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Abstract 
 
 

Based on discretely observed samples, this paper proposes local linear composite quantile regression 
estimation for time-dependent drift parameter of diffusion models. We verify the asymptotic bias, asymptotic 
variance and asymptotic normality of the local estimation proposed. The asymptotic relative efficiency of the 
local estimation with respect to local least squares estimation is discussed. The results show that the 
estimation proposed can be more efficient than the local least squares estimation for many commonly seen 
error distributions 
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1. Introduction 
 

Composite quantile regression (CQR) is proposed by Zou and Yuan (2008) for estimating regression 
coefficients in classical linear regression models. More recently, Kai el.(2010) considers a general non-parametric 
regression models by using CQR method. However, to our knowledge, little literature has researched parameter 
estimation by CQR in diffusion models. This motivates us to consider estimating regression coefficients under the 
framework of diffusion models. In this paper, we consider the diffusion model on a filtered probability space

0( , F,(F ) , )t t P , 
 
(1.1) ( ) ( ) ( ) ,t t t tdX t b X dt X dW    
 

where ( )t  is a time-dependent drift function and tW  is the standard Brownian motion. ( )b  and ( )   are known 
functions. Model (1.1) includes many famous option pricing models and interest rate term structure models, such as 
Black and Scholes(1973), Vasicek(1977), Ho and Lee(1986), Black, Derman and Toy (1990) and so on.  

                                                             
1This work was supported by grants from the National Natural Science Foundation of China(No. U1504701) and Program for 
Innovative Research Team(in Science and Technology)in University of Henan Province(No. 14IRTSTHN023). 
2 College of Mathematics and Information Science, Henan Normal University, 453007, Henan Province, P. R. China. 
3Corresponding author. Rm 711, Siyuan Bldg, 670 Guoshun Rd, Shanghai, P.R.China, 200433. TEL: 86-21-25011234. FAX: 86-
21-65642351. Email: yuewenxiao@fudan.edu.cn 



Ji-xia Wang & Yuewen Xiao                                                                                                                                       31 
 
 

 

We allow ( )t being smooth in time. The techniques that we employ here are based on local linear fitting 
(see Fan and Gijbels(1996)) for the time-dependent parameter. The rest of this paper is organized as follows. In 
Section 2, we propose the local linear composite quantile regression estimation for the drift parameter and study its 
asymptotic properties. The asymptotic relative efficiency of the local estimation with respect to local least squares 
estimation is discussed in Section 3. The proof of result is given in Section 4. 
 
2. Local estimation of the time-dependent parameter 
 

Let the data { , 1,2, , 1}
it

X i n  be equally sampled at discrete time points, 1 2 1.nt t t     Denote 

1 1
, ,

i i i i i it t t t t tY X X W W
 

    and 1 .i i it t   Due to the independent increment property of Brownian motion 
,tW

it
  are independent and normally distributed with mean zero and variance .i . Thus, the discretized version of 

the model (1.1) can be expressed as 
 
(2.1) ( ) ( ) ( ) ,

i i i it i t i t i tY t b X X Z      
 

where it
Z are independent and normally distributed with mean zero and variance 1 / i .The first-order discretized 

approximation error to the continuous-time model is extremely small according to the findings in Stanton (1997) and 
Fan and Zhang(2003), this simplifies the estimation procedure. 

 

Suppose the drift parameter ( )t to be twice continuously differentiable in t . We can take ( )t  to be local 

linear fitting. That is, for a given time point 0t , we use the approximation 
 

0 0 0(2.2) ( ) ( ) '( )( )t t t t t      
 

for t  in a small neighborhood of 0t . Let h  denote the size of the neighborhood and ( )K   be a nonnegative weighted 

function. h and ( )K   are the bandwidth parameter and kernel function, respectively. Denoting 0 0= ( )t  and 

1 0'( )t  , (2.2) can be expressed as 
 

0 1 0(2.3) ( ) ( )t t t     . 
 

Now we propose the local linear CQR estimation of the drift parameter ( )t . Let 

{ 0}( ) , 1,2, ,
k k rr r I k q       ,which are q  check loss functions at q quantile positions: 

=
1k

k
q


 . Thus, 

following the local CQR technique, ( )t  can be estimated via minimizing the locally weighted CQR loss 
 

1
0 1 0 0

1 1

(2.4) { { [ ( )] ( )} ( )}i

k i

q n
t

t k i h i
k i i

Y
b X t t K t t  

 

   
 

, 
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where
0

0( )= ( )i
h i

t tK t t K
h


 and h  is a properly selected bandwidth. Denote the minimizer of the locally weighted 

CQR loss (2.4) by 01 02 0 1
ˆ ˆ ˆ ˆ( , , , , )T

q    . Then, we let 
 

0 0
1

1ˆ ˆ(2.5) ( )
q

k
k

t
q

 


 
 

 

We refer to 0
ˆ( )t as the local linear CQR estimation of 0( )t , for a given time point 0t . To obtain the 

estimated function
ˆ( )  , we usually evaluate the estimations at hundreds of grid points. 

 
In order to discuss the asymptotic properties of the estimation, we introduce the following assumptions. 

Throughout this paper, M  denotes a positive generic constant independent of all other variables. 
 

(A1) The functions ( )b   and ( )  in model (1.1) are continuous. 
 

(A2) The kernel function ( )K  is a symmetric and Lipschitz continuous function with finite support 
[ , ]M M . 

 

(A3) The bandwidth = ( ) 0h h n  and 0nh  . 
 

Let ( )F   and ( )f  be the cumulative density function and probability density function of the error, 

respectively. ( )g  denotes the density function of time, usually a uniform distribution on time interval [ , ]a b . Define 
2( ) , ( ) , 1,2,j j

j ju K u du u K u du j     
 

 
and 
 

'
2

1 ' 1 '

1(2.6) ( )
(c ) (c )

q q
kk

k k k k

R q
q f f


 

  
 

 

where
1( )k kc F   and ' ' '=kk k k k k      . 

 

Theorem 2.1 Under assumptions (A1)-(A3), for a given time point 0t , the local CQR estimation 0
ˆ( )t  

from (2.5) satisfies, 
 

2 2
0 0 0 2

1ˆ(2.7) [ ( ) ] ( ) ''( ) ( )
2

E t t t h o h     
 

0

0

2
0

0 2
0

( )1 1ˆ(2.8) [ ( ) ] ( ) ( )
( ) ( )

t

t

X
Var t R q o

nh g t b X nh
 

  
 

 
and, as n  , 
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0

0

2
02

0 0 0 2
0

( )1ˆ(2.9) { ( ) ( ) ''( ) } (0, ( ))
2 ( ) ( )

t
L

t

X
nh t t t h N R q

g t b X
 

     
 

 

where L  means convergence in distribution. 
 

3. Asymptotic relative efficiency 
 

We discuss the asymptotic relative efficiency(ARE) of the local linear CQR estimation with respect to the 
local linear least squares estimation(see Fan and Gijbels(1996)) by comparing their mean-squared errors(MSE).From 

theorem 2.1, we obtain the MSE  0
ˆ( )t . That is, 

 

0

0

2
02 4

0 0 2 2
0

( )1 1 1ˆ(3.1) [ ( ) ] [ ''( ) ] ( ) ( )
2 ( ) ( )

t

t

X
MSE t t R q o h

nh g t b X nh
 

     
 

 
We obtain the optimal bandwidth via minimizing the MSE (3.1), denoted by 

 

0

0

2 1 1
0 5 5

0 2 2
0 0 2

( ) ( )
( ) ] [ ]

( ) ( )[ ''( ) ]
topt

t

X R q
h t n

g t b X t
 

 



. 

 

The MSE of the local linear least squares estimation of 0( )t  , denoted by 0
ˆ ( )LS t , is 

 

0

0

2
02 4 4

0 0 2 2
0

( )1 1 1ˆ(3.2) [ ( ) ] [ ''( ) ] ( )
2 ( ) ( )

t
LS

t

X
MSE t t h o h

nh g t b X nh
 

     
 

 
and the optimal bandwidth is 

 

0

0

2 1 1
0 5 5

0 2 2
0 0 2

( )
( ) ] [ ]

( ) ( )[ ''( ) ]
topt

LS
t

X
h t n

g t b X t
 

 



. 

 
By straightforward calculations, we have, as n  , 

 
4

0 5

0

ˆ[ ( ) ] [ '( )]ˆ[ ( ) ]
LSMSE t R q

MSE t






 
 
Thus, the ARE of the local linear CQR estimation with respect to the local linear least squares estimation is 

4
5

0 0
ˆ ˆ(3.3) ( ( ), ( )) [ ( )]LSARE t t R q 


  

 
(3.3) reveals that the ARE depends only on the error distribution. The ARE we obtained is equal to that in 

Kai el.(2010). 
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Table 3.1 displays 0 0
ˆ ˆ( ( ), ( ))LSARE t t   for some commonly seen error distributions. Table 1 in Kai 

el.(2010) can be seen as ARE for more error distributions. 
 

Table 3.1: Comparisons of 0 0
ˆ ˆ( ( ), ( ))LSARE t t   for the values of q  
 

Error 1 5q q   9 19q q   99q   
(0,1)N  0.6968  0.9339 0.96590.9858 0.9980 

Laplace 1.7411  1.2199 1.1548  1.0960 1.0296 
20.9 (0,1) 0.1 (0,10 )N N  4.0505  4.9128 4.70693.5444 1.1379 

 
From Table 3.1, we can see that the local linear CQR estimation is more efficient than the local linear least 

squares estimation when the error distribution is not standard normal distribution. When the error distribution is 

(0,1)N and 1,5,9,19,99q  , the 0 0
ˆ ˆ( ( ), ( ))LSARE t t   is very close to 1, which demonstrates that the local linear 

CQR estimation performs well when the error conforms to the standard normal distribution too. 
 

4. Proof of result 
 

In order to prove theorem 2.1, we first give some notations and lemmas. Let

11 12

21 22

S S
S

S S
 

  
  , and

11 12

21 22

  
      , where 11S  is a q q diagonal matrix with diagonal elements ( ), 1,2, ,kf c k q  ,

12 1 1 1 2 1( ( ), ( ), , ( ))T
qS f c f c f c    , 21 12

TS S  and 
22 2

1
( )

q

k
k

S f c


 
. 11 is a q q  matrix with ( , ')k k -

element 0 , ' , , ' 1,2, , ,k k k k q    12 1 ' 1 1 ' 1 ' 1 2 ' 1 ' 1 '( , , , )q q q T
k k k k k qk           

， 21 12= '  and 22 2 , ' 1 '
q
k k kk    . 

 

Furthermore, let
 0

0

'
0 0 1 0

( )
( ) , ( )

( )
t

k k k
t

X
u nh t c v h nh t

b X


   
       
   ,  

and

0
,

1 i
i k k

t tu v
hnh
    

  .Write

0

0

,

( ) ( )
( ) ( )

i

i

t t
i k k i

t t

X X
d c r

b X b X
      
    with 

'
0 0 0( ) ( ) ( )( )i i ir t t t t t      . 

Define ,i k 

 to be  , ( ) ( )t k i k t t ki i iZ c d b X X
I

    . Let 11 12 1 1( 1)( , , , , )T
n q qW w w w w    

   with

1 , 0
1

1 ( ), 1,2, ,
n

k i k h i
i

w K t t k q
nh

 



   
，and

0
1( 1) , 0

1 1

1 ( )
q n

i
q i k h i

k i

t tw K t t
hnh

 


 


 

. 
 

Lemma 4.1 Under assumption (A1)-(A3), minimizing (2.4) is equivalent to minimizing the following term: 
 

* *
, 0 , 0 0

n k ,
k 1 1 1 1 1

( ) ( )( )
( ) ( )

q q qn n
i k h i i k h i i

n k
i k i k

K t t K t t t t
L u v B

nh h nh
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1 (1)
2

T T
n nS W o    （ ）

 
 

with respect to 1 2=( , , , , )qu u u 
, where 
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12,11,
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  11

1
011, S

Xnh
Xb

ttKS
n

i t

t
ihn

i

i












 

 
, 

T
nn SS 12,21, 
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        Tq

n

i t

ti
ihn cfcfcf

Xnh
Xb

h
ttttKS

i

i ,,, 21
1

0
012, 











 
 

 
， 
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n

i t

ti
ih
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k
kn

i

i

Xnh
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h
ttttKcfS

1
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2
0

0
1

22,
)(


. 

 
The proof of lemma 4.1 is similar to lemma 2 and lemma 3 in Kai el.(2010). 

 
Proof of theorem 2.1 

 
Using the results of Parzen(1962), we have 
 

     0
0 0

1

1
jn

i
h i P jj

i

t t
K t t g t u

nh h


 

 
 

where P  means convergence in probability. Thus, 
 

   
 

   
 

0 0

0 0

0 0 11 12

21 22

t t
n P

t t

g t b X g t b X S S
S S

S SX X 
 

   
  . 

 
According to lemma 4.1, we have 

 

     
     1

2
1 *0

0

0
p

T
n

T

t

t oWS
X

Xbtg
L  




. 
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Since the convex function     
T

nn WL *  converges in probability to the convex function
   
  


S

X
Xbtg T

t

t

0

00

2
1

, according to the convexity lemma in Pollard(1991), for any compact set, the quadratic 

approximation to  L   holds uniformly for  . Thus, we have 
 

   
   1ˆ *10

0

0
pn

t

t
n oWS

X
Xbtg

 




. 
 

Define  ,
t ki

i k kz c
I 


 

 and   Tqqn wwwwW 1111211 ,,,    with

 1 , 0
1

1 , 1,2, ,
n

k i k h i
i

w K t t k q
nh




   
，and

   
h

ttttK
nh

w i
ih

q

k

n

i
kiq

0
0

1 1
,11

1 
 

 
 

. 
 
By using the central limit theorem and the Cramer-Wald theorem, we have 
 

( 1) ( 1)
( )(4.1) (0, I )

( )
n n

L q q
n

W E W N
Var W   




. 
 

Notice that '' ),(
,, kkkikiCov  

 and
0),( ',, 

kjkiCov 
If ji  . We have 

 

.)()()(1
0

0
0

1

2
jPj

j
i

i

n

i
h vtg

h
ttttK

nh





  
 
 

Thus, .)()( 0  tgWVar n . Combining the result (4.1), we have ))(,0( 0  tgNW Ln . Moreover, we have 

* 2 *
1 1 0 , ,

1

1( ) ( ) ( )
n

k k h i i k i k
i

Var w w K t t Var
nh

 


   
 

 

)1()]()
)(

)(||
()[(1 ,

0
1

2
pk

t

tki
ki

n

i
h cF

X
Xbd

cFttK
nh

i

i 


 
  

And 
 

* 2 *0
1( 1) 1( 1) 0 , ,

1 1

1( ) ( ) ( )
qn

i
q q h i i k i k

i k

t tVar w w K t t Var
nh h

  
 


    

 
 

).1()]()
)(

)(||
([max)( ,0

0
1
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2

pk
t

tki
kk

i
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n

i
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X
Xbd

cF
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Therefore, 
*( ) (1)n n pVar w w   . Using Slutsky's theorem yields 

*
0(0, ( ) ).n Lw N g t   
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Thus, 
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So the asymptotic bias of )(̂ Ot is: 
 

0 0

0 0
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1 11 1

1 0
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O k q n
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X X
bias t c e S E W
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0 0 0
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q qn
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k i k k
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X X d b X
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q b X g t b X f c Xq nh
 

  

 
    

  
  

where 
 

0 1( ), (1,1, 1)T
i h i qK K t t e    ， and 

T
qn wwwW ),...,( *
1

*
12

*
11

*
1  . 

 

Note that tiZ  is symmetric, thus 
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0
, and 
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1
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Therefore, 
 

 
Since 

 
 

 
We have 

 
 

 
and 
 

 
 
 
 
 
 
 
 

This completes the proof. 

0

0 10

( ) ( )1ˆ( ( )) (1 (1)).
( ) ( ) ( )

i

i

n
t i t

O i P
it t

X rb X
bias t K o

nh g t b X X





 

0

0

''
0 0 2

2
1

( ) ( ) ( ) ( )1 (1 (1)).
( ) 2 ( )

i

i

n
i t t

i P
i t t

rb X g t t b X
K h o

nh X X



 

 

'' 2 2
0 0 2

1ˆ( ( )) ( ) ( ).
2 Pbias t t h o h   

0

0

0

0

2
1 1

0 1 11 12 2
0

2
0

2
0

( )1 1 1ˆ[ ( )] ( ) ( )
( ) ( )

( )1 1( ) ( ).
( ) ( )

t T
q q p

t

t
p

t

X
Var t e S S e o

nh g t b X q nh

v X
R q o

nh g t b X nh






 
  

 





38                                                               American Review of Mathematics and Statistics, Vol. 4(2), December 2016 
 
 
References 
 
Black, F., Derman, E. and Toy, W.(1990).A one-factor model of interest rate and its application to treasury bond options. Finan. 

Analysts’ J., 46:33-39. 
Black,F. and Scholes, M. (1973). The pricing of options and corporate liabilities. J. Polit. Economy, 81:637-654. 
Fan, J. and Gijbels, I.(1996).Local polynomial modelling and its applications. Chapman and Hall, London. 
Fan, J., Jiang, J., Zhang, C. and Zhou, Z.(2003).Time-dependent diffusion models for term structure dynamics and the stock price 

volatility. Statistica Sinica, 13:965-992. 
Kai,B.,Li,R. and Zou, H.(2010).Local composite quantile regression smoothing: an efficient and safe alternative to local polynomial 

regression.J.R. Statist. Soc. B,72:49-69. 
Parzen, E.(1962).On estimation of a probability density function and model. Ann. Math. Statist., 33:1065-1076. 
Pollard, D.(1991).A symptotics for least absolute deviation regression estimations}.Econometr.Theory,7:186-199. 
Stanton,R.(1997).A nonparametric model of term structure dynamics and the market price of interest rate risk. J. Finance, 52:1973-

2002. 
Vasicek,O.A.(1977).An equilibrium characterization of the term structure. J. Finan. Econom., 5:177-188. 
Zou,H. and Yuan, M.(2008).Composite quantile regression and the oracle model selection theory.Ann. Statist.,36:1108-1126. 
T.A.Louis, Finding observed information using the EMl gorithm, J.Royal Stat.Soc, 1982, B44: 226-233. 

 


