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A Class of Piecewise Linear Maps

Franco Fineschi!

Abstract

Piecewise linear functions defined by p-maps, linear only on a subset of r vectors and components, are
introduced. Universal properties for this map are proved. Spaces of extensions of differential forms by
piecewise linear functions are considered
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Introduction

Piecewise linear functions are useful in several different contexts, piecewise linear manifolds, computer
science or convex analysis are examples. A definition of a piecewise linear function is the following, see [8]. Let C a

closed convex domain inR?, a function ®:C — R is said to be piecewise linear if there is a finite family Q of
closed domains such that C =wQ and @ s linear on every domain in Q. A linear function ¢ on R? which
coincides with ® on some Q, €Q is said to be a component of @ . In this paper is considered a more general class

of piecewise linear functions. It is defined the set of maps SW (E™,T) which are linear only on a subset of I
vectors and components.

Then an exponential function F is defined from linear spaces to the set SW (E™,T). It is proved the
uniqueness and existence of a function * as universal element for the function F . It is defined a r-subset wise linear
skew symmetric ® = ZH vlfq) map and it is proved that this is completely determined by its values for A*' and on a

basis of E . A r-determinant function is defined as a r-subset wise linear skew symmetric map ®:E™ — I", where
I is an arbitrary field of characteristic 0. Some properties of r-determinant maps are considered. It is defined the
adjoint for a linear map w € L(E,F), where E and F are linear spaces, and the development of a r-determinant

function by r- cofactors. Extensions of differential forms are defined by r-subset wise skew symmetric maps. Basis
and spaces of generalized differential forms are studied.

2. R-Subset wise Linear Mappings

Some properties of linear functions are extended to mappings which are linear only on subsets of r variables.
I Denotes an arbitrarily chosen field such thatcharT" = 0.
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The multindex | of lenght " is defined by

17 ={(iyi) 11, <0, <o <, <}

r

Besides, for a fixed natural k

()= {lenniyyeni)1<i << =k <<, <,
wherel<k <n}
for the indices j, ..., j, €I}

(RO TS (TR PO PO B
:|.£i1<...<ipl = j1<,,,<ipk =j, <--<i <n}

Let {e,} be a basis of an n-dimensional vector space E and let X* = z:zleev be vectors of E, n>1.

Definition 2.1Let L(E",T) be the space of linear mappings of E" into the vector space T . Consider a mapping

®: E"T
D (X, X)) D AB(X e, ... x"e,) 1<r<nl<r<m, el
8%

Where the sum is over every system of indices & = ty,..., 4, €1, v=v,,...,v, €l If n=m then
r<nN=m The sum (xfliev1 +---+xTe ) is denoted in short by x''e,,and ¢:E" —T is an r-linear mapping.
r r

Then @ is said to be r-linear with respect to the r-subsets of vectors and components, that is, an r-subsetwise linear
mapping. The linear mappings ¢ are the components of @ .

Example 2.1 The function @ : R>? — R defined by

d(X,y) = 2x+ 3y is an 1-subsetwise linear function.

Graph of the function @ . (Obtained by Mathematica).
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Example 2.2 Themap @ : (33%)> — R>* defined by

DL X1)s (X X5 ), (K5 X3)] = ilz[xn XQJM“[))E” XB}L /123[)(12 X“j M eR

21 X22 21 X23 X22 X23
is an 2-subsetwise linear map.

Example 2.3 Let f,,..., f, bealinearly independent set of the space L(E",T), a r-subsetwise linear map is defined by

DX, Xy) = DAL (F(Xe,)- F(x%8,)- L (X"e,)) A, €l
JTY

Theorem 2.1 An r-subsetwise linear mapping @, with r < my, is not linear Proof. For any r-subsetwise linear mapping @,
r<m

DX+ Yo%) = AP, X X0) + D ABKE, . YL o XE,)
J7A% J7A%

7&@(xl,:..,xi,...,xm)+®(x1,...,yi,...', X.)

In the first sum on the right side u:yl,...,i,...,yrelrm. Unlike, in the second sum
W= pyy iy pm € (1), so this sum cannot be D(X,, ..., Yi,..., X, ). O

vy X
As a special case, if r =m then @ is linear.
If t:T — H islinearand @ is r-swlin (subsetwise linear) map, then
@ =t(Q A'¢) = D Ato

and td is a r-swlin map.

By the set SW(E™, T) of the r-swlin maps, the following exponential functor F , from linear spaces to sets,
is defined by

F(T)=SW(E",T) for any linear space T
F@):F(T F(H
):F(T)—>F(H) for any linear t: T—H
F):dr>tod

Theorem 2.2 For any r-swlin mapping W : E™ — H there exists a unique linear mapping f : E*---* E — H such that

f(X X, ) =Y(X,...,X,)
That is, the mapping *: E™ — T is an universal element for the functor F .

Proof. The proof generalizes to swlin maps the classical proof of universality of the tensor product, see [4], [6].

Uniqueness. Suppose that *:E™ —T and *:E" —>T are universal elements for the functor F , then,
there exist linear maps
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f:T>T and g:T>T
suchthat

f(xl*...*xm):xl';...*xm and 9(X1;"';Xm):X1*"'*Xm
thatis

of (X #- %X, )= X %% X and fg(x, * - %X )= X %o % X
by the universality of * and * it follows, respectively

1, =gof and 1l-=fog
thus f and g are inverse linear isomorphisms.

Existence: Consider the free vector space C(E") generated by the space E". Denote by N(E") the subspace of
C(E") spanned by the vectors

(X1, 0¥, +8,Y,,..., X0 )= 5,(X e ..., Y., X."e,)
~5,(X1€,, - Yar o X,
for u=py,...,u, €™, v=v,...,v,el’, &6 elTandx e, Y, y,cE"
Set S=C(E")/IN(E") and let 7:C(E") — S be the canonical projection. Define the map

*: E™—>S
* (xl,...,Xm)|—>Z&fﬂ(x‘fﬁev,...,xfrev)
JTY

Since 7 is a homomorphism, it follows that * is an r-swlin map.
If ze S, thenitis a finite sum

7= 251(2157[()(:’1&/““’X‘flrev))f
T v
- 251()(1 ook X )

so VzeS, Z isspanned by the products X, *---*X_and I *=S.

Moreover let w :E" — H be a r-linear map. Since C(E") is a free vector space, there exists an unique
linear map g such that the following diagram commutes
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E’ : > C(ET)

|
L g

1

H
where | is the insertion of E" in C(E"). So
g(x'e, ... X "8) =y (xre, ..., X"€,)

If

Hy

2= (X8, Y1+ 0,Y00 o X 8) =0 (K8 Vi XT8) — 6 (X Y XTE,)

Is a generator of N(E"), then

9D =y (@) =y (X'e, . O +8Yo - X8) =W (K, Vi X8,) =S (X6, Y K16
=0

then N(E") < Kerg . For the principal theorem on factor spaces, see [5], there exists an unique linear map
f such that the following diagram commutes

C(ET) o X

AN

e

H
that is, 7z is an universal element. So
(fo®)(X.. %) = FQ A m(X1e,,.... X"e,))
e
=Y Mfor(x,,....x,"e,)
e

= Z}“cg(x\fﬁev""’x\frev)
J7R%
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=Y Ay (xe,.. X))
u,v
=YX, Xy,)
Example 2.4 Consider the 2-swlin function @ defined by

O: (R >N
D (X, Xy, %) > A (X X)) + AP (X, %) + A2 (X, %) A2 A0, AP eR

where the bilinear function (—,—), on the right side, is the inner product in %2 By the theorem 2.2, the map
%1 (R?)° > RP*R**R? is universal, so an unique linear function f : N> *xR**«R*> > R exists such that
f (X *X, ¥X,) = D(X, X, %;). Since RZ*R?* N> is free, the function f is determined by its values
f (X, * X, *X;) on the free generators X, * X, * X,

Corollary 2.1 Foranyr-swlinmap ®:E™ > T

(K Xg) = YA (X, @O X"e,)

wy

Proof. Since 7 (X.'e,,--,X."€,) = X.'e, ®---®X." e, , by the theorem 2.2

DXy, Xy ) = (F o) (0 %) = F QA (X%, @@ XTe,)

wy

Example 25 Let ®:(I'")" —>T be a 2-swlin map. The tensor product ®:T"xI" — M™" s defined by

X, ®% =X, X;Z, X e ", see [4], then #:(T")" — T"#---xT"" is given by

h

= (iy.12)
X, *eeek X D, ATEX ®x

n

(iyip)el3
Z A(IIVIZ)XiiIXﬁZ Z A(IIVIZ)XliIXniZ
(ig.iy)el] (iyiy)el]
Z A('lv'z)xni X, e Z A('lv'z)xnilxni
I 172 = 2
(|1,|2)el2 (|1,|2)el2

3.{r, A}- determinant

r

If o is a permutation, oe€S,, then the mapping o¢:ZE" >F is defined by
oP(X,,.. X, ) = ¢(X51,...,x6 ) . More generally
r
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Definition 3.1 Let ®(X,,...,X,) bean r-swlin map, for any permutation o € S, , the mapping o® : E™ — T , is
defined by

OR(X. Xy) = DA B(Ke, - X 0) = DG e X )
MV uy

Definition 3.2 An r-swlin map ®(x,,...,X,) is said skewsymmetric if for any o €S, is o® =¢_O where
g, =1(e, =—1) for any even (odd) permutation o .

e}

Theorem 3.1 An r-swlin map @ = Zifqb is skewsymmetric if and only if ¢ is skewsymmetric. Proof.Suppose ¢
skewsymmetric, then

o® = Y Mop(xle,,...x."e,) = D Ae, p(x1e,,...,x,"e,) = £, P
8%

wy

Conversely, o® = ¢_® implies
QAop= Ne,
JTa% uv

50 Zuvlﬁ’(aq)—ggqb) =0 forall x'e,,...,x,"e,, then c =¢_¢. O

Theorem 3.2 Every r-swlin map ®(X,,...,X,,) determines an r-swlinskewsymmetric map ‘', given by

Y= Zegodb = ZZ “e op(xte,,...,x."e,)

uv o

where the second sum on right side is over all permutations o €S, .

Proof. Foranyz € S,

¥ = ZT (Zlﬁ‘gaaq)) = ng (Zlﬁ‘gaaqb) =g, (ZZ%‘&UW&) =g V.

uyv o

O
Theorem 3.3 Let @ = ZH Ae: E™ — F be an r-swlinskewsymmetric map, then @ is completely determined by its

values on a basis of E and by the constants A’ .
Proof. Let {e,} be a basis of E . Let x' = Zgzlxgeé, i=1,...,m bevectorsin E and X =(x;), then

n n
D(X,,.... %) = PO e, Y xTe,)
&=l &=1
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/1"¢((ZX”16 ) O X)) vell uel”
JTRY é=1

= H Ly Hr

ZA( Z eva var¢(evp1""’evp1)) pes,

HV P=Ppr-

_215|X\fl |¢(ev1""’ VI’)
J7R%

where X* is the square submatrix of X determined by rows indexed by v and columns indexed by s .

Example 3.1 Let @ : (R*)* — R> be a 2-swlin skewsymmetric map defined by

i, ] Xi i
q)(xllxz,xs): Z Iil ;2¢( 11 1v]_2j

(ilviz)v(jlvjz)glz IZ'Jl 12:12

3
whereX, = > X, € €%R°. Then

— Jl 12
(X, X5 %5) = Z (x iy '1 'zlleiz ' Xiliz eil + Xizizeiz)

'1 2
(ilviz )( jl'jZ )Elz

'1 Iy '1 I

=Y Al )

(ilviz)v( jl'jZ)EIZ

(e, .e

Il’ I2

'2 It ip.dp
Definition 3.3 Let {e,} be a basis of E, then an r-swlinskewsymmetric map Ag (X,,..., X,) :E™ — " such that
q)(evl,...,ev )=1, vel,issaid an r-determinant function.
r
The scalar det, , X = Zu Ay I X ] will be said the (r, A) -determinant of X = (x:), relative to the basis

{3 1f A7 = X} | we denote det, X =| X |, =3 | X[, see 2]

Example 3.2 In order to obtain a non-trivial example of r-determinant function, consider a 2-swlin function
®=) A defined by

D(X,,..., X )Zwe (e xiTe))

thatis

p(xe,,... xTe,) = (", xe,) (e, X"e,)
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where {e },{e™} are a pair of dual basesin E and E" = L(E)={f :f:E > T, f linear} respectively,
with dimE =dimE" >r . The bilinear function (,) is non-degenerate and it is defined by
<e*‘ul Ie> e‘ul( Ie)

then
DXy, ...\ Xy) = ZAZ(e*”l,x:eﬁ)m(e*”r X, )

Zi" X" ..

The set of the r-swlin maps is denoted by SW (E™,T). The exponential functor F , from linear spaces to
sets, is defined by

F(T)=SW(E",T) for any linear space T
F@):F(T F(H

):F(T)—~>F(H) forany lineart: T—H
F(t):® > td

The following proposition states the universality of the r-determinant function.

Theorem 3.4 Let Ap = ZH A E™ — T be an r-determinant function in E, then for any r-swlinskewsymmetric

mapping © = ZH A0 E™ — F, there is an unique vector f € F such that

OXpreee s Xn) = (Ag (X X )(F) =D A XN E, pell, vell, x eE
M,V

where f  are the components of the vector

f—(H(el,..., D (-

W R

, n
and v' are the ( J elements of 1.

r

Proof. Let {&,}, 1=1,...,n be a basis of E such that
e (o) = DXL 1 Be, oo, ) = DA X
JTRY sV

thatis,qb(evl, e )=1

1
Vr
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Then, for any r-swlin skew symmetric map

W (X X ) = DA XY = (B Oy X ))(F)

itfollows
n//(evl,...,evr) = ¢(evl,...,evr)H(evl,...,evr) :1-0(evl,...,evr)

so ® and ¥ have the same values on the basis {e,} and by theorem 3.3 it follows ® =¥ . o

If Ap and A'E are two r-determinant functions in E, then nA; +6?A'E, n,0 el is a r-determinant
function too.

Let A be an r-determinant function in F and let y : E — F be a linear mapping of vector spaces, where
dimE =n,dimF =t, then A, : E™ — T, defined by

Ay (X %) = Dp WKy ) = D G (X0), 1o, (X))

m

is an r-determinant function in E, where ¢_ : F" — T isanr-linear mappingon F, ue I, 7€ I; .

By theorem 3.4, A, = A (f) = Zuwlﬁ‘ | X, | f, foranunique vector f =(f ).

Let A'F be another nonnullswilin skew symmetric map, then

Ae =Ac(9)= D 21X g,
vt

and
A, =A, ()= (Ac(F)@) = D A1 X] | f,9, = Ac(f)

MV, T
so the vector f does not depend on the choise of A. and it is determined by the map w , then the notation
f = dety .

Example 3.3 Let y and A, be a linear map and its matrix respectively, defined by

v IR >R Lo
{ ' A =01
v i(%y) = (XY, x+Y) 11

besides let A _; : (%°)° — % be a 2-determinant function and x; € R*, then
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<
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=
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A, = A s (WK, YKo, WKs) = 22 Gk, WKy ) + A (ke wks) + A7 Py, ks)
2 2 2 2 2 2
= 112¢(2Xi1‘//ei ; inzl//ei) + 113¢(2Xi1‘//ei ; insl//ei) + 123¢(inzl//ei ; insl//ei)
i=1 i=1 i=1 i=1 i=1 i=1

= 20X | gy we,) + 27 | XP | glwey,pe,) + A7 | X | gy, pe,)

ij |— Xli le .
where| X" |= . Since
X5i ij
P ve) = H(LOD).O0LD) = Ayl e Al Al
l//elil//e2 - 1™ 1 1= - 20 1 31 1 231 21124—},13—},23

then
A, = A2 X7 |det,,p + A% | X® | det,,p + A% | XZ | det,,p = A (det,,y)

The expression for dety may be obtained immediately by the matrix A, see[2]

0

1 0
detMAV =det,, =, 1 L

+ Ay

R =R
=)

il:ﬂi2+)‘13_123

:|.0+
0 1M

Theorem 3.5 Let w:E — F be a linear mapping and A, = (e, ) its matrix relative to the bases {e },{f.},

N, T=1 0t Lt A = Zwlﬁ’(/ﬁF :F™ T bean r-determinant function. If ¢ (f*,..., £*7) =1, then

)
Ao %) = SREIXINAD mellvellrell
u,T v

i)
A, @)= A A

where A’ is the submatrix of A determined by rows indexed by v and columns indexed by 7, for

v=v1,...,vrelr”,r=rl,...,rrelﬁ. The vectors X,...,X,,, relative to the basis {ev}, are expressed by

x“ =" xte, p=1,..,mand X = (x).

Proof. i)
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Ay Oy X)) = Ap @, %) = Ap QX8 10, D XTR,)
v=1 v=1

= AF(ixiia; fT,...,iXTia; f)
v=1 7=1

= A (K s YO X))

= S (K 1) (K ) 1) rell, pell

=TS e(zx”l - (o N (1 £
peS, by

n T n r
> e, O X)X e, ) =D | X AL it follows i).
v=1 v=l v

PEPLrPy
ii) It is a special case of i) for X =1 .

The scalar det, ,y = ZH A I A will be called the (r,4)-determinant of y, relative to the bases
{e,}.{f,}.1f 2! =| A”[, then ZW | A% |” will be denoted by det.y or |y |, D

Theorem 3.6 Let y:E — F and 8:F — G be linear mappings of vector spaces. Let A be a determinant function in
F.If x,...,X,, arevectorsin E, then

By (e X) = Ay 0 A, (X X,

Proof.
Agoy (X X)) = AG (O 0y (X0, X)) = Ay (W (X, Xy)) = Ag 0 A, (K, eeny X))

4. The (t,k)-forms

Let R be the tangent space of R" at the point p and let (9R7)" be the dual space. Let A (R})" be the
linear space of the k-linear alternating maps ¢ : (SRTJ)k — R, then denote by A“ (R})", with k<t <n, the set of
all k-linear alternating maps ¢ : (‘.Rr;)t — R The set Al (M})", by the usual operations of functions, is a linear

space. If ¢,...,4, belongto (R})", then an element ¢ A...A ¢ € A (R})" is obtained by setting
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¢1(V1) ¢1(Vk)
(A APV V) = det, (v)) =
¢t (Vl) ¢t (Vk)

where i=1,...,t, j=1,....k and v, eR".
Observe that ¢ A... A, is k-linear and alternate.

Example 4.1 When ¢,,6,,¢, belong to (R)", an element ¢ A ¢, A € A5(R3)" s obtained by the 2-swlin skewsymmetric
map

ARRAD)
(h Ay AD3)(Vy,V,) = detz,z(bi (Vj) =g, (v,)  #,(V,) - ZA' _
¢3 (Vl) ¢3 (Vz) iy <iy 12

B, ¢, ()
8, (0) ¢, (V)

(i) 13, /liliz eR
and @, A @, A @, is a bilinear alternating map on the vectors Vv,,V, .
Let x' ::R" — R be the function which assigns to each point of R" its i""-coordinate. Then (dx'), isa

linear map in (N")" and the set {(dxi)p;i =1,...,n} is the dual basis of the standard {(e;) }. The element

(dx), A+ A (dX"), is denoted by (dx* A+ Adx"), and belongs to Af(R})".

Theorem 4.1 The set {(dxi1 /\---/\dxit)p}, iy, 0 e 1" is a basis for A (M})". Proof. the elements of

{(dxi1 A X )} are linearly independent. In fact, suppose

> ailwitdxil Acendxt =0

.o
'l"“"tdt

then, for any (ejl,...,ejk),with Jis--er Je€ 1y, it follows

e A dX
z ailwitdx A-s-AdX (eil"”’eik)
if gl



Franco Fineschi 61

i i
St S}
il I
= a il
el Sl It
i ip el 51'1 5jk

rl,..-, rt € (Itn)jl,,]k

1
oo
=
=
=
=

=0
n
Without loss of generality, suppose }“ﬁv-wft all  equal, then the (kj equations

Zrl,.“,rtaﬁv-‘.,rt =0,n,....1, (Itn)jl'“"jk’ Jise-or Ji €1, are alinear omogeneous full rank system, so it has only the

trivial solution. That is ailm

=0.
t

The set {(dx™ A--- A dx*) o} spans A (R}), in other words any ¢ € Al (M})" may be written

¢= z ail,.“,itdxil INTIN & U A=
ifdgelf!
in fact, if
- i i
=D, #e....8 )dxt A AdX!
ipdpelf!
then (e, .....& ) =¢(e ,....e ) forall ij,....i e 1", so w =¢. Setting wie ,....)=a ;. it
follows the expression of ¢ . m

The above proposition generalizes the known theorem about the basis {dxil /\---/\dxik} of the space
A(RY)", see [1].

Theorem 4.2 The linear spaces A% (R7)" and A“(R})" coincide.

Proof.Letw = (¢ A+ AG)(Vy,...,V, ) € AL (R})", then

¢i1(V1) ¢i1(Vk)
0= z j~i1,...,ik "

A A > i @A AWV

.on
Il,...,lkelk
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k * . . * k * .
so @ e A“(R')". Conversely, let O be the null function in (R})", then any yw e A“(R})" may be written
as

v =W A AW )V V) = W A A, ADALLAD) (Y, ...,V ) SO W EA‘;(‘.R?))*
If e Al (M})", then  may be decomposed by elements of A‘LJ—(SR?))*, where k <t— j<t, in fact

Theorem 4.3 Letw = (¢ A... AG)(Vy,...,V, ) € AL (R})", then

w= (t—Kk)---(t—k—j+1) ,ttz‘f(q)‘l/\"'/\q)it,-)(v ,...,Vk)

Proof,

A
w = WZ(¢'1 /\.../\¢

I
a t-1
t-1

YV, V)

) (t—K)-(t—k—j+1) z(¢i1 /\"'/\¢it7j)(v yeen Vi)

t
It

t
indeed @ is the sum of (k} determinants, the last right side has the same number

to(t—j+2) (t—j)t-j+1
t—K)--(t—k—-j+1)| k N t—j

References

M.P. do Carmo Differential Forms and Applications Springer, Berlin, 1994.

F. Fineschi, R. Giannetti Adjoints of a matrix Journal of Interdisciplinary Mathematics, Vol. 11 (2008), n.1, pp.39-65.

W. Greub Linear Algebra Springer, New York, 1981.

W. Greub Multilinear Algebra Springer, New York, 1978.

S.MacLane, G. Birkhoff Algebra MacMillan, New York, 1975.

M.Marcus Finite DimensionalMultilinear Algebra Marcel Dekker, Inc. New York, 1973.

D. G. Northcott Multilinear Algebra Cambridge University Press, Cambridge, 1984.

S. Ovchinnikov Max-Min Represenattion of Piecewise Linear Functions Beitrdgezur Algebra und Geometrie, Vol. 43 (2002),
n.1,pp. 297-302.



