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Abstract

Based on discretely observed samples, this paper proposes local linear composite quantile regression
estimation for time-dependent drift parameter of diffusion models. We verify the asymptotic bias, asymptotic
variance and asymptotic normality of the local estimation proposed. The asymptotic relative efficiency of the
local estimation with respect to local least squares estimation is discussed. The results show that the
estimation proposed can be more efficient than the local least squares estimation for many commonly seen
error distributions
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1. Introduction

Composite quantile regression (CQR) is proposed by Zou and Yuan (2008) for estimating regression
coefficients in classical linear regression models. More recently, Kai el.(2010) considers a general non-parametric
regression models by using CQR method. However, to our knowledge, little literature has researched parameter
estimation by CQR in diffusion models. This motivates us to consider estimating regression coefficients under the
framework of diffusion models. In this paper, we consider the diffusion model on a filtered probability space

(Q,F,(F)wso. P)
L1 dX, = AEO)b(X,)dt+ (X, )dW,,

whereﬁ (t) is a time-dependent drift function and W, is the standard Brownian motion. b() and () are known
functions. Model (1.1) includes many famous option pricing models and interest rate term structure models, such as
Black and Scholes(1973), Vasicek(1977), Ho and Lee(1986), Black, Derman and Toy (1990) and so on.
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We allow B being smooth in time. The techniques that we employ here are based on local linear fitting
(see Fan and Gijbels(1996)) for the time-dependent parameter. The rest of this paper is organized as follows. In
Section 2, we propose the local linear composite quantile regression estimation for the drift parameter and study its
asymptotic properties. The asymptotic relative efficiency of the local estimation with respect to local least squares
estimation is discussed in Section 3. The proof of result is given in Section 4.

2. Local estimation of the time-dependent parameter

t <t <<t

Let the data Xt =120+ T equally sampled at discrete time points, 1 Denote

Yti = Xti+1 - Xti ! 8ti :Wlm _Wti "and Ai = ti+1 —t

W, &, are independent and normally distributed with mean zero and variance Ai'. Thus, the discretized version of

the model (1.1) can be expressed as

i Due to the independent increment property of Brownian motion

21 Y, = BL)D(X)A, +0(X,)AZ,,

where Z‘i are independent and normally distributed with mean zero and variance 1A, .The first-order discretized
approximation error to the continuous-time model is extremely small according to the findings in Stanton (1997) and
Fan and Zhang(2003), this simplifies the estimation procedure.

Suppose the drift parameter B to be twice continuously differentiable in L. We can take B to be local

linear fitting. That is, for a given time point b , we use the approximation

(22) B = B(t)+ B (L) (E-1t)

fort in a small neighborhood of tO. Let N denote the size of the neighborhood and K() be a nonnegative weighted
function. N and K() are the bandwidth parameter and kernel function, respectively. Denoting Bo=Pto) and

Bi=p '(to) , (2.2) can be expressed as

(2.3) ﬁ(t)zﬁo'i'ﬁl(t_to).

Now we propose the local linear CQR estimation of the drift parameter B . Let
_k

T,=——

P (N=1r Tl k=129 which are 9 check loss functions at 9 quantile positions: a9+l Thys,

following the local CQR technique, B can be estimated via minimizing the locally weighted CQR loss

q n Y
(2.4) Z {prk{j[b(xti)]’l—ﬂw = Bt — 1) 3K, (6 — )}
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t -t
Kyt -t)=KE—2) | . |
where and ' is a properly selected bandwidth. Denote the minimizer of the locally weighted

5 h n T
CQR loss (2.4) by(’B‘”’ﬁOZ"””BOq’ﬁl) . Then, we let

%) f)=;2 b

We refer to LY as the local linear CQR estimation of'B (&) , for a given time point tO. To obtain the

estimated function B() , we usually evaluate the estimations at hundreds of grid points.

In order to discuss the asymptotic properties of the estimation, we introduce the following assumptions.
Throughout this paper, M denotes a positive generic constant independent of all other variables.

(A1) The functions b() and ) in model (1.1) are continuous.

(A2) The kernel function K() is a symmetric and Lipschitz continuous function with finite support
[_M ’ M ]

(A3) The bandwidth N=1(") = 0,n4 nh -0

Let F() and F() be the cumulative density function and probability density function of the error,
respectively. 9() denotes the density function of time, usually a uniform distribution on time interval [a, b]. Define
n :Iqu(u)du, v, :jquz(u)du, j=12,--

and

q

1 T,
2.6 R [ ke
@6 R@O=2 2t

N = _
¢, =F () Tae =T AT — Ty

where and

Theorem 2.1 Under assumptions (A1)-(A3), for a given time point t;, the local CQR estimation LY
from (2.5) satisfies,

27) ELA(L)1-B(t) = %ﬁ"(towzhz +o(h?)

1 VOGZ(XIO)

(28) Var[A(t,)]= ah 9(L)bA(X.)

R(@)+0(-)

and, as N > o
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o’(X,)

(29) nh{A(t)- ﬁ(t)——ﬁ"(t)uh}—nN(OW

R(a))
where "L means convergence in distribution.

3. Asymptotic relative efficiency

We discuss the asymptotic relative efficiency(ARE) of the local linear CQR estimation with respect to the
local linear least squares estimation(see Fan and Gijbels(1996)) by comparing their mean-squared errors(MSE).From

theorem 2.1, we obtain the MSE 'B(to) . That is,

1 voi(X,)

hm R(g) +o(h +—)

(D) MSE[A(t)1=E A"l +

We obtain the optimal bandwidth via minimizing the MSE (3.1), denoted by

o (XIRE
g(t)b* (X )[B ()T

h*(t) 1=

The MSE of the local linear least squares estimation of'B (&) , denoted by Bis (&) ,is

(32) MSE[BLS (t) 1= [%ﬁ "(to),uz]zh4 +%%

1
+o(h*+—
(h"+—0)
and the optimal bandwidth is

veo (X,) : -
9(t)b* (X I8 "(t) 1, T

hE (t) 1=

By straightforward calculations, we have, as n—owo.

MSE[,, (t,) ]

MSELA)] L

Thus, the ARE of the local linear CQR estimation with respect to the local linear least squares estimation is
4
(3.3) ARE(B(ty). Bis (L)) =[R(a)] °

(3.3) reveals that the ARE depends only on the error distribution. The ARE we obtained is equal to that in
Kai el.(2010).
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Table 3.1 displays ARE(B(%). Bis (1) for some commonly seen error distributions. Table 1 in Kai
el.(2010) can be seen as ARE for more error distributions.

Table 3.1: Comparisons of ARE (B (%), Bis (1) for the values of 4

Error q=1 q=5 q=9 q=19 q=99
N (0,1) 0.6968 0.9339 0.96590.9858 0.9980
Laplace 1.7411 1.2199 1.1548 1.0960 1.0296
0.9N(0,1) +0.1N (0,10%) | 4.0505 4.9128 4.70693 5444 1.1379

From Table 3.1, we can see that the local linear CQR estimation is more efficient than the local linear least
squares estimation when the error distribution is not standard normal distribution. When the error distribution is

N(0.1) and 97 159,19, 99, the ARE('B(tO)"BLS (to)) is very close to 1, which demonstrates that the local linear
CQR estimation performs well when the error conforms to the standard normal distribution too.

4. Proof of result
S11 S12 J
SZl S22 and

f(c)k=12:--,q

s [
In order to prove theorem 2.1, we first give some notations and lemmas. Let

ZZ 211 212
2, 2, S, . qxq . : :
, Where "1 s a diagonal matrix with diagonal elements

q
S, =) f(c) '
S = (1 F(C) T (C)+ pa f(C,)) Sa =S5 and “ Zé k CZis @ 9% matrix with (KK

VOTk k' k kl = 1, 2, T q, 212 = (V122'=171k-, Vlzg-ﬂfgk' TR VIZE.=1qu.)T , 221 2 2 VZZE,kElTkk‘ .

element 12 and

b(X,)

uk=ﬁ{ﬁ0k Bt -0 } =hnh {8, - B'(t,)}

Furthermore, let
(X,) o(X,)
Ay = ! (uk+ti_t°vj di,kzck{le _ZXO}H}
and ' \/m h Write ( ti) ( to) Wlth ﬁ(t) ﬁ(t) ﬁ(t )(t )

* I
Define U to be {Zt.sck*du,kb(xx,)/U(Xx,) Tk} Let ( 111 127 : qu’W(q+1)) with
Kyt —1),k=12,---,q l(q+l) zzka (t -
k =1 i=1

77.
*/_Z k , and

Lemma 4.1 Under assumption (A1)-(A3), minimizing (2.4) is equivalent to minimizing the following term

g i k ht |kKh ti_to ti_to \
Ln(e)=zuk{z%} 3y BBG L) 5 6, 0

k=1 i=1 k=1 i=1l
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_ %eTsne + (W0 +0,(1)

6=(u,u,,---,u,,v)

with respect to T , Where

;.. = kq f(c, )ilth(ti —to)(ti ;:0)2 n:((j)z;l(? ):l

The proof of lemma 4.1 is similar to lemma 2 and lemma 3 in Kai el.(2010).

Proof of theorem 2.1

Using the results of Parzen(1962), we have

19 t—t,)’
m;Kh(ti—to)( th) =5 9(t)u;

where P means convergence in probability. Thus,

g(to)b(xto)s _ g(to)b(Xto)[Sﬂ Slzj

o(X.) o(X.)

S, =

n

According to lemma 4.1, we have

L (0)- L9t P(X,)

* \T
2o, 0750+ W) 0+0,(1)
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*T
Since the convex function L"(Q)_(W") o converges in probability to the convex function
g(to)b(xto)e'rsg
o

1
2 ‘ : : : ,
° , according to the convexity lemma in Pollard(1991), for any compact set, the quadratic

approximation to L (9) holds uniformly for 0 . Thus, we have

A

n

g(to )b(xto )S 7]\Nn* + Op(l)
o\ X,

_ U
My = I{Z‘- <o} Tk and W, = (W111W121"'W1an1(q+1))

1 &L t—tO
\/—anKhtl tO k 1'2 q+1 erlleh h .

hkll—l

Define with

bl

By using the central limit theorem and the Cramer-Wald theorem, we have

(4.1) V%(\(/:’Nn))ﬂ N, g raqrn)

Ov(ni,kVUi'k') = Tkk. and COV(T]i‘k,T]j'k.) =

C 0 ;_;
Notice that IfI a J.We have

1L t,—t,)’
m;Kﬁ(ti _to)(I th) —p g(tO)Vj'

Thus, Var (W”) - g(tO)Z.. Combining the result (4.1), we have Wo =0 N ©, g(to )Z) . Moreover, we have

Var(w, —w, ) = p ZKﬁ(ti —t)\Var(m;, —m.,)
i1

1&, Idi [b(X,)
Sm;Kh(ti—to)[F(ck Tm) F(c)]l=0,(1)

And
Var(Wl(q+1) l(q+l))_ ZK (t-t) l °Var(z77.k Tix)

0 ¢y t—t, |d;, [b(X,)
S—;Kh(ti—to) h k[F(Ck+—G(XtI) )-F(c)]=0,().

>

Therefore, var(w, —w,) =0, (1) . Using Slutsky's theorem yields W, =, N(0.9(t)Z).
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Thus,

- o(X to)
g(t)b(X,))

n

STEW,)

Gz(xto) S_l

> NO,————5~—
9(t)b"(X,,)

So the asymptotic bias of B, )is:

bias(B(t,)) =

10(X,) 3 1 olXy) & < ixP(X,)
= Ck_ e Ki e — FCk— -F Ck y

qb(X,) & " gvnh g(to)b(Xto)Z‘ Z‘f(ck){ a(X,) )~ F()
K =K, _to)’eq 1 :(1’1"”’1)Tand Wl: = (Wl*l 1W1*21 - -Wlt;)T .

y 0
Note that Zyi iS S i ';Ck B
ymmetric, thus ,and
1 dyb(X,), nb(xy)
qklf K™ o(X,) )-F(c) |= G(th)(l+0p(l))-
Therefore,
ias( B _1 o(Xy) oy fPX) Since
bias(B(t,)) = o GE)B(X., );K. o (X,) (1+0,(2)).

1o

(X)) <

1 o(X)

TB0X,) &5 v gbXy)

S

(Su) "EW,,)

L&, (X)) 9B (X)) i
E,Z;'K' (X)) = ZG(XtO) pn*(1+0,(1)). We have
bias(A(t)) = B () ch” + 05 (h°). and
s 1 (X)) 1 P 1
Var[ﬁ(to)] _hm_z 1(S ZS )1leq><1+0p(m)
1 Voo-( to) 1
“hn b ) D0 )

This completes the proof.

where

37
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