American Review of Mathematics and Statistics December 2016, Vol. 4, No.2, pp. 48-62 ISSN: 2374-2348 (Print), 2374-2356 (Online) Copyright © The Author(s).All Rights Reserved. Published by American Research Institute for Policy Development DOI: 10.15640/arms.v4n1a6 URL: https://doi.org/10.15640/arms.v4n1a6

A Class of Piecewise Linear Maps

Franco Fineschi¹

Abstract

Piecewise linear functions defined by p-maps, linear only on a subset of r vectors and components, are introduced. Universal properties for this map are proved. Spaces of extensions of differential forms by piecewise linear functions are considered

Keywords: master's degree, doctoral degree, mathematical sciences, mathematics

Introduction

Piecewise linear functions are useful in several different contexts, piecewise linear manifolds, computer science or convex analysis are examples. A definition of a piecewise linear function is the following, see [8]. Let *C* a closed convex domain in \mathfrak{R}^d , a function $\Phi: C \to \mathfrak{R}$ is said to be piecewise linear if there is a finite family Q of closed domains such that $C = \cup Q$ and Φ is linear on every domain in Q . A linear function ϕ on \mathfrak{R}^d which coincides with Φ on some $Q_i \in Q$ is said to be a component of Φ . In this paper is considered a more general class of piecewise linear functions. It is defined the set of maps $\mathit{SW}(E^m,T)$ which are linear only on a subset of r vectors and components.

Then an exponential function F is defined from linear spaces to the set $SW(E^m, T)$. It is proved the uniqueness and existence of a function * as universal element for the function *F* . It is defined a r-subset wise linear skew symmetric $\Phi=\sum_{\mu,\nu}\!\lambda^{\mu}_{\nu}\phi\,$ map and it is proved that this is completely determined by its values for $\lambda^{\mu}_{\nu}\,$ and on a basis of E . A r-determinant function is defined as a r-subset wise linear skew symmetric map $\Phi: E^m \to \Gamma$, where Γ is an arbitrary field of characteristic 0. Some properties of r-determinant maps are considered. It is defined the adjoint for a linear map $\psi \in L(E, F)$, where E and F are linear spaces, and the development of a r-determinant function by r- cofactors. Extensions of differential forms are defined by r-subset wise skew symmetric maps. Basis and spaces of generalized differential forms are studied.

2. R-Subset wise Linear Mappings

Some properties of linear functions are extended to mappings which are linear only on subsets of r variables. Γ Denotes an arbitrarily chosen field such that $char \Gamma = 0$.

 \overline{a} ¹ Department DISAG, University of Siena, Piazza S.Francesco, 53100 Siena, ITALY. E-mail address: fineschi@unisi.it

The multindex I_r^n of lenght r is defined by

$$
I_r^n = \{(i_1, \ldots, i_r): 1 \le i_1 < i_2 < \cdots < i_r \le n\}
$$

Besides, for a fixed natural *k*

$$
(In)k = \{(i1,...,ip,...,ir) : 1 \le i1 < \cdots < ip = k < \cdots \le ir \le n, \nwhere 1 \le k \le n\}
$$
\nfor the indices $j_1, ..., j_k \in I_k^n$

$$
(Inr)j1,...,jk = {(i1,...,ip1,...,ipk,...,ir) :1 \le i1 < ... < ip1 = j1 < ... < ipk = jk < ... \le ir \le n
$$

Let $\{e_\nu\}$ be a basis of an n-dimensional vector space E and let $x^\mu = \sum_{\nu=1}^m x^\mu_\nu e_\nu$ $v=1$ V $x^{\mu} = \sum_{v=1}^{n} x_v^{\mu} e_v$ be vectors of *E*, $n \ge 1$.

Definition 2.1 Let $L(E^r, T)$ be the space of linear mappings of E^r into the vector space T . Consider a mapping

$$
\begin{cases} \Phi: E^m \to T \\ \Phi: (x_1, \dots, x_m) \mapsto \sum_{\mu, v} \lambda_v^{\mu} \phi(x_v^{\mu_1} e_v, \dots, x_v^{\mu_r} e_v) & 1 \le r \le n, 1 \le r \le m, \ \lambda_v^{\mu} \in \Gamma \end{cases}
$$

Where the sum is over every system of indices $\mu = \mu_1, ..., \mu_r \in I_r^m$, $v = v_1, ..., v_r \in I_r^n$ $\mu = \mu_1, ..., \mu_r \in I_r^m$, $v = v_1, ..., v_r \in I_r^n$. If $n = m$ then $r < n = m$. The sum $(x_{v_1}^{\mu_i}e_{v_1} + \cdots + x_{v_r}^{\mu_i}e_{v_r})$ *i* $x_{v_1}^{\mu_i}e_{v_1} + \cdots + x_{v_r}^{\mu_i}e_{v_r}$ V_1 \cdots $\sum_{\nu_i}^{\mu_i} e_{\nu_i} + \cdots + x_{\nu}^{\mu_i} e_{\nu}$) is denoted in short by $x_{\nu}^{\mu_i} e_{\nu}$ $x_r^{\mu_i}e_r$, and $\phi: E^r \to T$ is an r-linear mapping. Then Φ is said to be r-linear with respect to the r-subsets of vectors and components, that is, an r-subsetwise linear mapping. The linear mappings ϕ are the components of Φ .

Example 2.1 *The function* $\Phi : \mathbb{R}^{1 \times 2} \rightarrow \mathbb{R}$ *defined by*

Graph of the function Φ . (Obtained by Mathematica).

Example 2.2 *The map* Φ : $(\Re^2)^3 \rightarrow \Re^{2 \times 2}$ *defined by*

$$
\Phi[(x_{11}, x_{21}), (x_{12}, x_{22}), (x_{13}, x_{23})] = \lambda^{12} \begin{pmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{pmatrix} + \lambda^{13} \begin{pmatrix} x_{11} & x_{13} \\ x_{21} & x_{23} \end{pmatrix} + \lambda^{23} \begin{pmatrix} x_{12} & x_{13} \\ x_{22} & x_{23} \end{pmatrix} \qquad \lambda^{\mu} \in \mathfrak{R}
$$

is an 2-subsetwise linear map.

Example 2.3 Let f_1, \ldots, f_r be a linearly independent set of the space $L(E^r, T)$, a r-subsetwise linear map is defined by

$$
\Phi(x_1, ..., x_m) = \sum_{\mu,\nu} \lambda^{\mu}_{\nu} (f_1(x^{\mu_1}_{\nu}e_{\nu}) \cdot f_2(x^{\mu_2}_{\nu}e_{\nu}) \cdots f_r(x^{\mu_r}_{\nu}e_{\nu})) \qquad \lambda^{\mu}_{\nu} \in \Gamma
$$

Theorem 2.1 An r-subsetwise linear mapping Φ , with $r < m$, is not linear Proof. For any r-subsetwise linear mapping Φ , $r < m$

$$
\Phi(x_1, ..., x_i + y_i, ..., x_m) = \sum_{\mu, v} \lambda_v^{\mu} \phi(x_v^{\mu_1} e_v, ..., x_v^{\mu_v} e_v, ..., x_v^{\mu_v} e_v) + \sum_{\mu, v} \lambda_v^{\mu} \phi(x_v^{\mu_1} e_v, ..., y_v^{\mu_v} e_v, ..., x_v^{\mu_v} e_v)
$$

$$
\neq \Phi(x_1, ..., x_i, ..., x_m) + \Phi(x_1, ..., y_i, ..., x_m)
$$

In the first sum on the right side $\mu = \mu_1, \ldots, i, \ldots, \mu_r \in I_r^m$. Unlike, in the second sum *i* $\mu = \mu_1, \ldots, i, \ldots, \mu_r \in (I_r^m)_i$, so this sum cannot be $\Phi(x_1, \ldots, y_i, \ldots, x_m)$. \Box

As a special case, if $r = m$ then Φ is linear.

If $t: T \rightarrow H$ is linear and Φ is r-swlin (subsetwise linear) map, then

$$
t\Phi=t(\sum \lambda^{\mu}_{v}\phi)=\sum \lambda^{\mu}_{v}t\phi
$$

and $t\Phi$ is a r-swlin map.

By the set $SW(E^m, T)$ of the r-swlin maps, the following exponential functor F , from linear spaces to sets, is defined by

$$
F(T) = SW(Em, T)
$$
 for any linear space T
\n
$$
\begin{cases}\nF(t): F(T) \to F(H) \\
F(t): \Phi \mapsto t \circ \Phi\n\end{cases}
$$
 for any linear t : T \to H

Theorem 2.2 For any r-swlin mapping $\Psi: E^m \to H$ there exists a unique linear mapping $f: E^* \cdots * E \to H$ such that

 $f(x_1 * \cdots * x_m) = \Psi(x_1, \ldots, x_m)$

That is, the mapping $\ast : E^m \to T$ is an universal element for the functor F.

Proof. The proof generalizes to swlin maps the classical proof of universality of the tensor product, see [4], [6]. Uniqueness. Suppose that $* : E^m \to T$ and $\tilde{*} : E^m \to \tilde{T}$ are universal elements for the functor *F*, then, there exist linear maps

$$
f: T \to \tilde{T}
$$
 and $g: \tilde{T} \to T$

suchthat

$$
f(x_1 * \cdots * x_m) = x_1 * \cdots * x_m
$$
 and $g(x_1 * \cdots * x_m) = x_1 * \cdots * x_m$

thatis

$$
gf(x_1 * \cdots * x_m) = x_1 * \cdots * x_m
$$
 and $fg(x_1 * \cdots * x_m) = x_1 * \cdots * x_m$

by the universality of $*$ and $\tilde{*}$ it follows, respectively

$$
1_T = g \circ f \qquad \text{and} \qquad 1_{\tilde{T}} = f \circ g
$$

thus *f* and *g* are inverse linear isomorphisms.

Existence: Consider the free vector space $C(E^r)$ generated by the space E^r . Denote by $N(E^r)$ the subspace of $C(E^r)$ spanned by the vectors

$$
(x_v^{\mu_1}e_v, ..., \delta_1 y_1 + \delta_2 y_2, ..., x_v^{\mu_r}e_v) - \delta_1(x_v^{\mu_1}e_v, ..., y_1, ..., x_v^{\mu_r}e_v) - \delta_2(x_v^{\mu_1}e_v, ..., y_2, ..., x_v^{\mu_r}e_v)
$$

for
$$
\mu = \mu_1, ..., \mu_r \in I_r^m
$$
, $v = v_1, ..., v_r \in I_r^n$, $\delta_i \in \Gamma$ and $x_v^{\mu_r} e_v$, $y_1, y_2 \in E^r$.

Set $S = C(E^r)/N(E^r)$ and let $\pi : C(E^r) \rightarrow S$ be the canonical projection. Define the map

$$
\begin{cases} * : & E^m \to S \\ * : & (x_1, \dots, x_m) \mapsto \sum_{\mu,\nu} \lambda_{\nu}^{\mu} \pi(x_{\nu}^{\mu_1} e_{\nu}, \dots, x_{\nu}^{\mu_r} e_{\nu}) \end{cases}
$$

Since π is a homomorphism, it follows that $*$ is an r-swlin map.

If $z \in S$, then it is a finite sum

$$
z = \sum_{\tau} \delta^{\tau} \left(\sum_{\mu,\nu} \lambda_{\nu}^{\mu} \pi (x_{\nu}^{\mu_1} e_{\nu}, \dots, x_{\nu}^{\mu_r} e_{\nu}) \right)_{\tau}
$$

$$
= \sum_{\tau} \delta^{\tau} (x_1 * \dots * x_m)_{\tau}
$$

so $\forall z \in S$, *z* is spanned by the products $x_1 * \cdots * x_m$ and $I_m * = S$.

Moreover let ψ : $E^r \to H$ be a r-linear map. Since $C(E^r)$ is a free vector space, there exists an unique linear map *g* such that the following diagram commutes

where j is the insertion of E^r in $C(E^r)$. So

$$
g(x_v^{\mu_1}e_v,...,x_v^{\mu_r}e_v) = \psi(x_v^{\mu_1}e_v,...,x_v^{\mu_r}e_v)
$$

If

$$
z = (x_v^{\mu_1}e_v, ..., \delta_1 y_1 + \delta_2 y_2, ..., x_v^{\mu_r}e_v) - \delta_1(x_v^{\mu_1}e_v, ..., y_1, ..., x_v^{\mu_r}e_v) - \delta_2(x_v^{\mu_1}e_v, ..., y_2, ..., x_v^{\mu_r}e_v)
$$

Is a generator of $N(E^r)$, then

$$
g(z) = \psi(z) = \psi(x_v^{\mu_1}e_v, ..., \delta_1y_1 + \delta_2y_2, ..., x_v^{\mu_r}e_v) - \delta_1\psi(x_v^{\mu_1}e_v, ..., y_1, ..., x_v^{\mu_r}e_v) - \delta_2\psi(x_v^{\mu_1}e_v, ..., y_2, ..., x_v^{\mu_r}e_v) = 0
$$

then $N(E^r) \subseteq Ker g$. For the principal theorem on factor spaces, see [5], there exists an unique linear map *f* such that the following diagram commutes

that is, π is an universal element. So

$$
(f \circ *) (x_1, ..., x_m) = f(\sum_{\mu,\nu} \lambda^{\mu}_{\nu} \pi(x^{\mu_1}_{\nu} e_{\nu}, ..., x^{\mu_r}_{\nu} e_{\nu}))
$$

= $\sum_{\mu,\nu} \lambda^{\mu}_{\nu} f \circ \pi(x^{\mu_1}_{\nu} e_{\nu}, ..., x^{\mu_r}_{\nu} e_{\nu})$
= $\sum_{\mu,\nu} \lambda^{\mu}_{\nu} g(x^{\mu_1}_{\nu} e_{\nu}, ..., x^{\mu_r}_{\nu} e_{\nu})$

$$
= \sum_{\mu,\nu} \lambda_{\nu}^{\mu} \psi(x_{\nu}^{\mu_1} e_{\nu}, \dots, x_{\nu}^{\mu_r} e_{\nu})
$$

= $\Psi(x_1, \dots, x_m)$

Example 2.4 *Consider the 2-swlin function* Φ *defined by*

$$
\begin{cases} \Phi: & (\Re^2)^3 \to \Re \\ \Phi: & (x_1, x_2, x_3) \mapsto \lambda^{12}(x_1, x_2) + \lambda^{13}(x_1, x_3) + \lambda^{23}(x_2, x_3) \end{cases} \quad \lambda^{12}, \lambda^{13}, \lambda^{23} \in \Re
$$

where the bilinear function $(-,-)$, on the right side, is the inner product in \mathfrak{R}^2 . By the theorem 2.2, the map $*: (\mathfrak{R}^2)^3 \to \mathfrak{R}^2 * \mathfrak{R}^2 * \mathfrak{R}^2$ is universal, so an unique linear function $f: \mathfrak{R}^2 * \mathfrak{R}^2 * \mathfrak{R}^2 \to \mathfrak{R}$ exists such that $f(x_1 * x_2 * x_3) = \Phi(x_1, x_2, x_3)$. Since $\Re^2 * \Re^2 * \Re^2$ is free, the function f is determined by its values $f(x_1 * x_2 * x_3)$ on the free generators $x_1 * x_2 * x_3$.

Corollary 2.1 *For any r-swlin map* $\Phi: E^m \to T$

$$
*(x_1,...,x_m)=\sum_{\mu,\nu}\lambda^{\mu}_{\nu}(x^{\mu_1}_{\nu}e_{\nu}\otimes\cdots\otimes x^{\mu_r}_{\nu}e_{\nu})
$$

Proof. Since $\pi(x_v^{\mu_1}e_v,\cdots,x_v^{\mu_r}e_v) = x_v^{\mu_1}e_v\otimes \cdots \otimes x_v^{\mu_r}e_v$ $v \sim v_v$ μ V , V μ v, v' $\pi(x_v^{\mu_1}e_v,\dots,x_v^{\mu_r}e_v) = x_v^{\mu_1}e_v\otimes \dots \otimes x_v^{\mu_r}e_v$, by the theorem 2.2

$$
\Phi(x_1,\ldots,x_m)=(f\circ\ast)((x_1,\ldots,x_m)=f(\sum_{\mu,\nu}\lambda^{\mu}_{\nu}(x^{\mu_1}_{\nu}e_{\nu}\otimes\cdots\otimes x^{\mu_r}_{\nu}e_{\nu}))
$$

Example 2.5 Let $\Phi: (\Gamma^n)^n \to T$ be a 2-swlin map. The tensor product $\otimes: \Gamma^n \times \Gamma^n \to M^{n \times n}$ is defined by *n* $x_{i_1} \otimes x_{i_2} = x_{i_1} x_{i_2}^{\prime}$, $x_i \in \Gamma^n$, see [4], then $*:(\Gamma^n)^n \to \Gamma^n * \cdots * \Gamma^n$ is given by

$$
x_1 * \cdots * x_n = \sum_{(i_1, i_2) \in I_2^n} \lambda^{(i_1, i_2)} x_{i_1} \otimes x_{i_2}
$$

=
$$
\begin{pmatrix} \sum_{(i_1, i_2) \in I_2^n} \lambda^{(i_1, i_2)} x_{i_1} x_{i_1} & \cdots & \sum_{(i_1, i_2) \in I_2^n} \lambda^{(i_1, i_2)} x_{i_1} x_{i_1} \\ \vdots & \cdots & \cdots & \cdots \\ \sum_{(i_1, i_2) \in I_2^n} \lambda^{(i_1, i_2)} x_{i_1} x_{i_1} & \cdots & \sum_{(i_1, i_2) \in I_2^n} \lambda^{(i_1, i_2)} x_{i_1} x_{i_1} \end{pmatrix}
$$

$3.\{r,\lambda\}$ - determinant

If σ is a permutation, $\sigma \in S_r$, then the mapping $\sigma \phi : \Xi^r \to F$ is defined by $\sigma\phi(x_1, \ldots, x_r) = \phi(x_{\sigma_1}, \ldots, x_{\sigma_r})$. More generally

 \Box

Definition 3.1 Let $\Phi(x_1, \ldots, x_m)$ be an r-swlin map, for any permutation $\sigma \in S_r$, the mapping $\sigma \Phi : E^m \to T$, is *defined by*

$$
\sigma\Phi(x_1,\ldots,x_m)=\sum_{\mu,\nu}\lambda^{\mu}_{\nu}\sigma\phi(x_{\nu}^{\mu_1}e_{\nu},\ldots,x_{\nu}^{\mu_{r}}e_{\nu})=\sum_{\mu,\nu}\lambda^{\mu}_{\nu}\phi(x_{\nu}^{\sigma(\mu_1)}e_{\nu},\ldots,x_{\nu}^{\sigma(\mu_{r})}e_{\nu})
$$

Definition 3.2 An r-swlin map $\Phi(x_1,...,x_m)$ is said skewsymmetric if for any $\sigma \in S_r$ is $\sigma \Phi = \varepsilon_\sigma \Phi$ where $\varepsilon_{\sigma} = 1$ ($\varepsilon_{\sigma} = -1$) for any even (odd) permutation σ .

Theorem 3.1 An r-swlin map $\Phi = \sum \lambda_v^u \phi$ is skewsymmetric if and only if ϕ is skewsymmetric. Proof.Suppose ϕ skewsymmetric, then

$$
\sigma\Phi = \sum_{\mu,\nu} \lambda_{\nu}^{\mu} \sigma\phi(x_{\nu}^{\mu_1}e_{\nu}, \dots, x_{\nu}^{\mu_r}e_{\nu}) = \sum_{\mu,\nu} \lambda_{\nu}^{\mu} \varepsilon_{\sigma}\phi(x_{\nu}^{\mu_1}e_{\nu}, \dots, x_{\nu}^{\mu_r}e_{\nu}) = \varepsilon_{\sigma}\Phi
$$

Conversely, $\sigma \Phi = \varepsilon_{\sigma} \Phi$ implies

$$
\sum_{\mu,\nu}\lambda^\mu_\nu\sigma\phi=\sum_{\mu,\nu}\lambda^\mu_\nu\varepsilon_\sigma\phi
$$

so $\sum_{\mu,\nu} \lambda^{\mu}_{\nu} (\sigma \phi - \varepsilon_{\sigma} \phi) = 0$ for all $x^{\mu_1}_{\nu} e_{\nu}, \dots, x^{\mu_r}_{\nu} e_{\nu}$ v, \ldots, v μ $x_{v}^{\mu_1}e_{v},...,x_{v}^{\mu_r}e_{v}$, then $\sigma\phi=\varepsilon_{\sigma}\phi$. \Box

Theorem 3.2 Every r-swlin map $\Phi(x_1, \ldots, x_m)$ determines an r-swlinskewsymmetric map Ψ , given by

$$
\Psi = \sum_{\sigma} \varepsilon_{\sigma} \sigma \Phi = \sum_{\mu, \nu} \sum_{\sigma} \lambda_{\nu}^{\mu} \varepsilon_{\sigma} \sigma \phi(x_{\nu}^{\mu_1} e_{\nu}, \dots, x_{\nu}^{\mu_r} e_{\nu})
$$

where the second sum on right side is over all permutations $\sigma \in S_r$.

Proof. For any $\tau \in S$,

$$
\tau\Psi = \sum_{\mu,\nu} \tau(\sum_{\sigma} \lambda^{\mu}_{\nu} \varepsilon_{\sigma} \sigma \phi) = \sum_{\mu,\nu} \varepsilon_{\tau}(\sum_{\sigma} \lambda^{\mu}_{\nu} \varepsilon_{\sigma} \sigma \phi) = \varepsilon_{\tau}(\sum_{\mu,\nu} \sum_{\sigma} \lambda^{\mu}_{\nu} \varepsilon_{\sigma} \sigma \phi) = \varepsilon_{\tau} \Psi.
$$

Theorem 3.3 Let $\Phi = \sum_{\mu,\nu} \lambda_{\nu}^{\mu} \phi : E^m \to F$ be an r-swlinskewsymmetric map, then Φ is completely determined by its *values on a basis of E and by the constants* λ^{μ}_{ν} .

□

Proof. Let $\{e_v\}$ be a basis of E . Let $x^i = \sum_{\xi=1}^n x^i_{\xi}e_{\xi}$, $i = 1,...,m$ be vectors in E and $X = (x^i_{\xi})$, then $(x_1, ..., x_m) = \Phi(\sum x_{\varepsilon}^1 e_{\varepsilon}, ..., \sum x_{\varepsilon}^m e_{\varepsilon})$ $=1$ 1 =1 γ_1,\ldots,γ_m) – $\mathcal{L}\left(\sum_i\gamma_{\xi}\epsilon_{\xi},\ldots,\sum_i\gamma_{\xi}\epsilon_{\xi}\right)$ ξ ع سانح ξ $\Phi(x_1, ..., x_m) = \Phi(\sum_{\xi}^{n} x_{\xi}^1 e_{\xi}, ..., \sum_{\xi}^{n} x_{\xi}^m e_{\xi})$

$$
= \sum_{\mu,\nu} \lambda_{\nu}^{\mu} \phi \left(\left(\sum_{\xi=1}^{n} x_{\xi}^{\mu_{1}} e_{\xi} \right)_{\nu}, \dots, \left(\sum_{\xi=1}^{n} x_{\xi}^{\mu_{r}} e_{\xi} \right)_{\nu} \right) \qquad \nu \in I_{r}^{n}, \mu \in I_{r}^{m}
$$

\n
$$
= \sum_{\mu,\nu} \lambda_{\nu}^{\mu} \left(\sum_{\rho=\rho_{1},\dots,\rho_{r}} \varepsilon_{\rho} x_{\nu_{\rho_{1}}}^{\mu_{1}} \cdots x_{\nu_{\rho_{r}}}^{\mu_{r}} \phi(e_{\nu_{\rho_{1}}}, \dots, e_{\nu_{\rho_{1}}} \right) \qquad \rho \in S_{r}
$$

\n
$$
= \sum_{\mu,\nu} \lambda_{\nu}^{\mu} \mid X_{\nu}^{\mu} \mid \phi(e_{\nu_{1}}, \dots, e_{\nu_{r}})
$$

where X^{μ}_{ν} is the square submatrix of $\,X\,$ determined by rows indexed by $\,\nu\,$ and columns indexed by $\,\mu$.

Example 3.1 *Let* Φ : $(\mathfrak{R}^3)^3 \rightarrow \mathfrak{R}^3$ *be a 2-swlin skewsymmetric map defined by*

 $(i_1, i_2), (j_1, j_2) \in I$

 \in

$$
\Phi(x_1, x_2, x_3) = \sum_{(i_1, i_2), (j_1, j_2) \in I_2^3} \lambda_{i_1, i_2}^{j_1, j_2} \phi\begin{pmatrix} x_{i_1, j_1} & x_{i_1, j_2} \\ x_{i_2, j_1} & x_{i_2, j_2} \end{pmatrix}
$$

where $x_i = \sum_{k=1}^3\! x_{k,i} e_k \ \ \in \Re^3$ 3 $x_i = \sum_{k=1}^3 x_{k,i} e_k \in \Re^3$. Then

$$
\Phi(x_1, x_2, x_3) = \sum_{(i_1, i_2), (j_1, j_2) \in I_2^3} \lambda_{i_1, i_2}^{j_1, j_2} \phi(x_{i_1 j_1} e_{i_1} + x_{i_2 j_1} e_{i_2}, x_{i_1 j_2} e_{i_1} + x_{i_2 j_2} e_{i_2})
$$
\n
$$
= \sum_{(i_1, i_2), (j_1, j_2) \in I_2^3} \lambda_{i_1, i_2}^{j_1, j_2} \phi \begin{vmatrix} x_{i_1, j_1} & x_{i_1, j_2} \\ x_{i_2, j_1} & x_{i_2, j_2} \end{vmatrix} \phi(e_{i_1}, e_{i_2})
$$

Definition 3.3 Let $\{e_v\}$ be a basis of E, then an r-swlinskewsymmetric map $\Delta_E(x_1,...,x_m):E^m\to \Gamma$ $E_{E}(x_1, \ldots, x_m): E^m \to \Gamma$ such that *n* $\phi(e_{v_1},...,e_{v_r})=1$, $v \in I_r^n$, is said an r-determinant function.

The scalar $\ det_{r, \lambda} X = \sum_{\mu, \nu} \lambda^\mu_\nu \mid X^\mu_\nu \mid$ $det_{r,\lambda} X = \sum_{\mu,\nu} \lambda^\mu_\nu \mid X^\mu_\nu \mid$ will be said the (r,λ) -determinant of $\ X = (x^i_\xi)$, relative to the basis ${e_{\nu}}$. If $\lambda^{\mu}_{\nu} = |X^{\mu}_{\nu}|$ we denote $det_{r} X = |X|_{r} = \sum_{\mu,\nu} |X^{\mu}_{\nu}|^{2}$ $det_r X = |X|_r = \sum_{\mu,\nu} |X_{\nu}^{\mu}|^2$, see [2].

Example 3.2 *In order to obtain a non-trivial example of r-determinant function, consider a 2-swlin function* $\Phi = \sum_{\mu,\nu} \lambda_{\nu}^{\mu} \phi \;$ defined by

$$
\Phi(x_1,\ldots,x_m)=\sum_{\mu,\nu}\lambda^{\mu}_{\nu}\langle e^{*\mu_1},x^{\mu_1}_{\nu}e_{\nu}\rangle\cdots\langle e^{*\mu_r},x^{\mu_r}_{\nu}e_{\nu}\rangle
$$

thatis

$$
\phi(x_v^{\mu_1}e_v,...,x_v^{\mu_r}e_v) = \langle e^{*\mu_1}, x_v^{\mu_1}e_v \rangle \cdots \langle e^{*\mu_r}, x_v^{\mu_r}e_v \rangle
$$

where $\{e_{v}\}, \{e^{*v}\}$ e_v , $\{e^{iv}\}\$ are a pair of dual bases in *E* and $E^* = L(E) = \{f : f : E \to \Gamma, f\$ linear $\}$ respectively, with $\dim E = \dim E^* \geq r$. The bilinear function \langle , \rangle is non-degenerate and it is defined by

$$
\langle e^{*\mu_i}, x^{\mu_i}_ve_v\rangle = e^{*\mu_i}(x^{\mu_i}_ve_v)
$$

then

$$
\Phi(x_1, ..., x_m) = \sum_{\mu} \lambda_{\mu}^{\mu} \langle e^{*\mu_1}, x_{\mu_1}^{\mu_1} e_{\mu_1} \rangle \cdots \langle e^{*\mu_r}, x_{\mu_r}^{\mu_r} e_{\mu_r} \rangle
$$

$$
= \sum_{\mu}^{\mu} \lambda_{\mu}^{\mu} x_{\mu_1}^{\mu_1} \cdots x_{\mu_r}^{\mu_r}
$$

The set of the r-swlin maps is denoted by $SW(E^m, T)$. The exponential functor F , from linear spaces to sets, is defined by

$$
F(T) = SW(Em, T)
$$
 for any linear space T
\n
$$
\begin{cases}\nF(t): F(T) \to F(H) \\
F(t): \Phi \mapsto t\Phi\n\end{cases}
$$
 for any linear t : T \to H

The following proposition states the universality of the r-determinant function.

Theorem 3.4 $\;$ Let $\; \Delta_E = \sum_{\mu,\nu} \lambda^{\mu}_{\nu} \phi$: $E^{m} \rightarrow \Gamma$ $\mu_{\mu,\nu} \mathcal{X}^{\mu}_{\nu} \phi: E^m \to \Gamma$ be an r-determinant function in E , then for any r-swlinskewsymmetric mapping $\Theta = \sum_{\mu,\nu} \lambda_\nu^\mu \theta: E^m \to F$, there is an unique vector $\ f \in F$ such that

$$
\Theta(x_1, ..., x_m) = (\Delta_E(x_1, ..., x_m)(f) = \sum_{\mu,\nu} \lambda^{\mu} \mid X^{\mu} \mid f_{\nu} \qquad \mu \in I^m_r, \ \nu \in I^n_r, \ x_i \in E
$$

where f_{ν} are the components of the vector

$$
f = (\theta(e_{\nu_1^1}, \dots, e_{\nu_r^1}), \dots, \theta(e_{\nu_1^r}, \dots, e_{\nu_r^r}))
$$

and ν^i are the $\binom{n}{r}$ elements of I_r^n .

Proof. Let $\{e_i\}$, $i = 1, ..., n$ be a basis of E such that

$$
\Delta_E(x_1,...,x_m) = \sum_{\mu,\nu} \lambda^{\mu} \mid X^{\mu} \mid \phi(e_{v_1},...,e_{v_r}) = \sum_{\mu,\nu} \lambda^{\mu} \mid X^{\mu} \mid
$$

that is , $\phi(e_{v_1}, \ldots, e_{v_r}) = 1$.

Then, for any r-swlin skew symmetric map

$$
\Psi(x_1,...,x_m) = \sum_{\mu,\nu} \lambda^{\mu}_{\nu} | X^{\mu}_{\nu} | \psi = (\Delta_E(x_1,...,x_m))(f)
$$

itfollows

$$
\psi(e_{v_1},...,e_{v_r}) = \phi(e_{v_1},...,e_{v_r})\theta(e_{v_1},...,e_{v_r}) = 1 \cdot \theta(e_{v_1},...,e_{v_r})
$$

so Θ and Ψ have the same values on the basis $\{ e_\nu \}$ and by theorem 3.3 it follows $\Theta = \Psi$. \Box

If Δ_E and Δ_E are two r-determinant functions in E , then $\eta \Delta_E + \theta \Delta_E$, $\eta, \theta \in \Gamma$, is a r-determinant function too.

Let Δ_F be an r-determinant function in F and let $\psi : E \to F$ be a linear mapping of vector spaces, where $dim E = n$, $dim F = t$, then $\Delta_w : E^m \to \Gamma$ $\iota_{_{\mathscr{V}}} : E^{\textit{m}} \rightarrow \Gamma$, defined by

$$
\Delta_{\psi}(x_1,...,x_m) = \Delta_{F}(\psi x_1,...,\psi x_m) = \sum_{\mu,\tau} \lambda_{\tau}^{\mu} \phi_{F}((\psi x^{\mu_1})_{\tau},...,(\psi x^{\mu_r})_{\tau})
$$

is an r-determinant function in E , where $\phi_F:F^r\to \Gamma$ is an r-linear mapping on F , $\mu\in I^m_r, \ \tau\in I^t_r$ *r* $\mu \in I_r^m$, $\tau \in I_r^t$. By theorem 3.4, $\Delta_{_{W}} = \Delta_{_{F}}(f) = \sum_{\alpha} \lambda_{_{\tau}}^{\mu} |X_{_{V}}^{\tau}| f_{_{V}}$ $_{\tau }^{\mu }\mid X_{\nu }^{\tau }$ $\Delta_{\psi} = \Delta_{F}(f) = \sum_{\mu,\nu,\tau} \lambda_{\tau}^{\mu} | X_{\nu}^{\tau} | f_{\nu}$ for an unique vector $f = (f_{\nu})$.

Let Δ_F be another nonnullswilin skew symmetric map, then

$$
\Delta_F' = \Delta_F(g) = \sum_{\mu,\nu,\tau} \lambda_{\tau}^{\mu} | X_{\nu}^{\tau} | g_{\nu}
$$

and

$$
\Delta_{\psi} = \Delta_{\psi}(g) = (\Delta_F(f))(g) = \sum_{\mu,\nu,\tau} \lambda_{\tau}^{\mu} | X_{\nu}^{\tau} | f_{\nu} g_{\nu} = \Delta_F(f_{\nu})
$$

so the vector f does not depend on the choise of Δ_F^+ and it is determined by the map ψ , then the notation $f = det\psi$.

Example 3.3 Let ψ and A_{ψ} be a linear map and its matrix respectively, defined by

$$
\begin{cases} \psi : \Re^2 \to \Re^3 \\ \psi : (x, y) \mapsto (x, y, x + y) \end{cases} \qquad A_{\psi} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{pmatrix}
$$

besides let $\Delta_{\mathfrak{R}^3} : (\mathfrak{R}^3)^3 \to \mathfrak{R}$ $3\overline{)3}$ \mathfrak{R}_3 : $(\mathfrak{R}^3)^3 \to \mathfrak{R}$ be a 2-determinant function and $x_i \in \mathfrak{R}^2$, then

$$
\Delta_{\psi} = \Delta_{\mathfrak{R}^{3}}(\psi x_{1}, \psi x_{2}, \psi x_{3}) = \lambda^{12} \phi(\psi x_{1}, \psi x_{2}) + \lambda^{13} \phi(\psi x_{1}, \psi x_{3}) + \lambda^{23} \phi(\psi x_{2}, \psi x_{3})
$$
\n
$$
= \lambda^{12} \phi(\sum_{i=1}^{2} x_{i1} \psi e_{i}, \sum_{i=1}^{2} x_{i2} \psi e_{i}) + \lambda^{13} \phi(\sum_{i=1}^{2} x_{i1} \psi e_{i}, \sum_{i=1}^{2} x_{i3} \psi e_{i}) + \lambda^{23} \phi(\sum_{i=1}^{2} x_{i2} \psi e_{i}, \sum_{i=1}^{2} x_{i3} \psi e_{i})
$$
\n
$$
= \lambda^{12} |X^{12} | \phi(\psi e_{1}, \psi e_{2}) + \lambda^{13} |X^{13} | \phi(\psi e_{1}, \psi e_{2}) + \lambda^{23} |X^{23} | \phi(\psi e_{1}, \psi e_{2})
$$
\nwhere $|X^{ij}| = \begin{vmatrix} x_{1i} & x_{1j} \\ x_{2i} & x_{2j} \end{vmatrix}$. Since\n
$$
\phi(\psi e_{1}, \psi e_{2}) = \phi((1, 0, 1), (0, 1, 1)) = \lambda_{12} \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} + \lambda_{13} \begin{vmatrix} 1 & 0 \\ 1 & 1 \end{vmatrix} + \lambda_{23} \begin{vmatrix} 0 & 1 \\ 1 & 1 \end{vmatrix} = \lambda_{12} + \lambda_{13} - \lambda_{23}
$$

then

$$
\Delta_{\psi} = \lambda^{12} |X^{12}| \det_{2,\lambda} \psi + \lambda^{13} |X^{13}| \det_{2,\lambda} \psi + \lambda^{23} |X^{23}| \det_{2,\lambda} \psi = \Delta_{\mathfrak{R}^3} (\det_{2,\lambda} \psi)
$$

The expression for $det \psi$ may be obtained immediately by the matrix A_{ψ} , see [2]

$$
det_{2,\lambda} A_{\psi} = det_{2,\lambda} \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{pmatrix} = \lambda_{12} \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} + \lambda_{13} \begin{vmatrix} 1 & 0 \\ 1 & 1 \end{vmatrix} + \lambda_{23} \begin{vmatrix} 0 & 1 \\ 1 & 1 \end{vmatrix} = \lambda_{12} + \lambda_{13} - \lambda_{23}
$$

Theorem 3.5 Let $\psi: E \to F$ be a linear mapping and $A_{\psi} = (\alpha_{\nu}^{\tau})$ its matrix relative to the bases $\{e_{\nu}\}, \{f_{\tau}\}\$, $\nu = 1,\ldots, n$, $\tau = 1,\ldots, t$. Let $\Delta_F = \sum_{\mu,\tau} \lambda_\tau^\mu \phi_F : F^m \to \Gamma$ $\mu_{\mu,\tau} \mathcal{X}_{\tau}^{\mu} \phi_{F}: F$ $^{m} \to \Gamma$ be an r-determinant function. If $\phi_{F}(f_{\tau}^{~\mu_{1}}, \ldots, f_{\tau}^{~\mu_{r}})$ $=$ 1 τ $\phi_F(f_{\tau}^{\mu_1},...,f_{\tau}^{\mu_r})=1$, then

i)
\n
$$
\Delta_{\psi}(x_1, \dots, x_m) = \sum_{\mu, \tau} \lambda_{\tau}^{\mu} \left(\sum_{\nu} |X_{\nu}^{\mu}| |A_{\nu}^{\tau}| \right) \quad \mu \in I_r^m, \, \nu \in I_r^n, \, \tau \in I_r^t
$$
\nii)
\n
$$
\Delta_{\psi}(e_1, \dots, e_n) = \sum_{\nu, \tau} \lambda_{\tau}^{\nu} |A_{\nu}^{\tau}|
$$

where A_{ν}^{τ} is the submatrix of A determined by rows indexed by ν and columns indexed by τ , for *t* $r - r$ $v = v_1, \ldots, v_r \in I_r^n$, $\tau = \tau_1, \ldots, \tau_r \in I_r^t$. The vectors x_1, \ldots, x_m , relative to the basis $\{e_v\}$, are expressed by $x^{\mu} = \sum_{\nu=1}^{n} x_{\nu}^{\mu} e_{\nu}$, $\mu = 1,...,m$ and $X = (x_{\nu}^{\mu})$.

Proof. i)

$$
\Delta_{\psi}(x_{1},...,x_{m}) = \Delta_{F}(\psi x_{1},..., \psi x_{m}) = \Delta_{F}(\sum_{\nu=1}^{n} x_{\nu}^{1} \psi e_{\nu},..., \sum_{\nu=1}^{n} x_{\nu}^{m} \psi e_{\nu})
$$
\n
$$
= \Delta_{F}(\sum_{\nu=1}^{n} x_{\nu}^{1} \sum_{\tau=1}^{t} \alpha_{1}^{\tau} f_{\tau},..., \sum_{\nu=1}^{n} x_{\nu}^{m} \sum_{\tau=1}^{t} \alpha_{m}^{\tau} f_{\tau})
$$
\n
$$
= \Delta_{F}(\sum_{\tau=1}^{t} (\sum_{\nu=1}^{n} x_{\nu}^{1} \alpha_{\nu}^{\tau}) f_{\tau},..., \sum_{\tau=1}^{t} (\sum_{\nu=1}^{n} x_{\nu}^{m} \alpha_{\nu}^{\tau}) f_{\tau})
$$
\n
$$
= \sum_{\mu,\tau} \lambda_{\tau}^{\mu} \phi_{F}(((\sum_{\nu=1}^{n} x_{\nu}^{\mu_{1}} \alpha_{\nu}^{\tau}) f_{\tau}),..., ((\sum_{\nu=1}^{n} x_{\nu}^{\mu_{\nu}} \alpha_{\nu}^{\tau}) f_{\tau}) \qquad \tau \in I_{\tau}^{t}, \ \mu \in I_{\tau}^{m}
$$
\n
$$
= \sum_{\mu,\tau} \lambda_{\tau}^{\mu} (\sum_{\rho=\rho_{1},..., \rho_{r}} \varepsilon_{\rho} (\sum_{\nu=1}^{n} x_{\nu}^{\mu_{1}} \alpha_{\nu}^{\tau_{\rho_{1}}} \cdots (\sum_{\nu=1}^{n} x_{\nu}^{\mu_{r}} \alpha_{\nu}^{\tau_{\rho}})) \phi_{F} (f_{\tau}^{\rho_{1}},..., f_{\tau}^{\rho_{r}})
$$

 $\rho \in S_r$, by

$$
\sum_{\rho=\rho_1,...,\rho_r} \varepsilon_{\rho} \left(\sum_{\nu=1}^n x_{\nu}^{\mu_1} \alpha_{\nu}^{\tau_{\rho_1}} \right) \cdots \left(\sum_{\nu=1}^n x_{\nu}^{\mu_r} \alpha_{\nu}^{\tau_{\rho_r}} \right) = \sum_{\nu} |X_{\nu}^{\mu}| |A_{\nu}^{\tau}|
$$
 it follows i).

ii) It is a special case of i) for $X = I_n$.

The scalar $det_{r,\lambda} \psi = \sum_{\mu,\nu} \lambda_{\nu}^{\mu} \mid A_{\nu}^{\mu} \mid$ $det_{r,\lambda}\psi=\sum_{\mu,\nu}\lambda^{\mu}_{\nu}\mid A^{\mu}_{\nu}\mid$ will be called the (r,λ) -determinant of ψ , relative to the bases ${e_{\nu}}$, { ${f_{\mu}}$ }. If $\lambda^{\mu}_{\nu} = |A^{\mu}_{\nu}|$, then $\sum_{\mu,\nu} |A^{\mu}_{\nu}|^2$ will be denoted by $det_{\nu} \psi$ or $|\psi|_{\nu}$

Theorem 3.6 Let $\psi: E \to F$ and $\theta: F \to G$ be linear mappings of vector spaces. Let Δ_F be a determinant function in *F* . If x_1, \ldots, x_m are vectors in E , then

$$
\Delta_{\theta \circ \psi}(x_1, \dots, x_m) = \Delta_{\theta} \circ \Delta_{\psi}(x_1, \dots, x_m)
$$

Proof.

$$
\Delta_{\theta \circ \psi}(x_1, \dots, x_m) = \Delta_G(\theta \circ \psi(x_1, \dots, x_m)) = \Delta_{\theta}(\psi(x_1, \dots, \psi(x_m)) = \Delta_{\theta} \circ \Delta_{\psi}(x_1, \dots, x_m)
$$

4. The (t,k)-forms

Let \mathfrak{R}_p^n be the tangent space of \mathfrak{R}^n at the point p and let $(\mathfrak{R}_p^n)^*$ $\mathcal{D}_p^n)^*$ be the dual space. Let $\overline{\Lambda}^k(\mathfrak{R}^n_{p})^*$ *p* $\binom{k}{b}$ $(\Re^n_{p})^*$ be the linear space of the k-linear alternating maps $\phi:({\frak R}_p^n)^k\to{\frak R}$, then denote by $\Lambda^k_t({\frak R}_p^n)^*$ *p k* $\int_{t}^{k}(\Re_{p}^{n})^{*}$, with $k\leq t\leq n$, the set of all k-linear alternating maps $\phi: (\mathfrak{R}^n_p)^t \to \mathfrak{R}$. The set $\Lambda^k_t (\mathfrak{R}^n_p)^*$ *p k* $\int_t^{\infty} (\Re_{p}^{n})^{*}$, by the usual operations of functions, is a linear space. If ϕ_1, \ldots, ϕ_t belong to $(\mathfrak{R}^n_{\overline{p}})^*$ $\phi_p^{\,n})^*$, then an element $\,\phi_{\!1}\wedge\ldots\wedge\phi_{\!r}\in\Lambda^k_{\,r}(\mathfrak{R}^n_{\,p})^*\,$ *p* $\phi_1 \wedge \ldots \wedge \phi_t \in \Lambda_t^k(\mathfrak{R}_p^n)^*$ is obtained by setting

$$
(\phi_1 \wedge \ldots \wedge \phi_t)(v_1, \ldots, v_k) = det_{k,\lambda} \phi_i(v_j) = \begin{vmatrix} \phi_1(v_1) & \cdots & \phi_1(v_k) \\ \cdots & \cdots & \cdots \\ \phi_t(v_1) & \cdots & \phi_t(v_k) \end{vmatrix}
$$

where $i = 1, ..., t$, $j = 1, ..., k$ and $v_j \in \mathbb{R}^n$.

Observe that $\phi_1 \wedge \ldots \wedge \phi_t$ is k-linear and alternate.

Example 4.1 When ϕ_1, ϕ_2, ϕ_3 belong to $(\Re^3_p)^*$ p_p^3)* , an element $\phi_1\wedge\phi_2\wedge\phi_3\in\Lambda_3^2(\mathfrak{R}_p^3)^*$ is obtained by the 2-swlin skewsymmetric *map*

$$
(\phi_1 \wedge \phi_2 \wedge \phi_3)(v_1, v_2) = det_{2,\lambda} \phi_i(v_j) = \begin{vmatrix} \phi_1(v_1) & \phi_1(v_2) \\ \phi_2(v_1) & \phi_2(v_2) \\ \phi_3(v_1) & \phi_3(v_2) \end{vmatrix} = \sum_{i_1 < i_2} \lambda_{i_1 i_2} \begin{vmatrix} \phi_{i_1}(v_1) & \phi_{i_1}(v_2) \\ \phi_{i_2}(v_1) & \phi_{i_2}(v_2) \end{vmatrix}
$$

 $\in I_2^3, \lambda_{i_1 i_2} \in \mathfrak{R}$ 3 $(i_1, i_2) \in I_2^3$, $\lambda_{i_1 i}$

and $\phi_1 \wedge \phi_2 \wedge \phi_3$ is a bilinear alternating map on the vectors v_1, v_2 .

Let $x^i:\Re^n\to\Re$ be the function which assigns to each point of \Re^n its i^h -coordinate. Then $(dx^i)_{p}$ is a linear map in $(\mathfrak{R}^n)^*$ and the set $\{(dx^i)_p; i = 1,...,n\}$ is the dual basis of the standard $\{(e_i)_p\}$. The element $\binom{i_t}{p}$ *p* $(dx^{i_1})_p\wedge\cdots\wedge(dx^{i_t})_p$ is denoted by $(dx^{i_1}\wedge\cdots\wedge dx^{i_t})_p$ and belongs to $\Lambda^k_r(\mathfrak{R}^n_p)^*$ *p k* $\int_t^\epsilon (\mathfrak{R}_p^n)^*$.

Theorem 4.1 *The set* $\{(dx^{i_1} \wedge \cdots \wedge dx^{i_t})_p\}, i_1, \ldots, i_t \in I_t^n$ is a basis for $\Lambda_t^k(\mathfrak{R}_p^n)^*$ *p k* $\int_t^t (\Re_p^n)^*$. *Proof.* the elements of $\{(dx^{i_1}\wedge\cdots\wedge dx^{i_t})_p\}$ are linearly independent. In fact, suppose

$$
\sum_{i_1,\dots,i_t \in I_t^n} a_{i_1,\dots,i_t} dx^{i_1} \wedge \dots \wedge dx^{i_t} = 0
$$

then, for any $(e_{j_1},...,e_{j_k})$, with $j_1,...,j_k \in I_k^n$, it follows

$$
\sum_{i_1,\dots,i_t \in I_t^n} a_{i_1,\dots,i_t} dx^{i_1} \wedge \dots \wedge dx^{i_t} (e_{i_1},\dots,e_{i_k})
$$

$$
= \sum_{i_1,\dots,i_t \in I_l^n} a_{i_1,\dots,i_t} \begin{vmatrix} dx^{i_1} e_{i_1} & \cdots & dx^{i_1} e_{i_k} \\ \vdots & \vdots & \ddots & \vdots \\ dx^{i_t} e_{i_1} & \cdots & dx^{i_t} e_{i_k} \end{vmatrix}
$$

$$
= \sum_{i_1, \dots, i_t \in I_t^n} a_{i_1, \dots, i_t} \begin{vmatrix} \delta_{j_1}^{i_1} & \cdots & \delta_{j_k}^{i_1} \\ \vdots & \vdots & \ddots & \vdots \\ \delta_{j_1}^{i_1} & \cdots & \delta_{j_k}^{i_k} \end{vmatrix}
$$

=
$$
\sum_{i_1, \dots, i_t} \lambda_{r_1, \dots, r_t} a_{r_1, \dots, r_t} \qquad r_1, \dots, r_t \in (I_t^n)_{j_1, \dots, j_k}
$$

= 0

Without loss of generality, suppose $\lambda_{r_1,...,r_t}$ all equal, then the $\begin{pmatrix} r \ r \end{pmatrix}$ $\bigg)$ $\mathcal{L}_{\mathcal{L}}$ $\overline{}$ \setminus ſ *k n* equations *n* $j_1,...,j_k}$, $J_1,...,J_k$ $\subset I_k$ *n* $\sum_{r_1,\dots,r_t}a_{r_1,\dots,r_t}=0,r_1,\dots,r_t\in (I_t^n)_{j_1,\dots,j_k},\ j_1,\dots,j_k\in I_k^n$, are a linear omogeneous full rank system, so it has only the trivial solution. That is $a_{i_1,...,i_t} = 0$.

The set $\{(dx^{i_1}\wedge\cdots\wedge dx^{i_t})_p\}$ spans $\Lambda^k_t(\mathfrak{R}^n_p)^*$ *p k* $\pi_t^k({\mathfrak R}_p^n)^*$, in other words any $\phi \in \Lambda_t^k({\mathfrak R}_p^n)^*$ *p* $\phi \in \Lambda_t^k(\mathfrak{R}_p^n)^*$ may be written

$$
\phi = \sum_{i_1,\dots,i_t \in I_t^n} a_{i_1,\dots,i_t} dx^{i_1} \wedge \dots \wedge dx^{i_t} \qquad i_1,\dots,i_t \in I_t^n
$$

in fact, if

$$
\psi = \sum_{i_1,\dots,i_t \in I_t^n} \phi(e_{i_1},\dots,e_{i_t}) dx^{i_1} \wedge \dots \wedge dx^{i_t}
$$

then $\psi(e_{i_1},...,e_{i_t}) = \phi(e_{i_1},...,e_{i_t})$ for all $i_1,...,i_t \in I_t^n$, so $\psi = \phi$. Setting $\psi(e_{i_1},...,e_{i_t}) = a_{i_1,...,i_t}$, it follows the expression of ϕ .

The above proposition generalizes the known theorem about the basis $\{dx^{i_1}\wedge\cdots\wedge dx^{i_k}\}$ of the space $\Lambda^k\left(\mathfrak{R}_n^n\right)^*$ *p* $\binom{k}{x}$ $\binom{n}{p}$, see [1].

Theorem 4.2 *The linear spaces* $\Lambda_t^k(\mathfrak{R}_p^n)^*$ *p k* $\Lambda_t^k({\mathfrak R}_p^n)^*$ and $\Lambda^k({\mathfrak R}_p^n)^*$ *p* $\binom{k}{k}$ $(\Re^n_{p})^*$ coincide.

*Proof.*Let $\omega = (\phi_1 \wedge \cdots \wedge \phi_t)(v_1, \ldots, v_k) \in \Lambda_t^k(\mathfrak{R}_p^n)^*$ *p* $\omega = (\phi_1 \wedge \dots \wedge \phi_t)(v_1, \dots, v_k) \in \Lambda_t^k(\mathfrak{R}_{p}^n)^*$, then

$$
\omega = \sum_{i_1,\dots,i_k \in I_k^n} \lambda_{i_1,\dots,i_k} \begin{vmatrix} \phi_{i_1}(v_1) & \cdots & \phi_{i_1}(v_k) \\ \vdots & \vdots & \ddots \\ \phi_{i_k}(v_1) & \cdots & \phi_{i_k}(v_k) \end{vmatrix} = \sum_{i_1,\dots,i_k \in I_k^n} \lambda_{i_1,\dots,i_k}(\phi_1 \wedge \cdots \wedge \phi_k)(v_1,\dots,v_k)
$$

so $\omega \in \Lambda^k(\mathfrak{R}^n_{p})^*$ ω \in $\Lambda^k {(\mathfrak{R}^n_{p})}^*$. Conversely, let $\,0\,$ be the null function in $\,(\mathfrak{R}^n_{p})^*$ $\big(\mu_p\big)^*$, then any $\psi \in \Lambda^k({\mathfrak R}_p^n)^*$ $\psi \in \Lambda^k(\mathfrak{R}_p^n)^*$ may be written as

$$
\psi = (\psi_1 \wedge \cdots \wedge \psi_k)(v_1, \ldots, v_k) = (\psi_1 \wedge \cdots \wedge \psi_k \wedge 0 \wedge \ldots \wedge 0)(v_1, \ldots, v_k) \text{ so } \psi \in \Lambda_t^k(\mathfrak{R}_p^n)^*.
$$

If $\omega \in \Lambda_t^k(\mathfrak{R}_p^n)^*$ $\omega \in \Lambda_t^k(\mathfrak{R}_p^n)^*$, then ω may be decomposed by elements of $\Lambda_{t-j}^k(\mathfrak{R}_p^n)^*$ *p k* $\left(\mathfrak{R}^n_{p}\right)^*$, where $k\leq t-j\leq t$, in fact

Theorem 4.3 Let $\omega = (\phi_1 \wedge \ldots \wedge \phi_r)(v_1, \ldots, v_k) \in \Lambda^k(\mathfrak{R}^n_p)^*$ *p* $\omega = (\phi_1 \wedge \ldots \wedge \phi_r)(v_1, \ldots, v_k) \in \Lambda_t^k(\mathfrak{R}_p^n)^*$, then

$$
\omega = \frac{\lambda_{i_1,\dots,i_{t-j}}}{(t-k)\cdots(t-k-j+1)}\sum_{l_{t-j}^t}(\phi_{i_1}\wedge\ldots\wedge\phi_{i_{t-j}})(v_1,\ldots,v_k)
$$

Proof.

$$
\omega = \frac{\lambda_{i_1,\dots,i_{t-1}}}{(t-k)} \sum_{l_{t-1}^t} (\phi_{i_1} \wedge \dots \wedge \phi_{i_{t-1}})(v_1, \dots, v_k)
$$

= ...

$$
\frac{\lambda_{i_1,\dots,i_{t-j}}}{(t-k)\cdots(t-k-j+1)} \sum_{l_{t-j}^t} (\phi_{i_1} \wedge \dots \wedge \phi_{i_{t-j}})(v_1, \dots, v_k)
$$

indeed ω is the sum of $\begin{bmatrix} 1 \\ k \end{bmatrix}$ $\bigg)$ \setminus $\overline{}$ \setminus ſ *k t* determinants, the last right side has the same number $\overline{}$ $\bigg)$ \mathcal{L} $\overline{}$ \setminus ſ - $-j+$ $\overline{}$ $\bigg)$ \setminus $\overline{}$ \setminus \int t – $-k)\cdots(t-k-j+$ $-j+$ $t - j$ $t - j$ *k* $t - j$ $(t-k)\cdots(t-k-j)$ $t \cdots (t-j+2)$ $\qquad (t-j)(t-j+1)$ $(t - k) \cdots (t - k - j + 1)$ $(t - j + 2)$ \cdots \cdots

References

M.P. do Carmo *Differential Forms and Applications* Springer, Berlin, 1994.

- F. Fineschi, R. Giannetti *Adjoints of a matrix* Journal of Interdisciplinary Mathematics, Vol. 11 (2008), n.1, pp.39-65.
- W. Greub *Linear Algebra* Springer, New York, 1981.

W. Greub *Multilinear Algebra* Springer, New York, 1978.

S.MacLane, G. Birkhoff *Algebra* MacMillan, New York, 1975.

M.Marcus *Finite DimensionalMultilinear Algebra* Marcel Dekker, Inc. New York, 1973.

D. G. Northcott *Multilinear Algebra* Cambridge University Press, Cambridge, 1984.

S. Ovchinnikov *Max-Min Represenattion of Piecewise Linear Functions* Beiträgezur Algebra und Geometrie, Vol. 43 (2002), n.1,pp. 297-302.

□