American Review of Mathematics and Statistics June 2016, Vol. 4, No. 1, pp. 80-88 ISSN: 2374-2348 (Print), 2374-2356 (Online) Copyright © The Author(s).All Rights Reserved. Published by American Research Institute for Policy Development DOI: 10.15640/arms.v4n1a9 URL: https://doi.org/10.15640/arms.v4n1a9

On Lattice Properties of GV-Semi Groups

Yu Wang¹ and Yong Yu²

Abstract

The main aim of the paper is to characterize a GV-semi group *S* whose lattice of GV-sub semi groups is 0modular or 0-distributive. First, a GV-semi group with 0-modular GV-sub semi group's lattice is considered. Then we investigated a GV-semi group with 0-distributive GV-sub semi group's lattice. Finally, the results on a completely regular semi group with 0-modular or 0-distributive completely regular sub semi groups lattice be obtained.

Keywords: GV-semi group, GV-sub semi group lattice, 0-modular, left (right) zero band

2000 Mathematics Subject Classification: Primary 20M10; Secondary 08A30.

1. Introduction and preliminaries

Semi group theory concerning the sub semi group lattices of semi groups has been investigated for the past quarter of a century, especially by prof Shevrin and his colleagues. Under the influence of them, many algebraists have begun today more attention to the subject. Most of these results can be found in [7].Using the similar way in [7], inverse semi groups for which the inverse sub semi groups lattice is distributive, modular were determined in [3] by Ershova. Moreover, eventually inverse semi groups with their eventually inverse sub semi groups lattice have been considered by Tian,Z,J in[9],[10],[11]. Considering completely regular semi groups and GV-semi groups with their respective type sub semi groups lattice have not been studied up to now, the authors apply some approaches in [7] to character GV-semi groups whose lattice of GV-sub semi groups is 0-modular or 0-distributive. Then the corresponding results on completely regular semi groups can be got similarly.

A semi group *S* is called eventually regular if for every element *a* of *S* there exists $m \in Z^+$ (the set of positive integers) such that a^m is regular. We refer to r(a) as the least positive integer *m* such that a^m is regular. If every regular element of an eventually regular semi group *S* is completely regular, then *S* is called GV-semi group. For a completely regular semi group *S*, every regular element *a* of *S* exists and only exists an inverse of *a* which commutes with *a*. We usually denote the unique inverse of a by a^{-1} . Thus, a sub semi group *A* of *S* is a completely regular sub semi group of *S* if $a^{-1} \in A$ for any $a \in A$. We get every regular element *a* of a GV-semi group *S* which is seen as the generalization of a completely regular semi group also exists and only exists an inverse of *a* which commutes with *a*.

¹Department of Mathematics, Anhui University of Science and Technology, Huainan, Anhui 232001, P. R. China. *E*-mail: wangyu4440185@126.com

²Department of Mathematics, Anhui University of Science and Technology, Huainan, Anhui 232001, P. R. China

Therefore, we refer to a^{-1} as the unique inverse of a. Let S be a GV-semi group and A is a sub semi group of S. We say that A is a GV-sub semi group of S if for any $a \in A \cap \operatorname{Re} gS$, $a^{-1} \in A$. Obviously, A is a GV-sub semi group of S if and only if $A \cap \operatorname{Re} gS = \operatorname{Re} gA$.

In the proof of the following lemma, The relations L^* , R^* and H^* on a semi group S are generalization of the familiar Greens relations L, R and H as in [4].

Lemma 1.1*S* is a GV-semi group if and only if *S* is an eventually regular semi group and every regular element *a* of *S* has a unique inverse which commutes with *a*.

Proof. Let S be a GV-semi group, then S is eventually regular. For any $a \in \operatorname{Re} gS = G'S$, there exists $x \in S$ such that a = axa; ax = xa. Hence $y = xax \in V(a)$; ay = axax = xaxa = ya. Now, we suppose there exists $z \in V(a)$ such that az = za, therefore $z = zaz = z^2a = z^2ayaya = z^2a^3y^2 = azazay^2 = ay^2 = y$; thus a has a unique inverse commuting with a.

Conversely, let *S* be an eventually regular semi group, then there exists m = r(a) such that $a^m \in \text{Re } gS$ for any $a \in S$. Put $x \in V(a^m)$ such that $a^m x = xa^m \in Es$. Notice $a^m x = a^m x$, $(a^m x)a^m = a^m$, hence $a^m Ra^m x$, thus $aR^* a^m x$. Symmetrically, we have $aL^* a^m x$. Thus $aH^* a^m x$, that is, every H^* -class of *S* contains one idempotent. Consequently, we get *S* is a GV-semi group.

Suppose *S* is a GV-semi group and *A* a subset of *S*. We will denote by $\langle A \rangle$ the sub semi group of *S* generated by *A*, by $GV\langle A \rangle$ the GV-sub semi group of *S* generated by *A*, and by SubGVS the set of all GV-sub semi groups(including the empty set) of *S*. It is obvious that the set SubGVS forms a complete lattice with respect to intersection denoted by \wedge and union denoted by \vee , where $GV\langle A, B \rangle$ refers to the GV-sub semi group of *S* generated by the union of subsets *A* and *B* of *S*. Let *X* be a subset of *S*, we denote by $\langle X \rangle^{-1}$ as the set $\{x^{-1} : x \in \langle X \rangle \cap \operatorname{Re} gS\}$.

For a completely regular semi group S, OR(A) denotes the completely regular sub semi group of S generated by the subset of A of S and OR(A, B) denotes the completely regular sub semi group of S generated by the union of subsets A, B of S. Obviously, we have the set SubCRS which refers to all completely regular sub semi groups (including the empty set) of S also forms a complete lattice with the operations \lor and \land , where $A \land B = A \cap B$, $A \lor B = OR(A, B)$.

A semi group *S* is called an epi group, if for any $a \in S$, there exists $n \in Z^+$ such that a^n lies in a subgroup of *S*. If an epi group *S* only has an idempotent, then it is named unipotent epi group. Given $e \in E_S$, G_e denotes the maximal subgroup of a semi group *S* containing e and we put

$$\mathcal{K}_{\!_E} = \left\{ x \in \mathsf{S} : x^n \in G_\!_{\!\!\!e} \textit{for some } n \in Z^+
ight\}$$
,

Then we define the relation $\kappa = \bigcup_{e \in E} (K_e \times K_e)$. The relation κ is an equivalent relation on an epi group and $K_e (e \in Es)$ is called a unipotency class of S. Moreover, if S is a GV-semi group, then $K_e = H_e^*$ for any $e \in Es$ which is a sub semi group of S. A band S is named a left (right) zero band if ab = a(ab = b).

The following lemma will be used several times in the sequel.

Lemma 1.2 ([2]) Let *S* be a GV-semi group, then *S* is a band of unipotentepi groups $K_e(e \in Es)$ if and only if the relation $\kappa(H^*)$ is congruence on *S*.

A lattice (L, \land, \lor) with zero is called 0-distributive, if for any $a, b, c \in L$, $a \land b = a \land c = 0$. A lattice (L, \land, \lor) is named 0-modular, if for any $a, b, c \in L$, $a \land b = 0, c \leq a$ implies $a \land (b \land c) = c$. Although distributivity is stronger than modularity, there is no implicative relation between 0-distributive and 0 - modular.

For the terminology and notation which is not given here, the reader is referred to [1],[4],[7].

2. The case of 0-modularity

A GV-semi group *S* is called a GU-band of GV-semi groups $S_{\alpha}(\alpha \in Y)$ if $S = \bigcup_{\alpha \in Y} S_{\alpha}$ is a band of S_{α} and xy, $yx \in GV\langle x \rangle \cup GV\langle y \rangle$ for any $x \in S_{\alpha}$, $y \in S_{\beta}$ with $\alpha \neq \beta$. Similarly, a completely regular semi group *S* is called a CU-band of completely regular semi groups $S_{\alpha}(\alpha \in Y)$ if $S = \bigcup_{\alpha \in Y} S_{\alpha}$ is a band of S_{α} and xy, $yx \in GR\langle x \rangle \cup GR\langle y \rangle$ for any $x \in S_{\alpha}$, $y \in S_{\beta}$ with $\alpha \in \beta$.

Lemma 2.1 Let *S* be a GV-semi group. If *SubGVS* is 0-modular, then $\{e, f\}$ is a left (right) zero band or chain for any $e, f \in Es$ with $e \neq f$.

Proof. First, we put $A = GV \langle ef, e \rangle$, $B = GV \langle f \rangle = \{f\}$, $C = GV \langle e \rangle = \{e\}$ for any $e, f \in Es$ with $e \neq f$.

If $A \cap B = \phi$, Clearly $C \leq A$, the $GV \langle ef, e \rangle \cap GV \langle e, f \rangle = GV \langle ef, e \rangle = \{e\}$ by 0-modularity of SubGVS. Hence $GV \langle ef \rangle = e$, that is ef = e.

If $A \cap B \neq \phi$. It implies $f \in GV\langle ef, e \rangle$. Hence $GV\langle e, f \rangle \subseteq GV\langle ef, e \rangle$, and so $GV\langle e, f \rangle = GV\langle ef, e \rangle$ by $GV\langle ef, e \rangle \subseteq GV\langle e, f \rangle$. Next we show e is a left identity of $GV\langle ef, e \rangle$. It is obvious that e is a left identity of $\langle ef, e \rangle$. For any $b \in \langle ef, e \rangle^{-1}$, then there exists $a \in \text{Re } gS \cap \langle ef, e \rangle$ such that $a^{-1} = b$ by the definition of $\langle ef, e \rangle^{-1}$. Hence $eb = ea^{-1} = ea^{-1}aa^{-1} = eaa^{-1}a^{-1} = a^{-1} = b$,

Thus e is also a left identity of $\langle ef, e \rangle^{-1}$. Now put $A_1 = \langle \langle ef, e \rangle, \langle ef, e \rangle^{-1} \rangle$. For any $a_1 \in A_1$, then there exist $x_1, x_2, \ldots, x_n \in \langle ef, e \rangle \cup \langle ef, e \rangle^{-1}$ with $n \in Z^+$ such that $a_1 = x_1 x_2, \ldots, x_n$. Notice that

 $ea_1 = ex_1x_2, \dots x_n = x_1x_2, \dots x_n = a_1$ by $ex_1 = x_1$.

Since e is a left identity of $\langle ef, e \rangle \cup \langle ef, e \rangle^{-1}$. It follows that e is a left identity of A. Next suppose any $b_1 \in A_1^{-1}$, there exists $a_2 \in \operatorname{Re} gS \cap A_1$ such that $a_2^{-1} = b_1$. Whence $eb_1 = ea_2^{-1} = ea_2^{-1}a_2a_2^{-1} = ea_2a_2^{-1}a_2^{-1} = b_{-1}$, that is, e is a left identity of A_1^{-1} . Similarly, we get e is a left identity of $\langle A, A_1^{-1} \rangle$. Repeating the procession, we can show e is a left identity of $GV\langle ef, e \rangle$. Therefore, e is a left identity of $GV\langle ef, f \rangle = GV\langle ef, e \rangle$, and so ef = f.

By the above analysis, we get $\{e, f\}$ is a left(right) zero band or chain for any $e, f \in E$ with $e \neq f$.

From the lemma 2.1, we have the auxiliary corollary easily.

Corollary 2.2 Let *S* be a GV-semi group whose *SubGVS* is 0-modular, then E_s is a band and Re *gS* is a completely regular sub semi group of *S*.

Lemma 2.3 Let S be a GV-semi group. If SubGVS is 0-modular, then

 $G(x, g) = G(x) \cup g$ For any $x \in K_e$, $e, g \in E_s$ with $e \neq g$.

Proof. From lemma 2.1, we know $\{e, g\}$ is a left (right) zero band or chain for any $e, g \in E$ with $e \neq g$, so we first consider the case that $\{e, g\}$ is a left zero band.

The assertion of the lemma is trivial if x = e, hence assume $x \in K_e \setminus \{e\}$. Next we show that $gx, xg \in GV(x) \cup g$ for any $x \in K_e \setminus \{e\}$. First, suppose that

$$gx \notin GV\langle x \rangle \cup g$$
 and put $A = GV\langle gx, g \rangle$, $B = GV\langle x \rangle$, $C = GV\langle g \rangle = \{g\}$.

If $A \cap B = \phi$, Clearly $C \leq A$, hence $GV\langle gx, g \rangle \cap GV\langle x, g \rangle = \{g\}$. It is obvious that $gx \in GV\langle gx, g \rangle \cap GV\langle x, g \rangle = \{g\}$, which contradicts the hypothesis, and so $A \cap B \neq \phi$. Furthermore, we get $e \in GV\langle gx, g \rangle$ by $x \in K_e$. Clearly, g is a left identity of $\langle gx, g \rangle$. We can prove g is also a left identity of $GV\langle gx, g \rangle$ as the proof in lemma 2.1, hence ge = e. On the other hand, we get ge = g since $\{e, g\}$ is a left zero band. Thus ge = e = g which leads to a contradiction. Consequently, we have $gx \in GV\langle x \rangle \cup g$.

Next, suppose $xg \notin GV(x) \cup g$ and put

$$\dot{A} = GV\langle xg,g\rangle$$
, $\dot{B} = GV\langle x\rangle$, $\dot{C} = GV\langle g\rangle = \{g\}$. If $\dot{A} \cap \dot{B} = \phi$,

then $GV\langle xg, g \rangle \cap GV\langle x, g \rangle = \{g\}$ by 0-modularity of SubGVS and $C' \leq A'$. That $xg \in GV\langle xg, g \rangle \cap GV\langle x, g \rangle = \{g\}$ is obvious, hence it contradicts the hypothesis, and so $A' \cap B' \neq \phi$. For any $m > 1, m \in Z^+$, we have

$$(xg)^m = xgexg...xg = xgx^{m-1}, (gx)^m = gexgx...gx = gx^m$$

According to the above analysis, we have known $gx \in GV(x) \cup g$, furthermore $(gx)^m \in GV(x) \cup g$ for any m > 1 with $m \in Z^+$.

If
$$gx \in GV\langle x \rangle$$
, then $(gx)^{m-1} \in GV\langle x \rangle$, $(xg)^m = xgx^{m-1} = x(gx)^{m-1} \in GV\langle x \rangle$.

If gx = g, then $(xg)^m = x(gx)^{m-1} = xg$, hence xg is periodic. Analyzing the elements in $\langle xg, g \rangle$, we have all the elements containing in it are g, $(xg)^t$, $g(xg)^t = (gx)^t$ for any $t \in Z^+$. Therefore $GV\langle xg, g \rangle = \langle xg, g \rangle$ since $g (xg)^t$ and $g(xg)^t = (gx)^t$ are all periodic. Notice $GV\langle xg, g \rangle \cap GV\langle x \rangle \neq \phi$ and $(gx)^t = g$ for any $t \in Z^+$, hence there exists $m \in Z^+$ such that $(xg)^m \in GV\langle x \rangle$. It follows there exists $m \in Z^+$ such that $(xg)^m \in GV\langle x \rangle \cup g$. Let r(x) = n. Then $xg = xge = (xgx^{m-1})x^{t_1+1}(x^n)^{-1} \in GV\langle x \rangle$ by $xgx^{m-1} = (xg)^m \in GV\langle x \rangle$. Hence, it contradicts the hypothesis and so $xg \in GV\langle x \rangle \cup g$.

For any $a \in GV\langle x \rangle \subseteq K_{g}$, then $ag, ga \in GV\langle a \rangle \cup g \subseteq GV\langle x \rangle \cup g$ by the above analysis. Whence $GV\langle x \rangle \cup g$ is a subsemi group of S, and so $GV\langle x \rangle \cup g \in SubGVS$. It is obvious that $\langle x, g \rangle \subseteq GV\langle x \rangle \cup g$, whence $GV\langle x, g \rangle \subseteq GV\langle x \rangle \cup g$ and clearly $GV\langle x, g \rangle \supseteq GV\langle x \rangle \cup g$, thus $GV\langle x, g \rangle = GV\langle x \rangle \cup g$. That $GV\langle x, g \rangle = GV\langle x \rangle \cup g$ can be proved similarly.

By lemma 2.1 and lemma 2.3, we can prove the following lemma.

Lemma 2.4 Let S be a GV-semi group and SubGVS is 0-modular, then

$$xy, yx \in GV\langle x \rangle \cup GV\langle y \rangle$$
 for any $x \in K_e, y \in K_f$ with $e, f \in Es, e \neq f$.

Proof. First suppose there exist $a \in K_{a}$, $b \in K_{f}$ such that $ab \notin K_{a} \cup K_{f}$ with

 $e, f \in E_s, e \neq f$. Then there exists $g \in E_s \setminus \{e, f\}$ such that $ab \in K_a$. Hence

 $(ab)^n \in K_g, (ab)^n \notin K_e \cup K_f$ for any $n \in Z^+$. Put $A = GV\langle a, g \rangle$, $B = GV\langle b \rangle$, $C = GV\langle a \rangle$ By lemma 2.3, we get $A = GV\langle a, g \rangle = GV\langle a \rangle \cup g$. Hence

 $A \cap B \neq \phi$ and clearly $C \leq A$, and so $GV\langle a, g \rangle \cap GV\langle a, b \rangle = GV\langle a \rangle$ by 0-modularity of SubGVS. Notice

$$\mathsf{GV}\!\langle a,g
angle \cap \mathsf{GV}\!\langle a,b
angle = \mathsf{GV}\!\langle a,b
angle \cap (\mathsf{GV}\!\langle a
angle \cup g) = \mathsf{GV}\!\langle a
angle \cup g$$

Whence $GV\langle a \rangle \cup g = GV\langle a \rangle$, *i.e.* $g \in GV\langle a \rangle$ and so it leads to a contradiction.

Thus $K_{e}K_{f} \subseteq K_{e} \cup K_{f}$. Symmetrically, we can prove $K_{f}K_{e} \subseteq K_{e} \cup K_{f}$ for any $e, f \in E_{s}, e \neq f$.

According to lemma 2.1, we have ef = e or ef = f for any $e, f \in Es$ with $e \neq f$. Next let ef = eand assume there exist $a \in K_e$, $b \in K_f$ such that $ab \in K_f$. Hence $af = (ab)b^{r(b)-1}(b^{r(b)})^{-1} \in K_f G \subseteq G$ and since there exists $n \in Z^+$ with $n \geq r(a)$ such that $a^n \in G_e$, whence

$$a^n f = aa \cdots f^n = (af)^n$$
, $a^n = a^n e$ and $a^n ef = a^n f = (af)^n \in K_r$.

Therefore, $K_{e} \cap K_{f} \neq \phi$ by $a^{n}ef = a^{n}e = a^{n} \in K_{e}$ which contradicts the fact

 $K_e \cap K_f = \phi$ with $e \neq f$. Thus $K_e K_f \subseteq K_e$. Dually, we have $K_e K_f \subseteq K_f$ when ef = f for any $e, f \in Es$ with $e \neq f$.

Suppose $K_{\mu}K_{r} \subseteq K_{\mu}$ for any $e, f \in Es$ with $e \neq f$ and put

 $A = GV\langle xy, x \rangle, B = GV\langle y \rangle$ and $C = GV\langle x \rangle$ for any $x \in K_e$, $y \in K_f$. Obviously, $A \cap B = \phi$ and $C \leq A$, hence $GV\langle xy, x \rangle \cap GV\langle x, y \rangle = GV\langle xy, x \rangle = GV\langle xy$

by the 0-modularity of SubGVS, and so $xy \in GV\langle x \rangle$. Assume $K_{e}K_{f} \subseteq K_{f}$ for any $e, f \in Es$ with $e \neq f$ and put $A = GV\langle xy, x \rangle$, $B = GV\langle y \rangle$ and $C = GV\langle x \rangle$ for any $x \in K_{e}$, $y \in K_{f}$. Clearly, $A \cap B = \phi$ and $C \leq A$, whence we get

$$GV\langle xy, x\rangle \cap GV\langle x, y\rangle = GV\langle xy, y\rangle = GV\langle y\rangle$$
, whence $xy \in GV\langle y\rangle$ and

 $xy \in GV(x) \cup GV(y)$. That $yx \in GV(x) \cup GV(y)$ can be proved dually.

By the above lemmas and lemma 1.2, we have the following lemma.

Corollary 2.5 Let S be a GV-semi group. If SubGVS is 0-modular, then

 $\kappa = \bigcup_{e \in ES} (K_e \times K_e)$ is a congruence on S if and only if S is a band of unipotent epi groups $K_e (e \in ES)$.

By the above lemmas, we can state and verify the main theorem of the section.

Theorem 2.6 Let S be a GV-semi group. Then SubGVS is 0-modular if and only if S is a GU-band of unipotent epi groups $K(e \in Es)$.

Proof. The necessity can be easily proved by lemmas 2.1, 2.3 and 2.4.

To prove the sufficiency, let *S* be a GU-band of unipotentepi groups $K_{e}(e \in Es)$ and $A, B, C \in SubGVS$ such that $A \cap B = \phi$, $C \leq A$. We can conclude *B* and *C* lie in two different unipotentepi groups by $C \cap B = \phi$. Hence

 $GV\langle B, C \rangle = B \cup C$, and so $A \cap (B \vee C) = A \cap (B \cup C) = C$, that is, SubGVS is 0-modular as required.

From the theorem, we can obtain the corresponding result on a completely regular semi group.

Theorem 2.7 Let S be a completely regular semi group, SubCRS is 0-modular if and only if S is a CUband of the maximal subgroups G_{e} of S forall $e \in E_{s}$.

3. The case of 0-distributivity

Theorem 3.1 Let S be a GV-semi group and SubGVS 0-distributivity if and only

if $\{K_e, K_f\}$ is a left(right) zero band or chain for any $e, f \in Es$ with $e \neq f$. To prove the theorem, we should use the following lemma.

Lemma 3.2 Let *S* be a GV-semi group and $\{K_e, K_f\}$ a left (right) zero band or chain, then $K_e \vee K_f = K_e \cup K_f$ for any $e, f \in Es$ with $e \neq f$.

Proof. For any $a \in K_a$, $b \in K_f$ with any $e, f \in E_s$, $e \neq f$, then

 $ab, ba \in K_{e} \cup K_{f}$ According to the fact that $\{K_{e}, K_{f}\}$ is a left (right) zero band or chain, hence

$$\{K_e, K_f\} = K_e \cup K_f$$
, and so $K_e \vee K_f = \langle K_e, K_f \rangle = K_e \cup K_f$ for $K_e, K_f \in SubGVS$.

Now, we begin to prove theorem 3.1 using the above lemma.

Proof. To prove the necessity. We first put

 $A = GV\langle ef \rangle$, $B = GV(e) = \{e\}$, $C = GV(f) = \{f\}$ for $e, f \in Es$ with $e \neq f$ and assume $A \cap B = A \cap C = \phi$, then $A \cap (B \vee C) = GV(ef) \cap GV(e, f) = \phi$ by 0-modularity of SubGVS. Thus $A \cap B = \phi$ or $A \cap C = \phi$.

If $A \cap B = \phi$, that is, $e \in GV \langle ef \rangle$. And there exists $g \in Es$ such that $ef \in K_g$ since S is a GV-semi group. Without loss of generality, assume $g \neq e$. Then $e \in GV \langle ef \rangle \subseteq K_g$ and $e \in K_e$, hence $e \in K_g \cap K_e$ with $g \neq e$, and so, it leads to a contradiction. Thus $e = g, ef \in K_e$. Dually, we can get $ef \in K_f$ when $A \cap C = \phi$. Suppose there exist $a \in K_e$, $b \in K_f$ such that $ab \notin K_e \cup K_f$ with $e, f \in Es, e \neq f$. Then there exists $g \in Es \setminus \{e, f\}$ such that $ab \in K_g$ and

 $(ab)^n \in K_g$ Since *S* is a GV-semi group. Hence $(ab)^n \notin K_g \cup K_f$ for any $n \in Z^+$, and so $GV\langle ab \rangle \cap GV\langle a \rangle = GV\langle ab \rangle \cap GV\langle b \rangle = \phi$. By 0-modularity of SubGVS, we get $GV\langle ab \rangle \cap GV\langle a, b \rangle = \phi$.

Wang & Yu

Obviously, it is a contradiction and so $K_e K_f \subseteq K_e \cup K_f$. Symmetrically, we can prove $K_f K_e \subseteq K_e \cup K_f$ for any $e, f \in Es$, $e \neq f$.

Let $ef \in K_e$ for any $e, f \in Es$ with $e \neq f$ and assume there exist

 $a \in K_{e}$, $b \in K_{f}$ such that $ab \in K_{f}$. Hence $af = (ab)b^{r(b)-1}(b^{r(b)})^{-1} \in K_{f}G_{f} \subseteq G_{f}$,

 $a^n f = aa \cdots f^n = (af)^n, a^n = a^n e$ and $a^n ef = a^n f = (af)^n \in K_f$ for any $n \ge r(a)$, hence $K_e \cap K_f \ne \phi$ by $a^n ef = a^n (ef) \in K_e$. Thus $K_e K_f \subseteq K_e$. By the same way, we have $K_e K_f \subseteq K_f$ if $ef \in K_f$ for any $e, f \in Es$ with $e \ne f$. On the other hand, K_e is a subsemi group of S for any $e \in Es$ since S is a GV-semi group, therefore $K_e K_e \subseteq K_e$. Consequently, we have $\{K_e, K_f\}$ is a left (right) zero band or chain for any $e, f \in Es$ with $e \ne f$.

Next To prove the sufficiency. Let $A, B, C \in SubGVS$ with $A \cap B = A \cap C = \phi$, then $E_A \cap E_B = E_A \cap E_C \neq \phi$. For any $a \in A$, we have $e = a^{r(a)} (a^{r(a)})^{-1} \in A$, that is,

 $e \in E_{\scriptscriptstyle A} \text{ and } A \in K_{\scriptscriptstyle e} \text{ , thus } A \subseteq \cup_{\scriptscriptstyle e \in E_{\scriptscriptstyle A}} K_{\scriptscriptstyle e} \text{ . Dually, } B \subseteq \cup_{\scriptscriptstyle e \in E_{\scriptscriptstyle B}} K_{\scriptscriptstyle e} \text{ and } C \subseteq \cup_{\scriptscriptstyle e \in E_{\scriptscriptstyle C}} K_{\scriptscriptstyle e} \text{ .}$

By lemma 3.2, we get $B \lor C \subseteq (\bigcup_{e \in E_A} K_e) \cup (\bigcup_{e \in E_C} K_e)$ by $K_e \in \text{SubGVS}$ for any $e \in Es$. Hence $A \cap (B \lor C) \subseteq \bigcup_{e \in E_A} K_e \cap [(\bigcup_{e \in E_B} K_e) \cup (\bigcup_{e \in E_C} K_e)] = \phi$ since $E_A \cap E_B = E_A \cap E_C = \phi$ and $e \neq f$ implies $K_e \cap K_f = \phi$. Thus $A \cap (B \lor C) = \phi$.

From the above theorem, we immediately obtain the next result on a completely regular semi group.

Theorem 3.3 For a completely regular semi group S, the lattice SubCRS is 0-distributive if and only if $\{G_e, G_f\}$ is a left (right) zero band or chain for any $e, f \in Es$ with $e \neq f$.

Acknowledgements

This research was supported by the the Anhui Natural Science Foundation (No. 1308085QA12)

References

Bogdanovic, S., Semi groups with a system of Subsemi groups, NoviSad University press, NoviSad, 1985.

Bogdanovic, S. and C. Miroslav, Semi lattices of Archimedean semi groups and (completely) π -regular semi groups, Filomat (Nis), 7, (1994), 1-40.

Ershova, T., Inverse semi groups with certain types of inverse subsemi groups, Math.Zap.Ural.univ 7(1969),67-76.

Howie, J.M., Fundamentals of semi groups theory, Clarendon Press, Ox-ford, 1995.

Petrich, M and N.R.Reilly, Completely regular semi group, Wiley, NewYork, 1999.

Shevrin, L.N. and A.J. ovsyannikov, Semi groups and their subsemi groups lattices,

Semi group Forum 27(1983), 1-154.

- Shevrin, L.N. and A.J.ovsyannikov, Semi groups and their subsemi grouplattices, Kluwer Academic Publishers, Dordrecht, 1996.
- Shiryaev, V.M., Semi groups with \land -semidistributivesubsemi group lattices, semi group forum 31(1985),47-68.
- Tian,Z.J., π -inverse semi groups whose lattice of π -inverse subsemi groups iso-distributive or 0-modular, Semi group Forum 56(1998), 334-338.
- Tian, Z.J., Eventually inverse semi groups whose lattice of eventually inverse
- subsemi groups is \land -semidistributive, Semi group Forum 61(2000), 333-340.
- Tian, Z.J., Eventually inverse semi groups whose lattice of eventually inverse
- subsemi groups is semimodular, Semi group Forum 66(2003), 81-88.
- Tian, Z.J., π -inverse semi groups with their subsemi groups lattice(in chinese), Science Press, BeiJing, 2007.