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Abstract 
 
 

We study in this paper the condition of biharmonicity of anti-invariant sub manifolds in Kenmotsu space 
forms. 
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1. Introduction. 
 

Harmonic maps on Riemannian manifolds have been studied for many years, starting with the paper of J. 
Eells and J.H. Sampson [9]. Due to their analytic and geometric properties, harmonic maps have become an important 
and attractive field of research.  

 
     The study of harmonic maps on Riemannian manifolds endowed with some structures has its origin in a 

paper of Lichnerowicz [16], in which he proved that a holomorphic map between K¨ahler manifolds is not only a 
harmonic map but also attains the minimum of energy in its homotopy class. After that, Rawnsley [18] studied 
structure preserving harmonic maps between f-manifolds. Later on Ianu¸s, Pastore, Gherghe, Chinea and some others 
(see [6], [12], [13], [14], [19]) studied harmonic maps defined on some almost contact manifolds (i.e. Sasakian, 
cosymplectic etc.). 

 
The theory of biharmonic maps is an old and rich subject: they have been studied since1862 by Maxwell and 

Airy to describe a mathematical model of elasticity. The Euler-Lagrange equation for bienergy functional was first 
derived by Jiange in 1986 [10]. After this biharmonic maps were studied by many authors see [2], [3], [4], [5], [8]. The 
purpose of this paper is to obtain a condition for biharmonicity of a map from anti-invariant sub manifolds of 
Kenmotsu manifolds to Kenmotsu space forms. After we recall some well-known facts about biharmonic maps and 
Kenmotsu manifolds, we prove the main results concerning biharmonic maps on anti-invariant sub manifolds of 
Kenmotsu manifolds. 

 
2. Preliminaries 

 
In this section, we recall some well-known facts concerning harmonic maps, biharmonicmaps and Kenmotsu 

manifolds. 
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Let F: (M, g) −→ (N, h) be a smooth map between two Riemannian manifolds of dimensions m and n 

respectively. The energy density of F is a smooth function e(F) : M→ [0, ∞) given by 
 

 ( )   
 

 
   (   )( )  

 

 
∑ (           ) 

 

   

 

 

For any p ∈ M and any orthonormal basis {u1, . . . , um} of TpM. If M is a compact Riemannian manifold, the 
energy E(F) of F is the integral of its energy density: 

 

 ( )   ∫  ( )   
 

 

 

Where  is the volume measure associated with the metric g on M. A map F ∈ C∞(M,N) is said to be 

harmonic if it is a critical point of the energy functional E on the set of all maps between (M, g) and (N, h). Now, let 
(M, g) be a compact Riemannian manifold. If we look at the Euler-Lagrange equations for the corresponding variation 
problem, a map F : M → N is harmonic if and only if τ (F) ≡ 0, where τ (F) is the tension field which is defined by 

 

 ( )          

 

Where    is the connection induced by the Levi-Civita connection on M and the F-pullback connection of 
the Levi Civita connection on N. 

 

We take now a smooth variation Fst   with two parameters s, t ∈ (−ϵ, ϵ) such that F0;0 = F. The corresponding 
variation vector fields are denoted by V and W. The second variation formula of E is: 
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Where JF is a second order self-adjoint elliptic operator acting on the space of variation vector fields along F 

(which can be identified with Γ(F−1(TN)) and is defined by 
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For any V ∈  Γ(F−1(TN)) and any local orthonormal frame {u1, . . . , um} on M. Here RN is the curvature 
tensor of (N, h) (see [11] for more details on harmonic maps). 

 
J. Eells and L. Lemaire [11] proposed poly harmonic (k-harmonic) maps, and Jiang [10] studied the first and 

second variation formulas of biharmonic maps. Let us consider the bienergy functional defined by: 
 

  (  )  
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Where| V |2 = h(V, V ),  V ∈  Γ(F−1TN). 
 
Then, the first variation formula of the bi energy functional is given by: 
 

 

  
      (  )   ∫  (  ( )  )   

 

 



Najma Abdul Rehman                                                                                                                                                75 
 

 

 

Here 
 

  ( )   ( ( ))     ( ( ))   ( ( ))  
 

Which is called the bitension field of F and J is given by (1). 
 

A smooth map F of (M, g) into (N, h) is said to be biharmonic if  ( )     
 
Contact Manifolds are introduced detailed in [1]. However Tanno [20] has classified, into three classes, the 

connected almost contact Riemannian manifolds whose auto orphisms groups have the maximum dimensions: 
 
(1) Homogeneous normal contact Riemannian manifolds with constant φ- holomorphic sectional curvature; 
(2) Global Riemannian products of a line or a circle and a Kahler space form; 
(3) Warped product spaces L ×f N, where L is a line and N a Kahler manifold. 
 
Kenmotsu [15] studied the third class and characterized it by tensor equations. A (2m+1)-dimensional 

Riemannian manifold (M , g) is said to be a Kenmotsu manifold if it admits an endomorphism φ of its tangent bundle 
TM, a vector field ξ and a 1-form η, 

 
which satisfy 
 

                        ( )                   ( )                            
         (     )   (   )   ( ) ( )                              ( )   (   )  
              (   )    (    )   ( )                                                                         (5) 
 

for any vector fields X, Y on M, where ∇denotes the Riemannian connection with respect 
to g. 
 
Example 2.1.Let N be a Kahler manifold, with the Kahlerian structure (J; h) and let f :R−→ R be a function defined by     

f (t) = cet, where c∈ R, c >0. Then the warped product M = R×fN is defined as being the manifold R×N endowed with the Riemannian 
metric 

 

  (   )  (
                    

         ( )  
)  

 

If we put   
 

  
  ( )   (   ) and 

 

 (   )  (
                                                                       

                        ((  ))
 
 ( )    ((   ))

 

)  

 

for any point (t, x)∈ R × N and any vector field X tangent to M, then M is Kenmotsu manifold [15]. 

 
Defnition 2.1.[17] : A submanifold M of a Kenmotsu manifold N is a normal semi-invariant submanifold if ξ is normal to M and M 

has two distributions D and D⊥, called the invariant, respectively, the anti-invariant distribution of M so that 
 

1. TxM = Dx⊕ D⊥
x; 

2. Dx, D⊥
x ,<ξx> are orthogonal; 

3. φDx ⊆ Dx; φD⊥
x⊆  D⊥

x , f or all x ∈ M. 
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If D = 0, then M is a normal anti-invariant submnaifold of N and if D⊥= 0, then M is a invariant submanifold of N. 
 

3. Main Results 
 
Before the main results, recall the following results by Jiang: 
 

Lemma 3.1. [10] Let   (    )  (    ) be an isometric immersion whose mean curvature vector field 

  
 

 
 ( ) is parallel; ∇      where ∇ is the induced connection of the normal bundle     by f. Then 
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where {ei} is a locally defined orthonormal frame field of (M, g). 
 

Lemma 3.2. [10] Let   (    )  (    ) be an isometric immersion whose mean curvature vector field 

  
 

 
 ( ) is parallel; ∇      where ∇ is the induced connection of the normal bundle     by f. Then, 
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∑  ( ( ) (∇̃  
  )(  )) (∇̃  

  )(  ) 

 

     

 

 
where {ei} is a locally defined orthonormal frame field of (M, g). 

 

Lemma 3.3.[10] Let   (    )  (      )be an isometric immersion which is not harmonic. Then, the condition 

that ∥τ (f) ∥is constant is equivalent to the one that 
 

∇̅ ( ( )) ∈   (    )                              ∈     
 

that is the mean curvature tensor is parallel with respect to ▽⊥. For details and proof of these Lemmas, see [8], [10]. 

Now the main result of this article; 
 
Theorem 3.1.Let (M, g) be a real n-dimensional anti-invariant submanifold of Kenmotsue space form N of dimension 

(2n+1), and F : (M, g) → (N, h) be an isometric immersion with non zero constant parallel mean curvature with respect to connection on 

normal bundle, then necessary and sufficient conditions for F to be biharmonic is τ ∈ φTM and 
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)                       
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Proof.  A Kenmotsu manifold with constant φ-sectional curvature c is called a Kenmotsu space form and its 

curvature tensor R is expressed by 
 

 (   )  
   

 
* (   )   (   ) +  

   

 
* (    )    (    )   

   (    )    ( ) ( )   ( ) ( )   (   ) ( )   (   ) ( ) +  
 

By Lemma3.1, the mean curvature vector field of F is parallel with respect to ∇⊥, therefore we apply Lemma 

3.1 and Lemma3.2. Let *  +   
  be orthonormal basis on M, we have 
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Then we have 
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Furthermore, we have 
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For anti-invariant submanifolds, we consider the decomposition   
       ⊕      

 

Since      ⊕       ⊕    ⊕    now if  ( ) ∈      then 
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Now if  ( ) ∈   , then  ( )      where a is any constant and 
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If  ( ) ∈    ⊕     then  
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Now the necessary and sufficient conditions F to be biharmonic is that 
 

  ( )     ̅ ( )   ( ( ))   . 

 
This becomes 
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Now let 
 

 ( )(     )  (∇̃  
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where V is the unit normal vector along F(M). Then 
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where V is the unit normal vector along F(M). Thus, the left hand side of (7) becomes as: 
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Now if  ( ) ∈      then  ⊥    and we have 
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Now If τ (F) ∈ < ξ >, then V ⊥  ϕTM and V = aξ, a is any real constant, then we have 
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and 
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  .                                          (9) 

 

From (9), it is clear that τ does not belong to < ξ > and τ ∈  φTM, for biharmonic anti-invariant immersion 
and satisfies 

 

‖ ( )‖  ( 
   

 
  

   

 
)                           (10) 

 

which implies   
 (   )

   
  

 
Remark 3.1: One of the normal anti-invariant n-dimensional submanifold M in (2n+1)-dimension Kenmotsu manifold N is 

Whitney sphere [7]. Thus a map from Whitney sphere in Kenmotsu manifold to Kenmotsu manifold of constant φ-sectional curvature c is 
biharmonic if its second fundamental form satisfy relation (10). 
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