American Review of Mathematics and Statistics June 2016, Vol. 4, No. 1, pp. 80-88 ISSN: 2374-2348 (Print), 2374-2356 (Online) Copyright © The Author(s).All Rights Reserved. Published by American Research Institute for Policy Development DOI: 10.15640/arms.v4n1a9 URL: https://doi.org/10.15640/arms.v4n1a9

On Lattice Properties of GV-Semi Groups

Yu Wang¹ and Yong Yu²

Abstract

The main aim of the paper is to characterize a GV-semi group *S* whose lattice of GV-sub semi groups is 0 modular or 0-distributive. First, a GV-semi group with 0-modular GV-sub semi group's lattice is considered. Then we investigated a GV-semi group with 0-distributive GV-sub semi group's lattice. Finally, the results on a completely regular semi group with 0-modular or 0-distributive completely regular sub semi groups lattice be obtained.

Keywords: GV-semi group, GV-sub semi group lattice, 0-modular, left (right) zero band

2000 Mathematics Subject Classification: Primary 20M10; Secondary 08A30.

1. Introduction and preliminaries

Semi group theory concerning the sub semi group lattices of semi groups has been investigated for the past quarter of a century, especially by prof Shevrin and his colleagues. Under the influence of them, many algebraists have begun today more attention to the subject. Most of these results can be found in [7].Using the similar way in [7], inverse semi groups for which the inverse sub semi groups lattice is distributive, modular were determined in [3] by Ershova. Moreover, eventually inverse semi groups with their eventually inverse sub semi groups lattice have been considered by Tian,Z,J in[9],[10],[11]. Considering completely regular semi groups and GV-semi groups with their respective type sub semi groups lattice have not been studied up to now, the authors apply some approaches in [7] to character GV-semi groups whose lattice of GV-sub semi groups is 0-modular or 0-distributive. Then the corresponding results on completely regular semi groups can be got similarly.

A semi group S is called eventually regular if for every element *a* of S there exists $m \in \mathbb{Z}^+$ (the set of positive integers) such that a^m is regular. We refer to r (a) as the least positive integer m such that a^m is regular. If every regular element of an eventually regular semi group *S* is completely regular, then *S* is called GV-semi group. For a completely regular semi group *S* , every regular element *a* of *S* exists and only exists an inverse of *a* which commutes with a . We usually denote the unique inverse of a by a^{-1} . Thus, a sub semi group A of $|S|$ is a completely regular sub semi group of S if $\bm{a}^{-1} \in A$ for any $\bm{a} \in A$. We get every regular element a of a GV-semi group S which is seen as the generalization of a completely regular semi group also exists and only exists an inverse of *a* which commutes with *a* .

 $\overline{}$ ¹Department of Mathematics, Anhui University of Science and Technology, Huainan, Anhui 232001, P. R. China. *E*-mail: wangyu4440185@126.com

²Department of Mathematics, Anhui University of Science and Technology, Huainan, Anhui 232001, P. R. China

Therefore, we refer to a^{-1} as the unique inverse of a . Let S be a GV-semi group and A is a sub semi group of S . We say that A is a GV-sub semi group of S if for any $\bm{a}\in A\cap\mathsf{Re}\ g\mathsf{S}$, $\bm{a}^{-1}\in A$. Obviously, A is a GVsub semi group of *S* if and only if $A \cap \text{Re } gS = \text{Re } gA$.

In the proof of the following lemma, The relations L^* , R^* and H^* on a semi group S are generalization of the familiar Greens relations *L* , *R* and *H* as in [4].

Lemma 1.1 *S* is a GV-semi group if and only if *S* is an eventually regular semi group and every regular element *a* of *S* has a unique inverse which commutes with *a* .

Proof. Let *S* be a GV-semi group, then *S* is eventually regular. For any $a \in \text{Re } gS = GS$, there exists $x \in S$ such that $a = axa$; $ax = xa$. Hence $y = xax \in V$ a $y = axax = xaxa = ya$. Now, we $\mathsf{suppose} \qquad \quad \mathsf{there} \qquad \quad \mathsf{exists} \quad \mathsf{z} \in \mathsf{V}\!\!\; \mathsf{a)} \qquad \quad \mathsf{such} \qquad \quad \mathsf{that} \qquad \quad \mathsf{a}\mathsf{z} \,=\, \mathsf{z}\mathsf{a} \qquad \quad \, , \qquad \quad \mathsf{therefore}$ $z = zaz = z^2a = z^2ayaya = z^2a^3y^2 = azazay^2 = ay^2 = y$;thus *a* has a unique inverse commuting with *a* .

Conversely, let *S* be an eventually regular semi group, then there exists $m = r(a)$ such that $a^m \in \text{Re } gS$ for any $a \in S$. Put $x \in V(a^m)$ such that $a^m x = xa^m \in Es$. Notice $a^m x = a^m x$, $(a^m x)a^m = a^m$, hence *a*^m \bm{R} ^{*m*} \bm{x} , thus *aR*^{*} *a*^{*m*} \bm{x} . Symmetrically, we have *aL*^{*} *a*^{*m*} \bm{x} . Thus *aH*^{*} *a*^{*m*} \bm{x} , that is, every *H*^{*} -class of *S* contains one idempotent. Consequently, we get *S* is a GV-semi group.

Suppose *S* is a GV-semi group and A a subset of S. We will denote by $\langle A \rangle$ the sub semi group of S generated by *A*, by*GV A* the GV-sub semi group of *S* generated by *A*, and by *SubGVS* the set of all GV-sub semi groups(including the empty set) of *S* . It is obvious that the set *SubGVS* forms a complete lattice with respect to intersection denoted by \land and union denoted by \lor , where $\frac{G}{A}$ B refers to the GV-sub semi group of S generated by the union of subsets A and B of S . Let X be a subset of S , we denote by $\langle X \rangle^{-1}$ as the set $\left\{x^{-1}: x \in \langle X \rangle \cap \text{Re } gS \right\}.$

For a completely regular semi group *S* ,*CR A* denotes the completely regular sub semi group of *S* generated by the subset of *A* of *S* and \overline{CRA} *B*) denotes the completely regular sub semi group of *S* generated by the union of subsets *A*, *B* of *S* . Obviously, we have the set *SubCRS* which refers to all completely regular sub semi groups (including the empty set) of *S* also forms a complete lattice with the operations \vee and \wedge , where $A \wedge B = A \cap B$, $A \vee B = \mathbb{C}R \langle A, B \rangle$.

A semi group S is called an epi group, if for any $a \in S$, there exists $n \in Z^+$ such that a^n lies in a subgroup of S . If an epi group S only has an idempotent, then it is named unipotent epi group. Given $e \in E$ s , \mathcal{G}_{e} denotes the maximal subgroup of a semi group *S* containing *e*and we put

$$
\mathcal{K}_{\varepsilon} = \left\{ x \in S: x^{n} \in \mathcal{G} \text{ for some } n \in \mathcal{Z}^{+} \right\}.
$$

Then we define the relation $\kappa\ =\ \bigcup_{e\in E}(\,K_{\!\!e} \times K_{\!\!e})$. The relation $\,\kappa$ is an equivalent relation on an epi group and $\bm{\mathit{K}}_e(\bm{e}\in E\!\mathbf{s})$ is called a unipotency class of S . Moreover, if S is a GV-semi group, then $\bm{\mathit{K}}_e~=~\bm{\mathit{H}}_e^*$ for any $e \in E$ s which is a sub semi group of *S*. A band *S* is named a left (right) zero band if $ab = d$ ab = b).

The following lemma will be used several times in the sequel.

Lemma 1.2 ([2]) Let *S* be a GV-semi group, then *S* is a band of unipotentepi groups $K_{\text{e}}(e \in E_s)$ if and only if the relation $\kappa\! (\text{ H}^\star)$ is congruence on S .

A lattice(L, \wedge, \vee) with zero is called 0-distributive, if for any $a, b, c \in L$, $a \wedge b = a \wedge c = 0$.A lattice(L, \wedge, \vee) is named 0-modular, if for any $a, b, c \in L$, $a \wedge b = 0, c \le a$ implies $a \wedge (b \wedge c) = c$. Although distributivity is stronger than modularity, there is no implicative relation between 0-distributive and 0 modular.

For the terminology and notation which is not given here, the reader is referred to [1],[4],[7].

2. The case of 0-modularity

A GV-semi group S is called a GU-band of GV-semi groups $S_\alpha(\alpha\in Y)$ if $S=\bigcup_{\alpha\in Y}S_\alpha$ is a band of S_α and xy , $yx \in G\!V\langle x\rangle \cup G\!V\langle y\rangle$ for any $x \in \mathcal{S}_\alpha, y \in \mathcal{S}_\beta$ with $\alpha\neq\beta$. Similarly, a completely regular semi group S is called a CU-band of completely regular semi groups $S_\alpha(\alpha\in\mathsf{Y})$ if $\mathsf{S}=\bigcup_{\alpha\in\mathsf{Y}}S_\alpha$ is a band of S_α and xy , $yx \in \textit{C\!R}\langle x \rangle \cup \textit{C\!R}\langle y \rangle$ for any $x \, \in \, \textit{S}_{_{\!\scriptscriptstyle\alpha}}$, $y \, \in \, \textit{S}_{_{\!\scriptscriptstyle\beta}}$ with $\alpha \, \in \, \beta$.

Lemma 2.1 Let *S* be a GV-semi group. If *SubGVS* is 0-modular, then $\{e, f\}$ is a left (right) zero band or chain for any $e, f \in E$ s with $e \neq f$.

Proof. First, we put $A = G\{e\}$, e , $B = G\{f\}$, $C = G\{e\}$ for any $e, f \in E$ s with $e \neq f$.

If $A \cap B = \phi$, Clearly $C \leq A$, the $G \vee (ef, e) \cap G \vee (ef, f) = G \vee (ef, e) = \{e\}$ by 0-modularity of *SubGVS*. Hence $G\text{/}\langle ef \rangle = e$, that is $ef = e$.

If $A \cap B \neq \emptyset$. It implies $f \in G\{vef, e\}$. Hence $G\{ve, f\} \subseteq G\{vef, e\}$, and so $GV\langle e, f \rangle = GV\langle ef, e \rangle$ by $GV\langle ef, e \rangle \subseteq GV\langle e, f \rangle$. Next we show *e* is a leftidentity of $GV\langle ef, e \rangle$. It is obvious that e is a left identity of \langle e f , $e\rangle$. For any $b\,\in\,\langle$ e f , $e\rangle^{-1}$, then there exists $a\,\in\,$ Re g S \cap \langle e f , $e\rangle$ such that $a^{-1} = b$ by the definition of $\langle ef, e \rangle^{-1}$. Hence $eb = ea^{-1} = ea^{-1}aa^{-1} = eaa^{-1}a^{-1} = a^{-1} = b$,

Thus*e* is also a left identity of \langle ef , e \rangle ⁻¹. Now put $A = \langle \langle$ ef , e \rangle , \langle ef , e \rangle ⁻¹ \rangle . For any $a_i \in A$, then there ${\sf exist}\, {\sf x}_1, \, {\sf x}_2, \, \ldots, \, {\sf x}_n \ \in \ \langle {\sf ef}\, \, ,{\sf e} \rangle \, \cup \, \langle {\sf ef}\, \, ,{\sf e} \rangle^{-1}$ with $\,n \, \in \, {\sf Z}^+$ such that $a_{\!1} \, = \, {\sf x}_1 {\sf x}_2, \, \ldots \, {\sf x}_n$. Notice that

 $eq_1 = ex_1x_2,... x_n = x_1x_2,... x_n = a_1$ by $ex_1 = x_1$.

Since $\bm e$ is a left identity of \langle e f , $\bm e\rangle\cup\langle$ e f , $\bm e\rangle$ $^{-1}$. It follows that $\bm e$ is a left identity of $\bm A$. Next suppose any $b_1 \in A_1^{-1}$, there exists $a_2 \in \text{Re } gS \cap A$ such that a_2^{-1} $a_2^{-1} = b_1$.Whence -1 – Ω^{-1} 2 2⁻¹ – Ω 2 2⁻¹2⁻¹ $eb_1 = ea_2^{-1} = ea_2^{-1}a_2a_2^{-1} = ea_2a_2^{-1}a_2^{-1} = b_{-1}$, that is, e is a left identity of A_1^{-1} . Similarly, we get e is a left identity of $\langle A \, A^{\negthinspace -} \rangle$.Repeating the procession, we can show e is a left identity of $G\!V\!\langle e\!f$, $e\rangle$. Therefore, e is a left identity of $GV\langle e, f \rangle = GV\langle ef, e \rangle$, and so $ef = f$.

By the above analysis, we get $\{e, f\}$ is a left(right) zero band or chain for any $e, f \in E$ s with $e \neq f$.

From the lemma 2.1, we have the auxiliary corollary easily.

Corollary 2.2 Let *S* be a GV-semi group whose *SubGVS* is 0-modular, then *E^S* is a band and Re *gS* is a completely regular sub semi group of *S* .

Lemma 2.3 Let *S* be a GV-semi group. If *SubGVS* is 0-modular, then

 $G(x, g) = G(x) \cup g$ For any $x \in K_{g}, e, g \in E$ s with $e \neq g$.

Proof. From lemma 2.1, we know $\{e, g\}$ is a left (right) zero band or chain for any $e, g \in E$ s with $e \neq g$, so we first consider the case that $\{e, g\}$ is a left zero band.

The assertion of the lemma is trivial if $x = e$, hence assume $x \in K_{e} \setminus \{e\}$.Next we show that g x, $xg \, \in \, \textsf{G} \textsf{V} \langle x \rangle \, \cup \, g \;$ for any $x \, \in \, \textsf{K}_e \setminus \big\{\textsf{e}\big\}$. First, suppose that

$$
gx \notin G\langle x \rangle \cup g
$$
 and put $A = G\langle gx, g \rangle$, $B = G\langle x \rangle$, $C = G\langle g \rangle = \{g\}$.

If $A \cap B = \phi$, Clearly $C \le A$, hence $G\langle gx, g \rangle \cap G\langle x, g \rangle = \{g\}$.It is obvious that $gx \in G\langle gx, g \rangle \cap G\langle x, g \rangle = \{g\}$, which contradicts the hypothesis, and so $A \cap B \neq \phi$. Furthermore, we get $\bm e\in$ $G\!V\!\langle g\!\mathsf{x},g\rangle$ by $\mathsf{x}\,\in\,\mathsf{K}_{_{\!\mathsf{e}}}$. Clearly, g is a left identity of $\langle g\!\mathsf{x},g\rangle$. We can prove g is also a left identity of $GV(gx, g)$ as the proof in lemma 2.1, hence $ge = e$. On the other hand, we get $ge = g$ since $\{e, g\}$ is a left zero band. Thus $g e = e = g$ which leads to a contradiction. Consequently, we have $gx \in G(X) \cup g$.

Next, suppose $xg \notin G\langle x \rangle \cup g$ and put

 $\overline{\mathcal{A}}\ =\ \mathsf{G}\mathsf{V}\langle \mathsf{xg},\,g\rangle$, $\overline{\mathsf{B}}\ =\ \mathsf{G}\mathsf{V}\langle \mathsf{x}\rangle$, $\overline{\mathsf{C}}\ =\ \mathsf{G}\mathsf{V}\langle g\rangle\ =\ \big\{\overline{g}\big\}$. If $\overline{\mathsf{A}}\ \cap\ \overline{\mathsf{B}}\ =\ \phi$,

then $G\text{V}(xg, g) \cap G\text{V}(x, g) = \{g\}$ by 0-modularity of $SubGVS$ and $C \leq A$. That $xg \in G\langle xg, g\rangle \cap G\langle x, g\rangle = \{g\}$ is obvious, hence it contradicts the hypothesis, and so $A\cap B\neq \phi$. For any $m > 1$, $m \in \mathcal{Z}^+$,we have

$$
(xg)^m = xgexg ... xg = xgx^{m-1}, (gx)^m = gexgx ... gx = gx^m.
$$

According to the above analysis, we have known $gx \in G\!V\langle x\rangle \cup g$, furthermore($gx)^m \in G\!V\langle x\rangle \cup g$ for any $m > 1$ with $m \in \mathbb{Z}^+$.

If
$$
gx \in G\lambda x
$$
, then $(gx)^{m-1} \in G\lambda x$, $(xg)^m = xgx^{m-1} = x(gx)^{m-1} \in G\lambda x$.

If $gx = g$, then $(xg)^m = x(gx)^{m-1} = xg$, hence xg is periodic. Analyzing the elements in (xg, g) , we have all the elements containing in it are g , $(xg)^t$, $g(xg)^t = (gx)^t$ for any $t \in Z^+$. Therefore $GV(xg, g) = \langle xg, g \rangle$ since $g (xg)^t$ and $g(xg)^t = (gx)^t$ are all periodic. Notice $GV(xg, g) \cap GV(x) \neq \emptyset$ and $(gx)^t$ $=$ g for any t \in $Z^{\scriptscriptstyle +}$, hence there exists m \in $Z^{\scriptscriptstyle +}$ such that ($xg)^m$ \in $G\!V\langle x\rangle$.It follows there exists $m \in \mathbb{Z}^+$ such that $(xy)^m \in G\langle x \rangle$ when $gx \in G\langle x \rangle \cup g$. Let $r(x) = n$. Then $xg = xge = (xgx^{m-1})x^{t_1+1}(x^n)^{-1} \in G\{X \}$ by $xgx^{m-1} = (xg)^m \in G\{X \}$. Hence, it contradicts the hypothesis and so $xg \in G\langle x \rangle \cup g$.

For any $\bm{a}\in$ $G\!V\!\langle \bm{\mathsf{x}}\rangle\subseteq\bm{\mathsf{K}}_{_{\!\theta}}$, then $\bm{a} g$, $\bm{g}\bm{a}\in$ $G\!V\!\langle \bm{a}\rangle\cup g\subseteq G\!V\!\langle \bm{\mathsf{x}}\rangle\cup g$ by the above analysis. Whence $G\langle X\rangle\cup g$ is a subsemi group of *S*, and so $G\langle X\rangle\cup g\in S\mathcal{U}$. It is obvious that $\langle x,g\rangle\subseteq G\langle x\rangle\cup g$, whence $G\ell\langle x,g\rangle\subseteq G\ell\langle x\rangle\cup g$ and clearly $G\ell\langle x,g\rangle\supseteq G\ell\langle x\rangle\cup g$, thus $G\ell\langle x,g\rangle=G\ell\langle x\rangle\cup g$. That $G\langle x, g \rangle = G\langle x \rangle \cup g$ can be proved similarly.

By lemma 2.1 and lemma 2.3, we can prove the following lemma.

Lemma 2.4 Let *S* be a GV-semi group and *SubGVS* is 0-modular, then

$$
xy, yx \in G\langle x \rangle \cup G\langle y \rangle
$$
 for any $x \in K_{\varepsilon}, y \in K_{\varepsilon}$ with $\varepsilon, f \in E_{S}, \varepsilon \neq f$.

Proof. First suppose there exist $\bm{a} \in \mathcal{K}_{_{\!\scriptscriptstyle\beta}}$, $\bm{b} \in \mathcal{K}_{_{\!\scriptscriptstyle\beta}}$ such that $\bm{a}\bm{b} \notin \mathcal{K}_{_{\!\scriptscriptstyle\beta}} \cup \mathcal{K}_{_{\!\scriptscriptstyle\gamma}}$ with

 e, f $\in E_{\rm s}, e \neq f$. Then there exists g $\in E_{\rm s} \setminus \{e, f\}$ such that $ab \in \mathcal{K}_g$. Hence

 $(ab)^n \in K_g$, $(ab)^n \notin K_g \cup K_f$ for any $n \in Z^+$. Put $A = G\vee\langle a, g \rangle$, $B = G\vee\langle b \rangle$, $C = G\vee\langle a \rangle$ By lemma 2.3, we get $A = G\sqrt{\langle a, g \rangle} = G\sqrt{\langle a \rangle} \cup g$. Hence

 $A \cap B \neq \phi$ and clearly $C \leq A$, and so $G\langle a, g \rangle \cap G\langle a, b \rangle = G\langle a \rangle$ by 0-modularity of *SubGVS*. **Notice**

$$
G\hat{U}\langle a,g\rangle\cap G\hat{U}\langle a,b\rangle = G\hat{U}\langle a,b\rangle\cap (G\hat{U}\langle a\rangle\cup g) = G\hat{U}\langle a\rangle\cup g
$$

Whence $G\langle a \rangle \cup g = G\langle a \rangle$, *i.e.* $g \in G\langle a \rangle$ and so it leads to a contradiction.

Thus $K_{\alpha}K_{\beta} \subseteq K_{\beta} \cup K_{\beta}$. Symmetrically, we can prove $K_{\beta}K_{\beta} \subseteq K_{\beta} \cup K_{\beta}$ for any $e, f \in \mathbb{E}$, $e \neq f$.

According to lemma 2.1, we have $ef = e$ or $ef = f$ for any $e, f \in E$ s with $e \neq f$. Next let $ef = e$ and assume there exist $a \in K_{\!_e}$, $b \in K_{\!_f}$ such that $ab \in K_{\!_f}$.Hence $af = (ab)b^{r(b)-1}(b^{r(b)})^{-1} \in K_{\!_f}G \ \subseteq G$ and since there exists $n \in \mathsf{Z}^+$ with $n \geq r(a)$ such that $a^n \in \mathsf{Z}^+$ a^n \in G _e, whence

$$
a^n f = aa \cdots f^n = (af)^n . a^n = a^n e
$$
 and $a^n ef = a^n f = (af)^n \in K$.

Therefore, $K_{\!\!\sigma} \, \cap \, K_{\!\!\sigma} \; \neq \, \phi$ by $a^n e f = a^n e = a^n \, \in \,$ a^n *ef* = a^n *e* = a^n \in $K_{\!\scriptscriptstyle \beta}$ which contradicts the fact

 $K_{\rm e} \cap K_{\rm f} = \phi$ with $e \neq f$. Thus $K_{\rm e} K_{\rm f} \subseteq K_{\rm e}$. Dually, we have $K_{\rm e} K_{\rm f} \subseteq K_{\rm f}$ when $ef = f$ for any $e, f \in E$ s with $e \neq f$.

Suppose $K_{\alpha} K_{\beta} \subseteq K_{\alpha}$ for any $e, f \in E$ s with $e \neq f$ and put

 $A = GV \langle xy, x \rangle, B = GV \langle y \rangle$ and $C = GV \langle x \rangle$ for any $x \in K_{\!\scriptscriptstyle\rm g}$, $y \in K_{\!\scriptscriptstyle\rm f}$. Obviously, $A \cap B = \phi$ and $C \leq A$, hence $G\langle xy, x \rangle \cap G\langle x, y \rangle = G\langle xy, x \rangle = G\langle x \rangle$

by the 0-modularity of *SubGVS*, and so $xy \in G/(x)$. Assume $K_{\alpha}K_{\alpha} \subseteq K_{\beta}$ for any $e, f \in E$ s with $e \neq f$ and put $A = GV \langle xy, x \rangle$, $B = GV \langle y \rangle$ and $C = GV \langle x \rangle$ for any $x \in K$ _e, $y \in K$ _f. Clearly, $A \cap B = \phi$ and $C \leq A$, whence we get

$$
G\langle xy, x \rangle \cap G\langle x, y \rangle = G\langle xy, y \rangle = G\langle y \rangle, \text{ whence } xy \in G\langle y \rangle \text{ and }
$$

 $xy \in G\langle x \rangle \cup G\langle y \rangle$. That $yx \in G\langle x \rangle \cup G\langle y \rangle$ can be proved dually.

By the above lemmas and lemma 1.2, we have the following lemma.

Corollary 2.5 Let *S* be a GV-semi group. If *SubGVS* is 0-modular, then

 $\kappa = \bigcup_{e \in E_S} (K_e \times K_e)$ is a congruence on *S* if and only if *S* is a band of unipotent epi groups $K_{\!\scriptscriptstyle \beta} \!\!\left(e\in E\!\!\left(s\right)\right)$.

By the above lemmas, we can state and verify the main theorem of the section.

Theorem 2.6 Let *S* be a GV-semi group. Then *SubGVS* is 0-modular if and only if *S* is a GU-band of unipotent epi groups $\mathcal{K}_{\!\scriptscriptstyle\beta}(\bm{e}\,\in\, E\!\mathbf{s})$.

Proof. The necessity can be easily proved by lemmas 2.1, 2.3 and 2.4.

To prove the sufficiency, let S be a GU-band of unipotentepi groups $\mathcal{K}_{\scriptscriptstyle\beta}(\bm{e}\in E\!\mathbf{s})$ and $A, B, C \in S$ ubGVS such that $A \cap B = \phi$, $C \leq A$. We can conclude *B* and *C* lie in two different unipotentepi groups by $C \cap B = \phi$. Hence

 $GV(B, C) = B \cup C$, and so $A \cap (B \vee C) = A \cap (B \cup C) = C$, thatis, *SubGVS* is 0-modular as required.

From the theorem, we can obtain the corresponding result on a completely regular semi group.

Theorem 2.7 Let *S* be a completely regular semi group, *SubCRS* is0-modular if and only if *S* is a CUband of the maximal subgroups $\boldsymbol{G}_{\!\!\rho}$ of S forall $\boldsymbol{e}\ \in\ \boldsymbol{E}$ s .

3. The case of 0-distributivity

Theorem 3.1 Let *S* be a GV-semi group and *SubGVS* 0-distributivity if and only

if $\{K_{\rm e}, K_{\rm e}\}\$ is a left(right) zero band or chain for any $e, f \in E$ s with $e \neq f$. To prove the theorem, we should use the following lemma.

Lemma 3.2 Let *S* be a GV-semi group and $\{K_{\alpha}, K_{\gamma}\}\$ a left (right) zero band or chain, then $K_{\scriptscriptstyle{e}} \vee K_{\scriptscriptstyle{f}} = K_{\scriptscriptstyle{e}} \cup K_{\scriptscriptstyle{f}}$ for any *e*, $f \in E$ s with $e \neq f$.

Proof. For any $\boldsymbol{a} \in \mathcal{K}_{_{\!\!\theta}}$, $\boldsymbol{b} \in \mathcal{K}_{_{\!\!f}}$ with any $\boldsymbol{e}, \boldsymbol{f} \in \mathcal{E}$, $\boldsymbol{e} \neq \boldsymbol{f}$, then

 $ab, ba \in K_{e} \cup K_{f}$ According to the fact that $\{K_{e}, K_{f}\}$ is a left (right) zero band or chain, hence

$$
\{K_{\scriptscriptstyle{\theta}},\,K_{\scriptscriptstyle{\theta}}\} \;=\; \mathcal{K}_{\scriptscriptstyle{\theta}} \;\cup\; \mathcal{K}_{\scriptscriptstyle{\theta}} \;,\text{ and so}\;\; \mathcal{K}_{\scriptscriptstyle{\theta}} \;\vee\; \mathcal{K}_{\scriptscriptstyle{\theta}} \;=\; \langle\mathcal{K}_{\scriptscriptstyle{\theta}},\, \mathcal{K}_{\scriptscriptstyle{\theta}}\,\rangle \;=\; \mathcal{K}_{\scriptscriptstyle{\theta}} \;\cup\; \mathcal{K}_{\scriptscriptstyle{\theta}} \;\text{ for}\;\; \mathcal{K}_{\scriptscriptstyle{\theta}} \;,\; \mathcal{K}_{\scriptscriptstyle{\theta}} \;\in\; \text{SubGS}.
$$

Now, we begin to prove theorem 3.1 using the above lemma.

Proof. To prove the necessity. We first put

 $A = GV (ef \rangle$, $B = GV (ef \rangle = \{e\}$, $C = GV (f \rangle = \{f\}$ for $e, f \in Es$ with $e \neq f$ and assume $A \cap B = A \cap C = \phi$, then $A \cap (B \vee C) = \mathsf{G}(\mathsf{e} f) \cap \mathsf{G}(\mathsf{e} f) = \phi$ by 0-modularity of *SubGVS*. Thus $A \cap B = \phi$ or $A \cap C = \phi$.

If $A \cap B = \phi$, that is, $e \in G\{F\}$. And there exists $g \in E$ s such that $\boldsymbol{\epsilon}$ $\boldsymbol{\epsilon}$ $\boldsymbol{\epsilon}$ $\boldsymbol{\epsilon}$ is a GV-semi group. Without loss of generality, assume $\boldsymbol{g} \neq \boldsymbol{e}$. Then $e \in G\!V\!\langle e\!f \rangle \subseteq K_g$ and $e \in K_{_{\!\theta}}$, hence $e \in K_g \cap K_{_{\!\theta}}$ with $\,g \neq e$, and so, it leads to a contradiction. Thus e = g , ef \in K_e . Dually, we can get $\,ef \in$ K_f when $\,$ A \cap $\,$ C $\,=$ $\,\phi$. Suppose there exist $\bm{a} \in \mathcal{K}_{_{\!\!\theta}}, \bm{b} \in \mathcal{K}_{_{\!\!f}}$ such that $\bm{a}\bm{b} \notin \mathcal{K}_{_{\!\!\theta}} \cup \mathcal{K}_{_{\!\!f}}$ with $e, f \in E s, e \neq f$.Then there exists $g \in E s \setminus \{e, f\}$ such that $\boldsymbol{a} \boldsymbol{b} \in \mathcal{K}_g$ and

 $(ab)^n \in$ $ab)^n \in K_g$ Since *S* is a GV-semi group. Hence $(ab)^n \notin K_g \cup K_f$ for any $n \in \mathbb{Z}^+$, and so $GV \langle ab \rangle \cap GV \langle a \rangle = GV \langle ab \rangle \cap GV \langle b \rangle = \phi$. By 0-modularity of *SubGVS*, we get $GV \langle ab \rangle \cap GV \langle a, b \rangle = \phi$. W ang & Yu 87

Obviously, it is a contradiction and so $K_{\epsilon}K_{f} \subseteq K_{\epsilon} \cup K_{f}$. Symmetrically, we can prove $K_{f}K_{\epsilon} \subseteq K_{\epsilon} \cup K_{f}$ for any $e, f \in E s$, $e \neq f$.

Let $ef \in K_e$ for any $e, f \in Es$ with $e \neq f$ and assume there exist

 $a \in K_{\rm e}$, $b \in K_{\rm f}$ such that $ab \in K_{\rm f}$. Hence $af = (ab)b^{r(b)-1}(b^{r(b)})^{-1} \in K_{\rm f}G_{\rm f} \subseteq G_{\rm f}$,

 $a^n f = aa \cdots f^n = (af)^n$, $a^n = a^n e$ and $a^n ef = a^n f = (af)^n \in K_f$ for any $n \ge r(a)$, hence $K_{\theta} \cap K_f \neq \phi$ by $a^n e f = a^n (ef) \in K_e$. Thus $K_e K_e \subseteq K_e$. By the same way, we have $K_e K_e \subseteq K_f$ if $ef \in K_f$ for any $e, f \in E_s$ with $e \neq f$. On the other hand, $K_{\!\scriptscriptstyle\rm g}$ is a subsemi group of S for any $e \in E s$ since S is a GV-semi group, therefore $K_{\epsilon} K_{e} \subseteq K_{e}$. Consequently, we have $\{K_{e}, K_{f}\}$ is aleft (right) zero band or chain for any $e, f \in Es$ with $e \neq f$.

Next To prove the sufficiency. Let $\vec{A} \cdot \vec{B} \cdot \vec{C} = \vec{S} \cdot \vec{B} \cdot \vec{B} = \vec{A} \cap \vec{C} = \vec{b}$, then $E_A \cap E_B = E_A \cap E_C \neq \phi$. For any $a \in A$, we have $e = a^{r(a)} (a^{r(a)})^{-1} \in A$, that is,

 $e \in E_A$ and $A \in K_e$, thus $A \subseteq \bigcup_{e \in E_A} K_e$. Dually, $B \subseteq \bigcup_{e \in E_B} K_e$ and $C \subseteq \bigcup_{e \in E_C} K_e$.

By lemma 3.2, we get $B\vee C\subseteq (\bigcup_{e\in E_A}K_e)\cup (\bigcup_{e\in E_C}K_e)$ by $\textstyle K_e\in$ SubGVS for any $e\in E$ s .Hence $(B \vee C) \subseteq \bigcup K_{\scriptscriptstyle \rho} \cap [(\bigcup K_{\scriptscriptstyle \rho}) \cup (\bigcup K_{\scriptscriptstyle \rho})]$ $A \cap (B \vee C) \subseteq \bigcup_{e \in E_A} K_e \cap [(\bigcup_{e \in E_B} K_e) \cup (\bigcup_{e \in E_C} K_e)] = \phi$ since $E_A \cap E_B = E_A \cap E_C = \phi$ and $e \neq f$ implies $K_{\scriptscriptstyle{e}} \cap K_{\scriptscriptstyle{f}} = \phi$. Thus $A \cap (B \vee C) = \phi$.

From the above theorem, we immediately obtain the next result on a completely regular semi group.

Theorem 3.3 For a completely regular semi group *S* , the lattice *SubCRS* is 0-distributive if and only if $\left\{ G_{e},G_{f}\right\}$ is a left (right) zero band or chain for any $e,f\in E$ s with $e\neq f$.

Acknowledgements

This research was supported by the the Anhui Natural Science Foundation (No. 1308085QA12)

References

Bogdanovic, S., Semi groups with a system of Subsemi groups, NoviSad University press, NoviSad, 1985.

Bogdanovic,S.andC.Miroslav, Semi lattices of Archimedean semi groups and(completely) π -regular semi groups, Filomat(Nis), 7, (1994),1-40.

Ershova,T., Inverse semi groups with certain types of inverse subsemi groups, Math.Zap.Ural.univ 7(1969),67-76.

Howie,J.M., Fundamentals of semi groups theory, Clarendon Press, Ox-ford,1995.

Petrich,M and N.R.Reilly, Completely regular semi group, Wiley, NewYork, 1999.

Shevrin,L.N.andA.J.ovsyannikov, Semi groups and their subsemi groups lattices,

Semi group Forum 27(1983), 1-154.

- Shevrin,L.N. and A.J.ovsyannikov, Semi groups and their subsemi grouplattices, Kluwer Academic Publishers, Dordrecht, 1996.
- Shiryaev, V.M., Semi groups with \land -semidistributivesubsemi group lattices, semi group forum 31(1985), 47-68.
- Tian,Z.J., π -inverse semi groups whose lattice of π -inverse subsemi groups iso-distributive or 0-modular, Semi group Forum 56(1998), 334-338.
- Tian,Z.J., Eventually inverse semi groups whose lattice of eventually inverse
- subsemi groups is \land -semidistributive, Semi group Forum 61(2000), 333-340.
- Tian,Z.J., Eventually inverse semi groups whose lattice of eventually inverse
- subsemi groups is semimodular, Semi group Forum 66(2003), 81-88.
- Tian,Z.J., π -inverse semi groups with theirsubsemi groups lattice(in chinese), Science Press, BeiJing, 2007.