
1

 

n

i
i

i

R
dRc , i.e., 









 



n

i i

i
s R

dRcRd
1

2

2
2  

is negative definite. Consequently, the second fundamental form is positive definite and hence the Tzitzeica 
hypersurface is convex. 

2.2.Kuhn-Tucker necessary conditions 

 The associated Lagrange function is 

   












n

i
ii

n

i
iG

n

i
iii RRRRCaL

111
1 . 

 The Kuhn-Tucker necessary conditions, for a point  nRR ,...,1  to be a minimum point, are: 

0



iR
L

, 0iR  and 0



i
i R

LR , ni ,...,1 ,  ; 






 n

ij
iG RRL 0


, 0  and 0

1













n

i
iG RR  




n

i
iG RR

1

; 

0



iR
L
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  01 



i
i

RL


, 0  and   01  ii R  0i , 1iR . 

 The equations of critical points are 0



iR
L

. The constraints 1iR  are inactive, i.e., 10  iR . The 

constraint G
n

i i RR  1
 is active, i.e., G

n

i i RR  1
. 

 From the relations (critical points condition and active constraint) 

0... 111   ii
i

i
i RRR

dR
dCa  , 




n

i
iG RR

1

, 

we find 

G

n

j
j

i

i
ii RR

dR
dCRa   

1
, 

and hence 

i

i
i

G
i

dR
dCa

RR 
 , 

 



n

j
j

jn
G

n

dR
dC

R
1

1

1 . 

Proposition 2.1. If  nRR ,...,1  is a solution of the foregoing problem, then it is a fixed point of the application 



















n

n
n

GG

dR
dCa

R

dR
dCa

R 
,...,

1

1
1

. 

2.3.Sufficient conditions 

 We consider the Lagrange function 

  







 



n

i
iG

n

i
iii RRRCaL

11

 . 

 At critical point  nRR ,...,1 , we compute 

  



n

i i

i
Gi

n

i
ii R

dRRRCdaLd
11

22  . 
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 Since Gn RRR ...1 , we find the tangent hyperplane 0
1

 

n

i
i

i

R
dR

. In this way, at critical point, the 

Hessian is restricted to 

   



n

i
niii RRCdRCdaLd

1
1

222 ,..., . 

 If 02 Cd , then the critical point  nRR ,...,1 is a minimum point for the total cost. 

 
3. Riemannian convexity 

 
For details regarding the Riemannian convexity, see the papers [2], [7], [8]. 

Definition 3.1. Let   gM ,  be an n-dimensional Riemannian manifold and R : Mf be a 2C  function. The function  f  is 

called Riemannian convex if one of the equivalent conditions is satisfied: (i)         ytfxfttf xy  1  for any geodesic  txy , 

 1,0t ; (ii) the matrix function 














 h
h
ijji x

f
xx

ffHess  is positive semidefinite, where h
ij  is the connection induced by 

the Riemannian metric ijg . 

3.1.Convex functions on   xg,R  

 A Riemannian metric on R  is any positive function  xg .  The Riemannian metric  xg  on R  

determines a linear connection    xg
dx
dx ln . If the Riemannian metric  xg   is C  then the connection 

)(x  is C . 

 For any 2C  function on R, the Hessian means the function 

       xfxxfxfHess  . 

Theorem 3.1. Let R R : f  be a 2C  function. If   0 xf , then  f  is linear affine with respect to     2xfcxg  , 
where c is a constant. 

 Hint   0xfHess . 

Theorem 3.2.A  2C  function R R : f is convex on   xg,R  if and only if the function    
 xg
xfxu


  is increasing. 

 Hint   0xfHess .  For details, see the paper [8]. 
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3.2.Restoring convex functions 

Theorem 3.3.If  n,...,1,iR, M : if  are convex functions on the Riemannian manifold ))(,( xgM  and ,0ic  then the 

function )(
1i

xfc i

n

i


is convex on ))(,( xgM . 

Theorem 3.4. If  ii xf , ,,..,1 ni   are convex functions on the Riemannian manifolds   ii xgM , , respectively, and 0ic , 

then the function   

n

i iii xfc
1

 is convex on the product manifold   ii
n
in xgMM 11 ,...  . 

 For other properties regarding the Riemannian convexity, see the papers [2], [7], [8]. 

 
4. Three significant reliability cost models 
  

There is always a cost associated with changing a design, use of high quality materials, retooling costs, 
administrative fees, or other factors. The cost increases as the allocated reliability approaches the maximum achievable 
reliability. This is a reliability value that is approached asymptotically as the cost increases but is never actually reached. 
The cost increases as the allocated reliability departs from the minimum or current value of reliability. It is assumed 
that  the reliabilities for the components will not take values any lower than they already have. Depending on the 
optimization, a component's reliability may not need to be increased from its current value but it will not drop any 
lower. The cost is a function of the range of improvement, which is the difference between the component's initial 
reliability and the corresponding maximum achievable reliability. This means that it is easier to increase the reliability 
of a component from a lower initial value. Before attempting at improving the reliability, the cost as a function of 
reliability for each component must be obtained. Otherwise, the design changes may result in a system that is 
needlessly expensive or overdesigned. Development of the cost of reliability relationship offers the engineer an 
understanding of which components or subsystems to improve. The first step is to obtain a relationship between the 
cost of improvement and reliability. The second step is to model the cost as a function of reliability. The preferred 
approach would be to formulate the cost function from actual cost data. This can be done taking the past data. 
However, there are many cases where no such information is available. For this reason, a general behavior model of 
the cost versus the component reliability can be developed for performing reliability optimization. The objective of 
cost functions is to model an overall cost behavior for all types of components. But, it is impossible to formulate a 
model that is precisely applicable to every situation. However, one of the reliability cost models available can be used 
depending on situation. All these models can be tried and one which is suitable to component or situation can be 
adopted. 

 
4.1.Exponential behavior model 

 Let 10  iR , ni ,...,2,1  and ia , ib  be constants. The most important cost function has an exponential 
behavior. It was proposed by [5] (see also [3]) in the form 

  










i

i
iii R

baRC
1

exp , ni ,...,2,1 . 
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 Let 0ia , 0ib . After computation, we find 

 
0

1
exp

1 2 













i

i

i

ii

i

i

R
b

R
ba

dR
dC

. 

 
 

0
1

exp
1

22 4 














i

i

i

ii
iii R

b
R

baRbCHess . 

Consequently, each  ii RC  is an increasing and convex function (in Euclidean sense). The total cost 

    


n

i iiin RCaRRC
11,...,  has similar properties. 

4.2. Exponential behavior model with feasibility factor 

 Let 10  if  be a feasibility factor, min,iR  be minimum reliability and max,iR  be maximum reliability. 

Another important cost function, with exponential behavior, is given by  

    












ii

ii
iii RR

RR
fRC

max.

min,1exp , max,min, iii RRR  , ni ,...,2,1 . 

 Since 

  
    ,01exp

1

max,

min,
2

max,

min,max, 



















ii

ii
i

ii

iii

i

i

RR
RR

f
RR

RRf
dR
dC

 

the function  ii RC  is increasing. On the other hand 

 
   

 
  

    



































ii

ii
i

ii

iii

ii

iii
i RR

RR
f

RR
RRf

RR
RRf

CHess
max,

min,
3

max,

min,max,
4

max,

2
min,max,

2

1exp
121

. 

 Consequently: (1) the graph of  ii RC  has an inflection point at 

   
2

11 min,max, iiii
i

RfRf
R


 ; 

(2) each  ii RC  is a convex function (in Euclidean sense) for 

   
2

11 min,max, iiii
i

RfRf
R


 ; 

(3) each  ii RC  is a concave function (in Euclidean sense) for 
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   
2

11 min,max, iiii
i

RfRf
R


 . 

 The total cost     


n

i iiin RCaRRC
11 ,...,  has similar properties. 

 Let us find a Riemannian metric  ii Rg  on R such that the function  ii RC  to be convex on the 

Riemannian manifold   ii Rg,R . According the previous Section, and the Euclidean Hessian, it is enough to fix the 

connections  
ii

ii RR
R




max,

2
 and hence the metrics     4

max,
 iiii RRRg , for each index .,...,1 ni    In 

this case, for each index, the ODE of geodesics  

0)()(
)(

2)(
max,




 tRtR
tRR

tR ii
ii

i
  

admits the general solution (Cartesian explicit form) 

;1)(
21

max ctc
RtR i 

  

the ODE of linear affine functions 

0)(2)(
max,




 i
ii

i Rf
RR

Rf  

admits the general solution 

.)( 2
max

1 c
RR

cRf
ii

i 


  

Proposition 4.1.The total cost     


n

i iiin RCaRRC
11,...,  is convex on the product Riemannian manifold 

  ii
n
i Rg1, R... R  . 

4.3.Posynomial behavior model 

 
We consider the posynomial cost (see also [7]) 

.0,0,0,10,)( 2132211   bacRRRcRcRcRC ii
ba  
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To find  ),(min RC  we look first for critical points 

,02
1

131
1



  ba RRacc
R
C .01

2132
2



  ba RRbcc
R
C

 

It follows 

.,
1

1

3
21

2
2

1
1

3
21

1
1






















































babababa

c
b
c

a
c

c
bRc

b
c

a
c

c
aR  

The conditions 10  iR  fix the parameters .,,,, 321 cccba     Moreover, 

2
2132

2

2

2
2

132
1

2

)1(,)1(  





 baba RRcbb

R
CRRcaa

R
C

 

.1
2

1
13

21

2



 ba RRcab

RR
C

 

Since 

,0,0
2

21

2

2
2

2

2
1

2

2
1

2
























RR
C

R
C

R
C

R
C

 

the cost )(RC is a strict convex function in Euclidean sense. In this way the critical point is a minimum point and  

.)1()(min
1

1

3
21 




























bac
b
c

a
cRC

baba

 

 Now let us formulate the dual program: 

321

31

3

2

2

1

1)(sup



 


























ccc
V  

subject to 

.0,0,1,0,, 3231321321   ba  

We find 

1
1,

1
,

1 321 








baba
b

ba
a   

and 
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.)(min)(max)(sup MRCVV    

 
The minimum point of  )(RC  satisfies also the system 
 

.
1

1,
1

,
1 2132211 M

ba
RRcM

ba
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5. Conclusions 

 
In this paper a system reliability optimization problem through reliability allocation at the component level 

was examined using geometrical concepts. The problem was approached as a nonlinear programming problem with 
suitable objective functions and an active constraint as a Tzitzeica hypersurface. The advantage of our models is that 
the used mathematical technology can be applied to any system with high complexities. 
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