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Abstract 
 
 

In this paper, we consider the optimization of a convex function in N-space which is a special case of the 
general non-linear optimization problem of minimizing a non-linear function  푓(푥) over the n-dimensional 
Euclidean space 푅  .The range of applications in which determination of 푋∗휖푅  at which 푓(푥)attains its 
minimum are important is extremely wide. There exists a unique minimizing value when the convex is non-
differentiable and the problem is to find it with minimum functional valuation. This is done by exploiting the 
connection between a convex function and the accretive operator. 
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1. Introduction 
 

We consider the optimization of a convex function in N-space which is a special case of the non-linear 
optimization problem of minimizing a non-linear function푓(푥) over the n-dimensional Euclidean space R. The range 
of applications in which determination of 푋∗휖푅  at which 푓(푋) attains its minimum   are important is extremely 
wide.  

 
The convex function is specially shaped so that if it possesses a finite minimum, the minimizing value X*, say, 

is unique and the gradient of the function vanishes at X* when 푓 is differentiable and strictly convex. A number of 
finite terminating algorithms for obtaining approximate values of X are in literature. We implore the use of descent 
(steepest) method and the Newton’s method. The basic problem is that of minimizing the non-linear convex function 
푓(푥) subject to constraints 

 
퐶 (푋), 푖 = 1, 2, … .푚 

 
Then one can view the problem as that of minimizing f over a closed convex subset. In other words, Let T be 

the projection map of 푅  onto퐶, that is for푋휖푅   , 푇푋 is that elements in 퐶 such that 
 

‖푋 − 푇푋‖ = 푖푛푓‖푋 − 푌‖.  
 
So that the sequence of elements 푋  is then defined as follows 
 

푋 = 푇 푋 − 푓
휕푓
휕푥

                                       (1) 

                                                             
1Abia State Polytechnic, Aba, Nigeria. achigods@yahoo.com,+2348037058344, 
2Abia State Polytechnic, Aba, Nigeria. ukagoms@gmail.com, +2348035289738 



62                                                                        American Review of Mathematics and Statistics, Vol. 4(1), June 2016 
 
 

Finally, the optimizer can be assumed to exist and the problem is to find it with minimum functional 
evaluation. We try to locate this X*of the non-differentiable convex function 푓 by exploiting the connection between 
a convex function and the accretive operator and central in this formulation is that of optimal experimental design. 

 
2. Constrained Optimization. 

 
An analysis of the multivariable unconstrained non-linear multivariable unconstrained non-linear 

maximization problems set the stage for the analysis of constrained models. The algorithmic difficulties to be 
overcome here are present also in the constrained case and the techniques below can be suitably modified when 
constraints are imposed. However, a constrained problem can often be solved by first converting to an unconstrained 
problem.  

 
Many of the techniques for solving the general variable non-linear optimization actually employ simple 

variable optimization in one of the steps for example, a linear function 
 

푓(푥) =  퐶 + 퐶 푥 
 
Has its optimal solutions at the extreme points, end points, If in a closed interval i.e. 
 

푓(푥) = 푓(푎), 푥휖[푎 , 푏] 
 
To guarantee that solution techniques are valid, we impose certain assumptions.  
 
2.1. Assumptions of Constrained Optimization.  

 
1. For all values of푥휖푅 , 푓 (푥 ) , is uniquely defined and finite.  

2. For all 푥휖푅  ,
(  )

  is  uniquely defined, finite and continuous.  

3. 푓(푥) possess a finite optimum푥휖푅  
4. for any possible value of, 푓 (푥 ) , say C, there exist an associated finite number 푀퐶. Such that every 

푋  ≤ 푀퐶 푖푓, 푓 (푥 )  ≥ C 
 
2.1.1 The Search for Optimal Solution.  

 
In solving non-linear programming problems, it might appear a bit difficult but there are several fundamental 

theorems that can be utilized to guide our search even in the face of such difficulties. However, if such conditions as 
convexities or concavity are met, the characterization of the optimal solution becomes relatively well defined.  But we 
are dealing with bounded continuous functions, by Weierstrass theorem guarantees us that a maximum or minimum 
will always exist either at a point interior to the boundaries of the feasible solution variable or at the boundaries itself. 
This is intuitively clear, since a bounded function must always possess maximum or minimum values somewhere 
within the region of interest. If the function is continuous over the domain of interest, stationary points can be 
located through the use of differential calculus provided all derivations can be found.  
 
2.2 Steepest Descent Method. 

 
The impossibility in finding the minimum of a function analytically paves way for an iterative method for 

obtaining an approximate solution to it also the Newton’s method though being effective but it is unreliable. Hence 
we consider the steepest descent approach.  Given a function푅 → 푅 that is differentiable at푋  , the direction of the 
steepest descent is the vector − ∇푓(푋 ). 

 
휑(푡) = 푓(푋 + 푡 푢)                                   (1.1) 
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Where u is a unit vector.  
 

휑|(푡) =  
휕푓
휕푥

휕푥
휕푡

+ ⋯… . . +
휕푓
휕푥

휕푥
휕푡

 

휕푓
휕푥

푈 + ⋯ . . +
휕푓
휕푥

푈  

∇푓(푥 + 푡푈) .푈 
 
: .   휑|(0) =  ∇푓(푥 ).푈 =  |∇푓(푥 )| 푐표푠휃 

 
Where휃 is the angle between∇푓(푥 ) and U. it follows that휑|(0) is minimized when휃 = 휋 which yields  
 

푈 =  
−∇푓(푥 ) .
|∇푓(푥 )|  휑(0) =  − |∇푓(푥 )| 

 
We can therefore reduce the problem of minimizing a function of several variable to a single variable 

minimization problem, by finding the minimum of휑(푡) for this choice. ie, we can find the value of 푡, for 푡 > 0, that 
minimizes  

 
휑(푡) = 푓 푥 − 푡∇푓(푥 )                                 (1.2) 

 
After finding the minimizer 푡 , we can set 
 

푋 = 푋 −  푡 ∇푓(푋 ) 
 
and continue the process by searching from 푋  in the direction of−∇푓(푋 ) to obtain 푋 by minimizing  
 

휑 (푡) = 푓(푥 − 푡∇푓(푥 )) 
and so on 
 
This is the method of steepest descent qiven an initial guess푋 . The method computes a sequence of iterates, 

where 
                                    푋 = 푋 −  푡 ∇푓(푋 )  ,푘 = 0, 1,2 … …               (1.3) 

 
Where푡   0 minimizes the function  
 

휑 (푡) = 푓 푥 − 푡∇푓(푥 )                               (1.4) 
 
Example; 
  Consider the non-linear minimization problem  
 
                Minimize 푓(푋 ,푋 ) =  푋 − 푋 + 2푋 + 2푋 푋 + 푋               (1.5) 
 
Using steepest descent method with the initial point at 푋 = (0,0) 
 
Solution: 
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퐻⟨푋⟩ =  

⎣
⎢
⎢
⎢
⎢
⎡ 휕 푓(푥)
휕 푓(푥 )

휕 푓(푥)
휕푓(푥 )휕푓(푥 )

휕 푓(푥)
휕푥 푥

휕 푓(푥)
휕 푥

⎦
⎥
⎥
⎥
⎥
⎤

=  4 2
2 2 = 4 > 0 

Hence convex. 

∇푓 푥 =
휕푓(푥)
휕푥

 ,
휕푓(푥)
휕푥

= (1 + 4푥 + 푥       .−1 + 2푥 + 2푥 ) 

 
∇푓 푋∗ = (1 ,−1) 

푋  = (0 ,0) − 푡( 1,−푖) =  −푡, 푡 
 
 
Substituting in (1.5) we obtain  

푡 = 1, 푋 =  −1,푋 = 1 
푋 = (−1 ,1) − 푡(−1 ,−1) =  −1 + 푡, 1 + 푡 

( −1 + 푡) − (1 + 푡) + 2(−1 + 푡) + [(−1 + 푡)(1 + 푡) + (1 + 푡)  
5푡 − 2푡 − 1 

휕푓(푥)
휕푡

= 10푡 − 2 → 푡 =  
1
5

 

→ (−1 ,1) =  
1
5

(−1,−1) 

=  −1 + 
1
5

= − 0.8 = 푋  
 

So from this we can proceed to get the result in the table below. 
 

Table 1: Results of the minimization problem using the steepest descent method 
 

Iteration 푋  푋  Step size 
0 0 0 1 
1 -0.8 1.2 0.5 
2 -1 1.4 1 
3 -0.6 1.8 0.2 
4 -0.86 1.34 0.12 
5 0.993 1.352 0.3 
6 -0.922 1.409 0.367 
7 -0.9632 1.4172 0.3170 
8 -0.9567 1.4497 0.3527692 
9 -0.9722 1.4526 0.2136219 
10 -0.9701 1.4541 0.38931 
11 -0.0017 1.4905 1.1367029 
12 -0.9967 1.4949 0.1952688 
13 -0.0002 1.4992 1.1827957 
14 -0.9997 1.4995 0.532258 
15 -0.9998 1.4998 0.666666 
16 -0.9999 1.4997 0.09375 

 
Optimal value -1.0, 1.5 
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2.3 Nature of the Objective Function 
 
Suppose that the function is now restricted further by adding an assumption about its shape. A general 

variable function 푓(푥) is defined as convex if the inequality is replaced by0 < 훾 > 1 so that we have the sufficient 
conditions for a minimum.  

 
Given assumption (1) to (4) in 2.1 and that 푓(푥) is convex, if each = 0  at a point  푋∗ then 푓(푋∗) is the 

minimum value for 푓(푥). 
 
Further, if 푓(푥) is strictly convexthen푋∗ is unique. 
Therefore, local minimum of a convex function is also a global minimum. 
Thus if one applies the method at steepest descent using an optimal step size, then the sequence f descent 

using an optimal step size, then the sequence푓(푋 ) decrease the limit to the minimum value of 푓(푋) 
If the function is strictly convex, the entire sequence 푋 converges to the unique optimal solution 푋∗ . 

 
3. Locating the Optimizer of a Non-Differentiable Convex Function in N-Space 

 
A convex function in n-space is defined as; for any two points 푋 푎푛푑 푋  and0 ≤  훾 ≤ 1 ,퐹 [훾(푋 + (1−

훾)푋  )]  ≤ 푋훾 =  [(푋 + (1 − 훾)퐹(푋  )] . 
 
Where 푓 is non-differentiable convex function, a unique minimizing value 푋∗휖푅∗can be assumed to exist and 

the problem is to find it with minimum functional evaluation.We try to locate푋∗of the differentiable convex function 
f by exploiting the connection between a convex function and the accretive operator. Central in this formulation is the 
method of optimal experimental design.  
 
3.1 Accretive Operator’s 

 
A mapping T with domain 퐷(푇) and range 푅(푇) is accretive if the inequality ⟨푋 − 푋∗,푇푋 − 푇푋∗⟩ ≥ 0 holds 

for every 푋 ,푋∗휖퐷(푇) , where ⟨⟩ denotes the inner product in  푅  
 
If ≥ this is replaced by >we say that T is strongly accretive.  
For a convex function, 푓(푋) satisfies:  
 

푓(퐶 푋 +  퐶 푋∗) ≤ 퐶 푓(푋) +  퐶 푓(푋) 
 

퐶 ≥ 0  , 퐶 ≥ 0  푎푛푑 퐶 + 퐶 = 1  푓표푟 푋 푎푛푑 푋∗휖푅  
 
Minty [10] for every푋∗휖푅  , we can associate the vector 퐴푋∗ ,such that  
 

푓(푋) − 푓(푋∗) ≥ ⟨ 푋 − 푋∗,퐴푋∗⟩,푋휖푅                                                (1.6) 
So that 

푓(푋∗) − 푓(푋) ≥ ⟨푋∗ − 푋,퐴푋⟩                                                             (1.7) 
 
Adding equations 1.6 and 1.7, we have  
 

0 ≥ ⟨푋 − 푋∗,퐴푋∗⟩+ ⟨푋∗ − 푋,퐴푋⟩ 
= ⟨푋 − 푋∗,퐴푋 − 퐴푋∗⟩ 
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Thus, we can see that the A associated with the convex function(3.1) is`accretive and that 퐴푋∗ = 0. Again 

from equation 1.6 we have 푓(푋) − 푓(푋∗) = 0 so that 푓(푋) ≥ 푓(푋∗) Hence푋∗  is the optimizer of F when퐴푋∗ = 0 
. 

If F differentiable, 퐴푋∗is identifiable with the gradient of 푓(푥) at푋∗. 
Let’s denote the kernel of A by 
 

퐾 = {푥휖푅 :퐴푋 = 0} 
 
Then the kernel of the accretive operator A associated with the convexn function 푓 turns out to be the 

optimizer of 푓. Hence the problem of locating the optimizer of 푓 is equivalent to that of obtaining the kernel of the 
accretive operator A. 
Chidume(2) showed that given a sequence {퐶 }∞ satisfies A if  
 

 퐴 : 퐶 = 1 , 0 < 퐶 < 1 푓표푟 푎푎 푛 ≥ 1 
 퐴 :  ∑ 퐶 =  ∞∞  
 퐴 ∶  ∑ (퐶 )∞ <  ∞ 
 
The sequence {푋 }∞ generated by푋 휖퐷(퐴),푋 = 푋 − 퐶 퐴푋  ,푛 ≥ 0 converges strongly to the 

solution of the equation퐴푋 = 0 where A is strongly accretive with error estimates ‖푋 − 푋∗‖ = 0 (푛 ) 
However, the main constraint is that in a given situation, we may not be able to compute the vector AX but 

only observe it at a point. Thus we employ the method of response surface exploration to estimate it. This method is 
optimal because it minimizes the Euclidean distance between the true and estimated accretive operator.  
 
3.1.1. Estimating the Accretive Operator.  

 
Let 푓(푥) = 푓(푥∗) = 푦(푥)such that equation 3.2becomes 
 
                                                 푦(푥) ≥ ⟨ 푋 − 푋∗,퐴푋∗⟩                                                          (1.8) 
Suppose that the design is chosen in the neighbourhood of푋∗, the relation between Y((푋 ) 푎푛푑 the vector 

푋 =  푋∗ 휖푅     is well represented by the hyperplane. 
 

                        푦 푋 = 푋 − 푋∗,퐴푋∗ + 푒 푋                                                                  (1.9) 
 
Where 푒 푋 isan observableand it is error used to account for one’s inequality to describe 푋 − 푋∗,퐴푋∗  

which is the so called response surface. 
 
Let us suppose also that as a result of the experimental design푋 , … …푋 ,it is possible to construct an 

estimate 퐴푋∗of 퐴푋∗‘’indirectly’’based on the measured values푦(푋 ), … … … . .푦(푋 ) such that the Euclidean distance 
between the true accretive operator퐴푋∗and the estimated accretive operator퐴푋∗ is minimized. This isvery possible for 
each observable Y, we associate a positive linear operator P such that 

 
i.  If 푦 푋 ≥ 0  푡ℎ푒푛 푃(푦(푋 ) ≥ 0 
ii. 푃(훼 ,푦(푋 ) + 푦(푋 ) =  훼 푃[푦(푋 ] + 훼 푃[푦(푋 ] 
iii. 푃 푦 푋 − 푃 [ 푦(푋 ][푦(푋 ] − 푃[푦(푋 = ⟨푦(푋 − 푃(푦 푋 ,푦(푋 ) − 푃(푦(푋 )⟩ 

= 푋 − 푃(푦(푋) ≤ 휌: 푗 = 푘
0                                     ∶ 푗 ≠ 푖:

 

iv. 푃(푒 푋 = 0 
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So that 푃(푦 푋 ) = ⟨푋 − 푋∗, 퐴푋∗⟩ 
 
Let  푋 − 푋∗ =  푡 휖푅  
 
So  
                                        푃 푦 푋 =  푡  

|  퐴푋∗                                                                      (2) 
and 

푚 =  푡 푡| 

 is a symmetric matrix. 
Thus, when m is non-singular, the unique solution of the equation 
 

휑(퐴 푋∗) = 푚푖푛휑(퐴푋∗),      퐴푋∗휖푅  
Where 
                              휑(퐴푋∗) = ∑ (푦(푋 ) − 푡 (퐴푋∗)                                                      (2.1) 
Is  

                               퐴 푋∗ =  푚 푡  푦 푋                                                                   (2.2) 

Which turns out to be the least square estimate of 퐴푋∗ 
 
Then 

 푃 ( 퐴 푋∗) =  푚 푡   푃 푦 푋 = 푚 푡 푡|퐴푋∗ = 퐴푋∗ 

 
So that 

‖퐴 푋∗ − 퐴푋∗‖ = 푚 휑(퐴푋∗) =  푚 휌퐼 
 
(where 퐼 is the identity matrix). 
 
휌 is not known and has no influence on the estimation of퐴푋∗ and on the design used so that without loss of 

generality we assume 휑휌퐼 = 퐼 and hence magnitude of the Euclidean distance between the estimated and true 
accretive operator depends only on the design used. 
 
3.2   Numerical example 
 
Consider the convex function 

푓(푋   ,푋 )  = 푋 − 푋 + 2푋 + 푋 + 2푋 푋  
 
The optimizer is푋∗ = (푋∗,푋∗) = ( −1, 1.5) 푎푛푑 let the searching point be and let the design be푋 = (0,0) 

and let the design be  

푡 = 0.
1
푁

푡 = 1      푓표푟 푒푎푐ℎ 푖. 

 
Where푡 = (푡  , 푡  , … … … . 푡 )휖푅 . 
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Design:  

Choose the four vertices of a square of a unit radius centred origin. 
 

Figure 1: The design 
 

 
 
 
 
 
 
 
 
 
 
 

 
We can state the problem as  
 
Minimize 푓 푋 ,푋 =  푋 − 푋 + 2푋 + 2푋 푋 + 푋  ,   푋 = (푋 ,푋 ) 
 
So that if푌 = ( 푦 , … … … . . ,푦 ) is known and 푌(푋) = 푓(푋) − 푓(푋∗) =  ⟨푋 − 푋∗ ,푇푋∗⟩ 
Our design point constitutes the following: 
  

푡 = (1,1),   푡 = (1,−1),   푡 = (−1, 1), 푡 = (−1,−1) 
 
Then estimate for the accretive operator T denoted by A* is given by 
 

푚 푡 푦 푋                                              (2.3) 

 
We denote the sequence {푋 }∞  휖 푅 Iterated by 푋 휖푅   푎푙표푛푔 푋 = 푋 − 퐶 푋∗ 

With error estimate given as ‖푋 − 푋∗‖ = 0 (푛 ) 
 
We see 푋 휖푅 such that so that ‖푋 − 푋 ‖ <  훿 the sequence{푋 }∞  will converge to the solution 

of푇푥 = 0 for a finite n.  
 
   Let the response vector be  

푌 =  

⎝

⎜
⎛

푌(푥 )
푌(푥 )
푌(푥 )
푌(푥 )

⎠

⎟
⎞

 

So that  

                                                                          푌 =

⎝

⎜
⎛

5
3
−1
5
⎠

⎟
⎞

                                                      (2.4) 

 

(-1, 1) (1, 1) 

(1, -1) (-1, -1) 

0 
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In order to estimate A*, we compute 푡  =  푋  −  푋     푖 = 1, 2 … … . .푛. , 푗 = 1, 2 , … … …푚 
From the design so that 
 

푋 =  

⎝

⎜
⎛

푋 − 푋 푋  − 푋
푋  −  푋 푋 − 푋

         푋  − 푋 푋  −  푋
푋  − 푋 푋  − 푋 ⎠

⎟
⎞

 

 

퐴 =  (푦|푋) 푋|푦 =  

푡                  
푡  푡  

       푡       푡  
푡        푡  

                                 (2.5) 

 
So that 푚 =  푋|푋  푡ℎ푢푠 퐴∗푋 =  (푋| 푋) 푋|푦                                                              (2.6) 
 
From the design 

             푋 =  
1              1

      1             − 1
−1                1  
−1              − 1

                                                                       (2.7) 

 
So that  

푚 = 1 1
1 −1

−1 −1
1 −1

1 1
1
−1
−1

−1
1
−1

=  4 0
0 4  

 
Hence, 퐴∗ = 푚 푋|푦 
 

= 0.25 0
0 0.25

1 1 −1 −1
1 −1 1 −1

=
5
3
−1
5

= 0.25 0.25 −0.25 −0.25
0.25 −0.25 0.25 − 0,25

5
3
−1
5

 

=  1
−1  

Thus 
퐴∗푋 =  1

−1  
 
Having obtained A*, we approximate푋 휖퐾  along 푋 = 푋 − 퐶 퐴∗,퐾 ≥ 0 
 
Where퐶 =     푓표푟 푘 ≥ 0 
 
For the first iteration we have 

푋| = 푋 − 퐶 퐴∗ , 퐶 =
1
푇

= 1 푎푛푑 퐴∗ = 1
−1  

The starting point is 
푋 = 0

0  
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So that  
푋| =  −1

1  
 
We continue in this manner for the second, third and so on. So the response  
 

푦(푋 ) = 푓(푋  ,푋 ) − 푓(푋| ,푋| ) 
 
Which we summarized in a column vector as 

푌 =
3
1
1
7

 

The blue A* for the accretive operator푇 푋/ is then  
 

0.25   0.25  − 0.25  − 0.25

0.25  − 0.25   0.25   − 0.25

3
1
1
7

 =  
0.75 + 0.25 − 0.25 − 1.75

0.75 − 0.25 + 0.25 − 1.75
 =  

−1

−1
 

 

                                ∴ 퐴∗  =  
−1

−1
 

퐶|  =  
1
2

 
 
                                     ∴ 푋 =  푋| − 퐶|퐴∗ 

              =           
−1

−1
−  

1
2

−1

−1
  =   

−0.5

1.5
 

 

∴ 푋  =   
−0.5

1.5
 

 
 
Hence we have the following result in the table 

퐶 =
1

푛 + 1
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Table 2: Result of the design 
 

푋  푋  
0 0 
-1 1 
-0.5 1.5 
-1.16 1.17 
-0.9686 1.335 
-0.9277 1.3906 
-0.9393 1.40306 
-0.9461 1.4136 
-o.9514 1.4217 
-0.9557 1.4283 
-0.9591 1.4338 
-0.9619 1.4384 
-0.9643 1.4423 
-0.9664 1.4457 
-0.9682 1.4487 
-0.9698 1.4513 
-0.9713 1.4536 
-0.9726 1.4557 
-0.9738 1.4576 
-0.9749 1.4593 
-0.9759 1.4605 

 
The performance of the steepest descent for the estimated accretive operator relative to the steepest descent 

method is summarized in the table below. 
 

Table 3: Steepest descent method for estimated accretive operator 
 

iterations Steepest descent 
method  푋∗ 

Steepest descent 
method  푋∗ 

Steepest descent method for 
estimated accretive operator 푋∗ 

Steepest descent method for 
estimated accretive operator 푋∗ 

0 0 0 0 0 
1 -0.8 1.2 -1 1 
2 -1.0 1.4 -0.5 1.5 
3 -0.6 1.8 -1.16 1.17 
4 -0.86 1.34 -0.9686 1.335 
5 -0.933 1.352 -0.9277 1.3906 
6 -0.922 1.409 -0.9393 1.40306 
7 -0.9632 1.4172 -0.9461 1.4136 
8 -0.9567 1.4496 -0.9515 1.4217 
9 -0.9722 1.4526 -0.9557 1.4283 
10 -0.9701 1.4521 -0.9591 1.4338 
11 -1.0017 1.4905 -0.9619 1.4348 
12 -0.9967 1.4949 -0.9643 1.4423 
13 -1.0002 1.4992 -0.9664 1.4457 
14 -0.9997 1.4995 -0.9682 1.4487 
15 -09998 1.4998 -0.9698 1.4513 
16 -0.9999 1.4997 -0.9713 1.4536 
17   -0.9726 1.4557 
18   -0.9738 1.4576 
19   -0.9749 1.4593 
20   -0.9759 1.4609 
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4. Conclusion 

 
The steepest descent method for the estimated accretive operator solves the minimization problem with no 

reference to the derivative of the function. However, if the 퐶 design are optimized the formulation of the steepest 
descent for the estimated accretive operator is the generalization of the ordinary steepest descent method. 
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