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Abstract 
 
 

The singular values of one parameter family of functions
  1
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zef z
z 



,    \ 0 , \ 0R z C  , are 

studied. It is shown that the function  f z  has infinitely many singular values. The critical values of  f z  
lie exterior of the open disk and interior of the open disk according to two different regions. 
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1. Introduction 
 

Studies on singular values are very important for the description of Juliasets, Fatou sets and other 
investigations in the complex dynamics. The dynamics of entire and geomorphic functions with infinitely many 
bounded or unbounded singular values are crucial to determine in comparison to that of functions with finitely many 
singular values; see Kapoor & Prasad (1998),Lim (2016), Nayak & Prasad (Jun 2010), Prasad (2005), Prasad & Nayak 
(2007), Sajid & Kapoor (2004). The singular values of one parameter family of functions are found by Sajid (2014 a,b, 
2015 a,b,c). The singular values of transcendental geomorphic functions were also discussed by Zheng (2010). 

 

A point 
*z is said to be a critical point of  f z if  * 0f z 

. The value  *f z
 corresponding to a critical 

point 
*z is called a critical value of  f z . A point  ˆw C C    is said to be an asymptotic value for  f z , if 

the reexists a continuous curve 
ˆ:[0, ) C   satisfying 
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. A singular value of 

f is defined to be either a critical value or an asymptotic value of f . A function f is called critically wounded or 

functions of bounded type if the set of all singular values of f is bounded; otherwise, it is called unbounded type. 
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Be one parameter family of transcendental functions. The function f F  is neither even nor odd and not 
periodic. It has one pole at 0z  . 

 

This paper is organized as follows: In Theorem 2.1, it is found that the function f F  has infinitely many 

singular values. It is shown that, in Theorem 2.2, the function  f z  has no zeros in the right half plane. In Theorem 

2.3, it is seen that the function f F  maps two different regions exterior of the open disk and interior of the open 

disk centered at origin. Further, it is proved that the critical values of  f z  lie in the exterior of the open disk and 
interior of the open disk in Theorem 2.4. 
 

2. Singular Values of f F   
 

In the following theorem, it is found that the function f F  has infinitely many singular values: 
 

Theorem 2.1. Let f F  . Then, the function  f z has infinitely many singular values. 
 

Proof. Since
   
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, then the critical points of  f z  are solutions of the equation 

 1 1 0zz e   . Using real and imaginary parts of this equation, we have 
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1 cotx y y       (2) 

From Figure 1, it is observed that Equation (1) has infinitely many solutions, say 
  , 0

k
k k k

y 

  , since number 
of intersections increases when the size of interval increases on x-axis. 

 

 

Figure 1: Graph of 

cot 1

sin
y yy e

y


 
 



Mohammad Sajid                                                                                                                                                        47 
 
 

 

From Equation (2), 1 cotk k kx y y  for 1, 2, 3,......k     . Then, k k kz x iy   are critical points of

 f z . The critical values 
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k
k

ef z
z 



 are distinct for k nonzero integers. It shows that the function 

f F  has infinitely many critical values. 

Since   0f z   as z  along negative real axis, it follows that the finite asymptotic value of  f z is 0. 
 

This proves that the function f F  has infinitely many singular values.�  
 

Let  ˆ : Re( ) 0H z C z   
 and  ˆ : Re( ) 0H z C z   

 be the right half plane and left half plane 

respectively. The following theorem shows that the function  f z  has no zeros in the right half plane: 
 
 

Theorem 2.2. Let f F  . Then, the function  f z has no zeros in the right half plane H 
 except one real positive zero. 

 

Proof. Since
   
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, then 1ze z   . Writing in the real and imaginary parts, we have 

cos 1xe y x      (3) 
sinxe y y       (4) 

 
 

When y = 0, then z = x >0 and, by Equation (3), 1xe x   . For x >0, it has only one real positive root. 
  

When 0y  , then, by Equation (4), 

sin 1xy e
y

   
 for x >0. This is not true for y >0 since 

sin 1y
y


. 

Moreover, since 

sin y
y is an even function, it is also false for y <0. 

 

Therefore, the function  f z  has no zeros in H 
except one real positive zero. �  

 

Remark 2.1.  f z has no zeros on imaginary axis since, from Equations (3) and (4),cos sin 1y i y iy    which 
gives y = 0. 

 

Suppose that the left half plane is divided in three regions 1z  , 1 2z  and 2z  . The following 

theorem proves that the function f F  maps two different regions exterior of the open disk and interior of the 
open disk centered at origin: 
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Theorem 2.3. Let f F  . Then, the function  f z maps the left half plane H 
 

 

(i) exterior of the open disk centered at origin and having radius  for 1z  . 

(ii) interior of the open disk centered at origin and having radius  for 2z  . 
 

Proof. Suppose the function   zh z e for an arbitrary z H  and thel ine segment  is defined by 
   , 0,1t tz t   . Then, 
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Since       0,1 0,1max max 1tz
t tM h t e   

for z H  , by Equation (5), 
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It follows that
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 for all 2z  . Therefore, the function  f z  maps the left half 

plane H 
interior of the open disk centered at origin and having radius  for 2z  . 

 

Since       0,1 0,1min min 0tz
t tm h t e   

for z H  , by Equation (5), 
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It shows that
  1

2
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 
 for all   1z  . It gives that  f z  maps H 

exterior of the open disk 

centered at origin and having radius  for 1z  . �  
 

The following theorem shows that the critical values of f F  lie in the exterior of the open disk and 
interior of the open disk according to mapping of two regions: 
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Theorem 2.4. Let f F  . Then, the critical values of  f z lie 

(i) exterior of the open disk centered at origin and having radius  for 1z  . 

(ii) interior of the open disk centered at origin and having radius  for 2z  . 

Proof. Using Theorem 2.2, all the critical points of f F  lie in H 
since  f z  has no zeros in H 

 except 

one real positive zero. By Theorem 2.3, f F  maps in H 
in the exterior of the open disk and interior of the open 

disk. The proof of theorem is completed. �  
 

3. Conclusion 

In this paper, we have described the singular values of the one parameter family

1
2

ze
z


. We have shown that 

the function  f z  has infinitely many singular values. Further, we have proved that the critical values of  f z  lie-
in the exterior of the open disk and interior of the open disk. 
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