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A Class of Piecewise Linear Maps 
 

Franco Fineschi1 

 
Abstract 
 
 

Piecewise linear functions defined by p-maps, linear only on a subset of r vectors and components, are 
introduced. Universal properties for this map are proved. Spaces of extensions of differential forms by 
piecewise linear functions are considered 
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Introduction 

 
Piecewise linear functions are useful in several different contexts, piecewise linear manifolds, computer 

science or convex analysis are examples. A definition of a piecewise linear function is the following, see [8]. Let C  a 
closed convex domain in d , a function  C:  is said to be piecewise linear if there is a finite family Q  of 
closed domains such that QC =  and   is linear on every domain in Q . A linear function   on d  which 
coincides with   on some QQi   is said to be a component of . In this paper is considered a more general class 

of piecewise linear functions. It is defined the set of maps ),( TESW m  which are linear only on a subset of r  
vectors and components.  

 
Then an exponential function F  is defined from linear spaces to the set ),( TESW m . It is proved the 

uniqueness and existence of a function * as universal element for the function F . It is defined a r-subset wise linear 
skew symmetric 


,

=  map and it is proved that this is completely determined by its values for 
  and on a 

basis of E . A r-determinant function is defined as a r-subset wise linear skew symmetric map  mE: , where 
  is an arbitrary field of characteristic 0. Some properties of r-determinant maps are considered. It is defined the 
adjoint for a linear map ),( FEL , where E  and F  are linear spaces, and the development of a r-determinant 
function by r- cofactors. Extensions of differential forms are defined by r-subset wise skew symmetric maps. Basis 
and spaces of generalized differential forms are studied. 

 
2. R-Subset wise Linear Mappings 

 
Some properties of linear functions are extended to mappings which are linear only on subsets of r variables. 

  Denotes an arbitrarily chosen field such that 0=char .  
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The multindex n
rI  of lenght r  is defined by  
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Besides, for a fixed natural k  
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for the indices n
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Let }{ e  be a basis of an n-dimensional vector space E  and let 



 exx n 1=
=  be vectors of E , 1n .  

 
 
Definition 2.1Let ),( TEL r  be the space of linear mappings of rE  into the vector space T . Consider a mapping  
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Where the sum is over every system of indices n

rr
m
rr II   ,,=,,,= 11  . If mn =  then 

mnr =< . The sum )(
11 r

i
r

i exex 




   is denoted in short by 


 ex i , and TE r :  is an r-linear mapping. 

Then   is said to be r-linear with respect to the r-subsets of vectors and components, that is, an r-subsetwise linear 
mapping. The linear mappings   are the components of  .  

 
Example 2.1 The function  21:  defined by 

 
 yxyx 32=),(  is an 1-subsetwise linear function. 

 
Graph of the function  . (Obtained by Mathematica). 
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Example 2.2 The map 2232 )(:   defined by  
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 is an 2-subsetwise linear map.  
 

Example 2.3  Let rff ,,1   be a linearly independent set of the space ),( TEL r , a r-subsetwise linear map is defined by  
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Theorem 2.1  An r-subsetwise linear mapping  , with mr < , is not linear Proof. For any r-subsetwise linear mapping  , 

mr < ,  
 

),,,,(=),,,,( 1

,
1 












 exexexxyxx ri
mii   ),,,,( 1

,













 exeyex ri   

   ),,,,(),,,,( 11 mimi xyxxxx    
 
In the first sum on the right side m

rr Ii  ,,,,= 1  . Unlike, in the second sum 

i
m
rr Ii )(,,,,= 1   , so this sum cannot be ),,,,( 1 mi xyx  .  □ 

 
 As a special case, if mr =  then   is linear.  
 

 If HTt :  is linear and   is r-swlin (subsetwise linear) map, then  
 
  



 ttt  =)(=  

 
and t  is a r-swlin map.  
 
By the set ),( TESW m  of the r-swlin maps, the following exponential functor F , from linear spaces to sets, 

is defined by  
 

 T spacelinear any for ),(=)( TESWTF m
 

 
HT:linear  tany for 

)()(:)(




 

ΦtF(t):Φ
HFTFtF

  
 
Theorem 2.2  For any r-swlin mapping HEm  :  there exists a unique linear mapping HEEf :  such that  
 

 ),,(=)( 11 mm xxxxf    

That is, the mapping TE m  :  is an universal element for the functor F .  
 
Proof. The proof generalizes to swlin maps the classical proof of universality of the tensor product, see [4], [6].  
 Uniqueness. Suppose that TE m  :  and TEm ~:~   are universal elements for the functor F , then, 

there exist linear maps  
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 TTgTTf 
~:and~:  

 
suchthat 
 

 mmmm xxxxgxxxxf   1111 =)~~(and~~=)(  
 
thatis 
 

 mmmm xxxxfgxxxxgf  ~~=)~~(and=)( 1111   
 
by the universality of   and ~  it follows, respectively  
 

 gffg TT  =1and=1 ~  
 
thus f  and g  are inverse linear isomorphisms.  

 
Existence: Consider the free vector space )( rEC  generated by the space rE . Denote by )( rEN  the subspace of 

)( rEC  spanned by the vectors  
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 Set )()/(= rr ENECS  and let SEC r )(:  be the canonical projection. Define the map  
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Since   is a homomorphism, it follows that   is an r-swlin map.  

 If Sz , then it is a finite sum  
 
 
















 )),,((= 1

,
exexz r  

 






 )(= 1 mxx  
 

 so Sz , z  is spanned by the products mxx 1  and SIm = .  
 
 Moreover let Hr E:  be a r-linear map. Since )( rEC  is a free vector space, there exists an unique 

linear map g  such that the following diagram commutes 
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where j  is the insertion of rE  in )( rEC . So 
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 then gKerEN r )( . For the principal theorem on factor spaces, see [5], there exists an unique linear map 

f  such that the following diagram commutes 
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           □ 

Example 2.4  Consider the 2-swlin function   defined by  
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where the bilinear function ),(  , on the right side, is the inner product in 2 . By the theorem 2.2, the map 

22232 )(:   is universal, so an unique linear function  222:f  exists such that 
),,(=)( 321321 xxxxxxf  . Since 222   is free, the function f  is determined by its values 

)( 321 xxxf   on the free generators 321 xxx  .  
 
Corollary 2.1  For any r-swlin map TE m  :  
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Proof. Since 
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)((=),,)(((=),,( 1

,
11 












 exexfxxfxx r
mm   

 
 
 
Example 2.5  Let Tnn  )(:  be a 2-swlin map. The tensor product nnnn M  :  is defined by 

n
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iiii xxxxx  ,=
2121

, see [4], then nnnn  )(:  is given by  
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3. },{ r - determinant 

 
 If   is a permutation, rS , then the mapping Fr :  is defined by 

),,(=),,(
11 rr xxxx   . More generally  
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Definition 3.1  Let ),,( 1 mxx   be an r-swlin map, for any permutation rS , the mapping TEm  : , is 
defined by  

 ),,(=),,(=),,( )()1(
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Definition 3.2  An r-swlin map ),,( 1 mxx   is said skewsymmetric if for any rS  is   =  where 

1)=(1=    for any even (odd) permutation  .  
 
Theorem 3.1  An r-swlin map 

 =  is skewsymmetric if and only if   is skewsymmetric. Proof.Suppose 
skewsymmetric, then 
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Conversely,   = implies 
 

 
 












,,
=

 
 

so 0=)(
,

 



  for all 
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Theorem 3.2  Every r-swlin map ),,( 1 mxx   determines an r-swlinskewsymmetric map  , given by  
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where the second sum on right side is over all permutations rS .  
 
Proof. For any rS  
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           □ 
Theorem 3.3  Let FE m   :=

,



 be an r-swlinskewsymmetric map, then   is completely determined by its 

values on a basis of E  and by the constants 
 .  

 
Proof. Let }{ e  be a basis of E . Let miexx ini ,1,=,=
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where 

X  is the square submatrix of X  determined by rows indexed by   and columns indexed by  .    
 

Example 3.1  Let 333)(:   be a 2-swlin skewsymmetric map defined by  
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Definition 3.3  Let }{ e  be a basis of E , then an r-swlinskewsymmetric map  m

mE Exx :),,( 1   such that 
n
rr

Iee   1,=),,(
1
 , is said an r-determinant function.  

 
The scalar ||=
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  XXdetr   will be said the ),( r -determinant of )(= ixX  , relative to the basis 

}{ e . If |=| 
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XXXdet rr  , see [2].  

 
 
Example 3.2 In order to obtain a non-trivial example of r-determinant function, consider a 2-swlin function 
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where }{},{ 


ee  are a pair of dual bases in E  and }linear,::{=)(= fEffELE   respectively, 

with rEdimEdim = . The bilinear function ,  is non-degenerate and it is defined by  
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The set of the r-swlin maps is denoted by ),( TESW m . The exponential functor F , from linear spaces to 

sets, is defined by  
 

 T spacelinear any for ),(=)( TESWTF m
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Then, for any r-swlin skew symmetric map  
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If E  and '

E  are two r-determinant functions in E , then   ,,'
EE , is a r-determinant 

function too.  
 
 Let F  be an r-determinant function in F  and let FE :  be a linear mapping of vector spaces, where 
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so the vector f  does not depend on the choise of F  and it is determined by the map  , then the notation 
detf = .  
 

Example 3.3  Let   and A  be a linear map and its matrix respectively, defined by  
 

 























11
10
01

=
),,(),(:

: 32




A
yxyxyx 

 
besides let 



33
3 )(:  be a 2-determinant function and 2ix , then  

 



58                                                               American Review of Mathematics and Statistics, Vol. 4(2), December 2016 
 
 

),(),(),(=),,(= 32
23

31
13

21
12

3213 xxxxxxxxx  


 

 

),(),(= 3

2

1=
1

2

1=

13
2

2

1=
1

2

1=

12
ii

i
ii

i
ii

i
ii

i
exexexex    ),( 3

2

1=
2

2

1=

23
ii

i
ii

i
exex    

 
),(||),(||),(||= 21

2323
21

1313
21

1212 eeXeeXeeX    
 

where
ji

jiij

xx
xx

X
22

11|=| . Since 

11
10

11
01

10
01

=(0,1,1))((1,0,1),=),( 23131221  ee
231312=    

 
then 
 

  2,
2323

2,
1313

2,
1212 ||||||= detXdetXdetX  )(= 2,3 det




 
 
The expression for det  may be obtained immediately by the matrix A , see [2]  
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Theorem 3.5  Let FE :  be a linear mapping and )(= 
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Theorem 3.6  Let FE :  and GF :  be linear mappings of vector spaces. Let F  be a determinant function in 
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4. The (t,k)-forms  

 
Let n
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 Let nix :  be the function which assigns to each point of n  its thi -coordinate. Then p
idx )(  is a 

linear map in  )( n  and the set },1,=;){( nidx p
i   is the dual basis of the standard }){( pie . The element 

p
ti

p
i dxdx )()( 1   is denoted by p

tii dxdx )( 1   and belongs to  )( n
p

k
t . 

 

Theorem 4.1 The set n
ttp

tii Iiidxdx  ,,},){( 1
1   is a basis for  )( n

p
k
t . Proof. the elements of 

}){( 1
p

tii dxdx   are linearly independent. In fact, suppose  
 

0=1
,,1

,,1

tii

tii
n
tItii

dxdxa 






 

 
then, for any ),,(

1 kjj ee  , with n
kk Ijj ,,1  , it follows  

 

),,(
1

1
,,1

,,1
kjj

tii

tii
n
tItii

eedxdxa 






 

 

 kj
ti

j
ti

kj
i

j
i

tii
n
tItii edxedx

edxedx
a











1

1
1

1

,,1
,,1

= 


 
 



Franco Fineschi                                                                                                                                                          61 
 
 

 

 

ti

kj
ti
j

i

kj
i
j

tii
n
tItii

a












 1

11
1

,,1
,,1

= 


 
 

 
kjj

n
tttrrtrr

trr
Irra ,,11,,1,,1

,,1

)(,,= 


  
 

 0=  

 Without loss of generality, suppose 
trr ,,1 

  all equal, then the 







k
n

 equations 

n
kkkjj

n
tttrr

trr
IjjIrra  ,,,)(,,0,= 1,,11,,1,,1

 
, are a linear omogeneous full rank system, so it has only the 

trivial solution. That is 0=,,1 tiia  .  

 
 The set }){( 1

p
tii dxdx   spans  )( n

p
k
t , in other words any  )( n

p
k
t  may be written  

  
n
tt

tii

tii
n
tItii

Iiidxdxa 


,,= 1
1

,,1
,,1





  

 
in fact, if 

 tii

tii
n
tItii

dxdxee 





1
1

,,1

),,(=   

then ),,(=),,(
11 tiitii eeee    for all n

tt Iii ,,1  , so  = . Setting 
tiitii aee ,,11

=),,(  , it 

follows the expression of  .           □ 
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