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Abstract 
 
 

We consider numerical solution for a class of strongly nonlinear two-point boundary value problem. By giving 
the theoretical and numerical results, we discuss the high order convergence behavior of the iterated defect 
correction technique based on implicit trapezoid method with B-splines for the problems. This method 
provides high accuracy results for the solution of Troesch’s problem for large parameter ߣ 
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1. Introduction 
 

One important class of second order nonlinear differential equations is related to some heat-conduction 
problems and diffusion problems. In this paper, we study the following strongly nonlinear two-point boundary value 
problem  

 

െ
ௗ

ௗ௫
ቀ݇ሺݕሻ

ௗ௬

ௗ௫
ቁ ൌ ݂ሺݔ, ,ሻݕ 	 	 0 ൑ ݔ ൑ 1

ሺ0ሻݕ					 ൌ ,ߙ 	 y	ሺ1ሻ ൌ ,ߚ
                                                                      (1) 

 
where ߙ and ߚ are given constants inܫ ⊂ Թ,	ܦ ൌ ሺሾ0,1ሿ ൈ Թ ⊂ Թଶሻ,	݂ ∈ ሻݕሻ, ݇ሺܦଶ௠ାସሺܥ ∈ ݉,ሻܫଶ௠ାସሺܥ ∈ Ժାand 
݇ሺݕሻ ൐ 0 for all ݕ ∈  .ܫ

 
Since it is difficult to give the analytic solution of the problem (1), even if the function ݂ሺݔ,  ,ݕ ሻ is linear inݕ

various numerical methods have been developed to solve this problem. For example, we quote finite difference methods 
in [2],[5], Petrov-Galerkin method in [16], shooting methods in [1], [7], [21], [22], spline methods in [4], [18], [15], 
variation iteration methods [20], [6], collocation methods [9], asymptotic approximation [23] and Numeral’s method in 
[24].  

 
In [24], the problem (1) is discretized by fourth order Numerov’s method and nonlinear monotone iterative 

algorithm is presented to compute the solutions of the resulting discrete problems. Some applications and numerical 
results are given to demonstrate high efficiency of the approach.  
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In our study, we develop the Iterated Defect Correction (IDeC) technique by using B-spline interpolation of 
odd degree. The method of IDeC is one of the most powerful technique for the improvement of numerical solutions 
of initial and boundary value problems for ordinary differential equations. The idea behind the IDeC is carried out in 
the following way:  

 
Compute a simple, basic approximation and form its defect with respect to the given differential equation by a 

piecewise interpolant. This defect is used to define a neighboring problem whose exact solution is known. Solving the 
neighboring problem with the basic discretization scheme yields a global error estimate. This can be used to construct 
an improved approximation, and the procedure can be iterated. IDeC methods originated from an idea of Zadunisky 
[25]. An asymptotic analysis ሺ݄ → 0ሻ of such an iterative procedure based on global error estimates is given by Frank 
[11, 12, 13]. In [14] Defect Correction for stiff differential equations, in [17] Mixed Defect Correction Iteration for the 
solution of a singular perturbation problem, in [19] an error analysis of Iterated Defect Correction methods for linear 
differential-algebraic equations, and in [10] the Iterated Defect Correction Methods for Singular two point boundary 
value problems are studied.  

 
The outline of the paper is as follows: In Section2, the formulation of IDeC technique to the system of 

nonlinear two-point boundary value problem corresponding to (1) is given to use for improving the approximate 
solutions. We establish the asymptotic expansion of the global error for the implicit trapezoidal method in Section3. In 
Section4, we show that for an interpolating B-spline polynomial of degree 2݉ ൅ 1 (݉ ∈ Ժା) with the maximum IDeC 
step is ݉ and the convergence is ܱሺ݄ଶ௠ାଶሻ. In Section5, two test problems are presented by numerical results to verify 
the theoretical results in the previous chapter. Moreover, we present the efficiency of the IDeC method to apply the 
transformed form of Troesch’s problem in [6]. The IDeC method provides the high accuracy result for large 
parameter	ߣ ൒ 10.  

 
2. Application Of Iterated Defect Correction Techniques 

 

Applying the transformation ݖ ൌ ݇ሺݕሻ
ௗ௬

ௗ௫
 to (1), we obtain the following associated system of the first order  

 
ᇱݕ ൌ ݃ሺݕ, ሻݖ
ᇱݖ ൌ െ݂ሺݔ, ,ሻݕ

                                                                                        (2) 

 
where ݃ሺݕ, ሻݖ ൌ

௭

௞ሺ௬ሻ
 with the boundary conditionsݕሺ0ሻ ൌ ሺ1ሻݕ ,ߙ ൌ ,ሻݔሺݕand ሺ ߚ  ሻሻ் denotes the exact solutionݔሺݖ

for (2).  
 

 

The problem (2) will be called as original boundary value problem (OP). The approximate solutions, ݑ௜
ሾ଴ሿ ൎ  ௜ሻ andݔሺݕ

௜ݒ
ሾ଴ሿ ൎ   ௜ሻ are obtained by implicit trapezoidal method which are based on the following difference schemesݔሺݖ

 

௜ݑ
ሾ଴ሿ ൌ ௜ିଵݑ

ሾ଴ሿ ൅
௛

ଶ
ሾ݃ሺݑ௜ିଵ

ሾ଴ሿ , ௜ିଵݒ
ሾ଴ሿ ሻ ൅ ݃ሺݑ௜

ሾ଴ሿ, ௜ݒ
ሾ଴ሿሻሿ,

௜ݒ
ሾ଴ሿ ൌ ௜ିଵݒ

ሾ଴ሿ െ
௛

ଶ
ሾ݂ሺݔ௜ିଵ, ௜ିଵݑ

ሾ଴ሿ ሻ ൅ ݂ሺݔ௜, ௜ݑ
ሾ଴ሿሻሿ,

                                                        (3) 

 

on the uniform grid ݔ௜ ൌ ݄݅ for ݅ ൌ 0,1,… ,ܰ, with stepsize ݄ ൌ 1/ܰ and boundary conditions ݑ଴
ሾ଴ሿ ൌ ,ߙ ேݑ

ሾ଴ሿ ൌ  .ߚ

The nonlinear system (3) is solved by Newton’s method for ݑ௜
ሾ଴ሿ and ݒ௜

ሾ଴ሿ. Mathematica has a built-in command to solve 

this nonlinear equation. We interpolate ݑ௜
ሾ଴ሿ and ݒ௜

ሾ଴ሿ by B-Spline piecewise polynomial functions ݌ሾ଴ሿሺݔሻ and ݍሾ଴ሿሺݔሻ 
of fixed degree, 2݉ ൅ 1 that satisfies the following conditions:  
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૚.Interpolation: 
 

௜ሻݔሾ଴ሿሺ݌ ൌ ௜ݑ
ሾ଴ሿ,

௜ሻݔሾ଴ሿሺݍ ൌ ௜ݒ
ሾ଴ሿ, 	 ݅ ൌ 0,1, … , ܰ.

 

 
૛.Smoothness: 

 
lim
௫→௫೔

ష ݌
ሾ଴ሿሺ௞ሻ ሺݔሻ ൌ lim

௫→௫೔
శ
ሾ଴ሿሺ௞ሻ݌ ሺݔሻ, 	 lim

௫→௫೔
ష ݍ

ሾ଴ሿሺ௞ሻ ሺݔሻ ൌ lim
௫→௫೔

శ
ሾ଴ሿሺ௞ሻݍ ሺݔሻ	

lim
௫→௫೔

ష ݍ
ሾ଴ሿሺ௞ሻ ሺݔሻ ൌ lim

௫→௫೔
శ
ሾ଴ሿሺ௞ሻݍ ሺݔሻ, 	 ݇ ൌ 0,1, … ,2݉ 

 
 

૜.	Interval of definition:	݌ሾ଴ሿሺݔሻ and ݍሾ଴ሿሺݔሻ is polynomial of degree at most 2݉ ൅ 1 on each subintervalሾݔ௜ିଵ,   .௜ሿݔ
 

    The interpolations yield the defects when they substitute into (OP) (2)  
 

݀௬
ሾ଴ሿሺݔሻ ൌ ሾ଴ሿ݌

ᇲ
ሺݔሻ െ ݃ሺ݌ሾ଴ሿሺݔሻ, ሻሻݔሾ଴ሿሺݍ

݀௭
ሾ଴ሿሺݔሻ ൌ ሾ଴ሿݍ

ᇲ
ሺݔሻ ൅ ݂ሺ݌ሾ଴ሿሺݔሻሻ, .ሻሻݔሾ଴ሿሺݍ

 

 
By adding these defect terms to the right hand side of (OP) (2), we get a new BVP which is called by neighboring 
boundary value problem (NP) as  

 

ᇱݕ ൌ ݃ሺݕ, ሻݖ ൅ ݀௬
ሾ଴ሿሺݔሻ,

ᇱݖ ൌ െ݂ሺݔ, ሻݕ ൅ ݀௭
ሾ଴ሿሺݔሻ.

                                                                          (4) 

 
Notice that; the exact solutions of (4), ݌ሾ଴ሿሺݔሻ and ݍሾ଴ሿሺݔሻ are known. Then we solve (4) by the implicit trapezoidal 

method to obtain the numerical approximate solutions ߟ௜
ሾ଴ሿ ൎ ௜ߦ ௜ሻ andݔሾ଴ሿሺ݌

ሾ଴ሿ ൎ ݅ ,ሻݔሾ଴ሿሺݍ ൌ 0,1,… ,ܰ with  
 

଴ߟ
ሾ଴ሿ ൌ 	ሾ଴ሿሺ0ሻ݌ and	 ேߟ

ሾ଴ሿ ൌ  .ሾ଴ሿሺ1ሻ݌
 

We can use the known global discretization errors ߟ௜
ሾ଴ሿ െ ௜ߦ ௜ሻ andݔሾ଴ሿሺ݌

ሾ଴ሿ െ  ௜ሻ of (NP) (4) as an estimate forݔሾ଴ሿሺݍ

the unknown global discretization errors ݑ௜
ሾ଴ሿ െ ௜ݒ ௜ሻ andݔሺݕ

ሾ଴ሿ െ  ௜ሻ. The original idea of estimating globalݔሺݖ

discretization error in this way is due to [25]. The improvement of our first solutions ݑ௜
ሾ଴ሿ and ݒ௜

ሾ଴ሿ is given by  
 

௜ݑ
ሾଵሿ ൌ ௜ݑ

ሾ଴ሿ െ ሺߟ௜
ሾ଴ሿ െ ,௜ሻሻݔሾ଴ሿሺ݌ ݅ ൌ 1,2, … ,ܰ െ 1

௜ݒ
ሾଵሿ ൌ ௜ݒ

ሾ଴ሿ െ ሺߦ௜
ሾ଴ሿ െ ,௜ሻሻݔሾ଴ሿሺݍ ݅ ൌ 0,1, … ,ܰ.

 

 
This procedure can be used iteratively as  

 

௜ݑ
ሾ௝ାଵሿ ൌ ௜ݑ

ሾ଴ሿ െ ሺߟ௜
ሾ௝ሿ െ ,௜ሻሻݔሾ௝ሿሺ݌ ݅ ൌ 1,2,… ,ܰ െ 1

௜ݒ
ሾ௝ାଵሿ ൌ ௜ݒ

ሾ଴ሿ െ ሺߦ௜
ሾ௝ሿ െ ,௜ሻሻݔሾ௝ሿሺݍ ݅ ൌ 0,1,… ,ܰ,

                                                  (5) 

݆ ൌ 0,1, … , ݆୫ୟ୶, where ݆ denotes the defect number.  
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3. Asymptotic Expansion of the Global Errors 
 
The truncation error for the implicit trapezoid method ௛ܶ,௜ is obtained as  
 

௛ܶ,௜ ൌ ቂ
߬௬,௜
߬௭,௜

ቃ ൌ ෍ℓ௞ାଵ

௄

௞ୀଶ

݄௞ାଵ ቈ
௜ሻݔ௞ାଵሺݕ
௜ሻݔ௞ାଵሺݖ

቉ ൅ ܱሺ݄௄ାଵሻ, 	 	 ݅ ൌ 1,2,… , ܰ, 

where	ℓ௞ାଵ ൌ െ
ሺ௞ିଵሻ

ଶሺ௞ାଵሻ!
. 

 
The asymptotic expansions of the global errors of the implicit trapezoidal method applied to (OP)(2) and (NP) 

(4) are derived by using the same technique in Frank [13]. The asymptotic expansion of the global error for (OP) is as 
follows  

 
 

ܷሾ଴ሿሺݔ௜ሻ െ ܻሺݔ௜ሻ ൌ ∑ ݄ଶ௡௠ାଵ
௡ୀଵ ௜ሻݔଶ௡ሺܧ ൅ Δ௜,                                                             (6) 

where ∥ Δ௜ ∥ൌ ܱሺ݄ଶ௠ାସሻ, 
 

ܷሾ଴ሿሺݔ௜ሻ ൌ ቈ
௜ሻݔሾ଴ሿሺݑ
௜ሻݔሾ଴ሿሺݒ

቉ , ௜ሻݔଶ௡ሺܧ ൌ ൤
݁௬,ଶ௡ሺݔ௜ሻ
݁௭,ଶ௡ሺݔ௜ሻ

൨ , ܻሺݔ௜ሻ ൌ ൤
௜ሻݔሺݕ
௜ሻݔሺݖ

൨ ,  

 
and ܧଶ௡ሺݔሻ is the smooth solution to the following system of linear boundary value problem 
ଶ௡ܧ																															

ᇱ ሺݔሻ ൌ ሻݔଶ௡ሺܧሺܻሻܬ ൅ ℓଶ௡ାଵܻ
ሺଶ௡ାଵሻሺݔሻ         

			൅const. ,ଶܨଶ௡൫ܪ ,ସܨ … , ,ଶ௡ିଶܨ ܻ, ܻᇱ, … , ܻ
ሺଶ௡ିଶሻ, ,ଵܭ  (7)																																														ଶ൯ܭ

 
with the boundary conditions 

ଶ௡ሺ0ሻܧ଴ܯ ൅ ଶ௡ሺ1ሻܧଵܯ ൌ 0, 
 

where ܯ଴ ൌ ቂ1 0
0 0

ቃ , ଵܯ ൌ ቂ0 0
1 0

ቃ , ሺܻሻܬ ൌ ቈ
݃௬ሺݕ, ሻݖ ݃௭ሺݕ, ሻݖ
െ ௬݂ሺݔ, ሻݕ 0 ቉                                                                 (8) 

 

and ܨଶ௅ is the function of ሺܧଶ௅, ଶ௅ܧ
ᇱ , … , ଶ௅ܧ

ሺଶ௡ିଶ௅ሻሻ for ܮ ൌ 1,2, … ,2݊ െ ,ଵܭ ,2  ଶ are functions of partial derivativesܭ
of ݂ and ݃ of order ൑ 2݊ െ ଶܪ ଶ௡ is the smooth function withܪ ,1 ൌ 0, and const.	is a constant independent of ݄ 
and ݔ. By similar considerations, we define the asymptotic expansion of the global error for the ݆-th neighboring 
boundary value problem (NP) (4),  

 

௜ߞ
ሾ௝ሿ െ ܲሾ௝ሿሺݔ௜ሻ ൌ ∑ ݄ଶ௡௠ାଵ

௡ୀଵ ଶ௡ܧ
ሾ௝ሿሺݔ௜ሻ ൅ Δ௜

ሾ௝ሿ,	                                                   (9) 
 

where 	 ∥ Δ௜
ሾ௝ሿ ∥ൌ ܱሺ݄ଶ௠ାସሻ, 

 

௜ߞ
ሾ௝ሿ ൌ ൥

௜ߟ
ሾ௝ሿ

௜ߦ
ሾ௝ሿ൩ , ܲሾ௝ሿሺݔሻ ൌ ቈ

ሻݔሾ௝ሿሺ݌
ሻݔሾ௝ሿሺݍ

቉ , ଶ௡ܧ
ሾ௝ሿሺݔ௜ሻ ൌ ൥

݁௬,ଶ௡
ሾ௝ሿ ሺݔ௜ሻ

݁௭,ଶ௡
ሾ௝ሿ ሺݔ௜ሻ

൩ ,  

 

and ܧଶ௡
ሾ௝ሿሺݔሻ is the smooth solution to the following system of linear boundary value problem.  

ଶ௡ܧ
ሾ௝ሿᇲሺݔሻ ൌ ଶ௡ܧ൫ܲሾ௝ሿ൯ܬ

ሾ௝ሿሺݔሻ ൅ ℓଶ௡ାଵܲ
ሾ௝ሿሺଶ௡ାଵሻሺݔሻ									 

൅const. ଶܨଶ௡ሺܪ
ሾ௝ሿ, ସܨ

ሾ௝ሿ, … , ଶ௡ିଶܨ
ሾ௝ሿ , ܲሾ௝ሿ, ܲሾ௝ሿ

ᇲ
, … , ܲሾ௝ሿሺଶ௡ିଶሻ, ଵܭ

ሾ௝ሿ, ଶܭ
ሾ௝ሿሻ     (10) 
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with the boundary conditions  

ଶ௡ܧ଴ܯ
ሾ௝ሿሺ0ሻ ൅ ଶ௡ܧଵܯ

ሾ௝ሿሺ1ሻ ൌ 0, 
where 

ሺܲሾ௝ሿሻܬ ൌ ቈ
݃௬ሺ݌ሾ௝ሿ, ሾ௝ሿሻݍ ݃௭ሺ݌ሾ௝ሿ, ሾ௝ሿሻݍ

െ ௬݂ሺݔ, ሾ௝ሿሻ݌ 0
቉ 

 

and ܭଵ
ሾ௝ሿ, ଶܭ

ሾ௝ሿ are obtained by substituting ܲሾ௝ሿሺݔሻ instead of ܻሺݔሻ inܭଵ,   .ଶܭ
 

4. Error Analysis 
 
Since the 2 ൈ 2 Jacobian matrix ܬሺܻሻ is the smooth matrix valued function for all ܻ ∈ Թଶ, there exist 

fundamental matrices ܳሺݔሻ and ܳሾ௝ሿሺݔሻ which satisfy the corresponding homogeneous parts of differential equation 
systems (7) and (10) respectively,  

 
ௗ

ௗ௫
ܳሺݔሻ ൌ  ሻ                                                                                      (11)ݔሺܻሻܳሺܬ

 
ௗ

ௗ௫
ܳሾ௝ሿሺݔሻ ൌ ,ሻݔሺܲሾ௝ሿሻܳሾ௝ሿሺܬ 	 ݔ∀ ∈ ሾ0,1ሿ.                                                          (12) 

 
Then the solutions to linear non-homogeneous boundary value problems (7) and (10) can be represented in the form  

 

ሻݔଶ௡ሺܧ ൌ ׬ ܩ
ଵ
଴ ሺݔ; ሻߦሻሺℓଶ௡ାଵܻଶ௡ାଵሺߦ ൅ const.  (13)                                         ߦሻሻ݀ߦଶ௡ሺܪ

 

ଶ௡ܧ
ሾ௝ሿሺݔሻ ൌ ׬ ሾ௝ሿܩ

ଵ
଴

ሺݔ; ሻߦ ൬ℓଶ௡ାଵܲ
ሾ௝ሿଶ௡ାଵሺߦሻ ൅ const. ଶ௡ܪ

ሾ௝ሿሺߦሻ൰  (14)                              ,ߦ݀

 
where ܩሺݔ; ;ݔሾ௝ሿሺܩ ሻ andߦ   ሻ are Green’s matrices are defined byߦ

 

;ݔሺܩ ሻߦ ൌ ൜
ܳሺݔሻିܮଵܯ଴ܳሺ0ሻܳିଵሺߦሻ, 	 	 ߦ ൏ ݔ
െܳሺݔሻିܮଵܯଵܳሺ1ሻܳିଵሺߦሻ, 	 ߦ ൐ ݔ

                                                       (15) 

 

;ݔሾ௝ሿሺܩ ሻߦ ൌ ቊ
ܳሾ௝ሿሺݔሻିܮଵܯ଴ܳሾ௝ሿሺ0ሻܳିଵሾ௝ሿሺߦሻ, 	 	 ߦ ൏ ݔ
െܳሾ௝ሿሺݔሻିܮଵܯଵܳሾ௝ሿሺ1ሻܳିଵሾ௝ሿሺߦሻ, 	 	 ߦ ൐ ,ݔ

                                          (16) 

 
and ܮ is an invertible matrix such that	ܮ ൌ ଴ܳሺ0ሻܯ ൅ ଵܳሺ1ሻܯ ൌ ଴ܳሾ௝ሿሺ0ሻܯ ൅  ଵܳሾ௝ሿሺ1ሻ. Notice that; in theܯ
following statements, ∥⋅∥ corresponds to the induced matrix norm of the maximum norm ∥⋅∥ஶ for vectors and const.is 
a constant independent of ݔ and	݄.  

 
Lemma 1: Let ܳሺݔሻand ܳሾ௝ሿሺݔሻ be fundamental matrices of (11) and (12) respectively, ܩሺݔ; ;ݔሾ௝ሿሺܩ ሻ andߦ  ሻߦ

be the Green’s functions defined in equations (15) and (16) respectively, then for all ݔ ∈ ሾ0,1ሿ 
 

∥ ܳሺݔሻ െ ܳሾ௝ሿሺݔሻ ∥൑ const. ∥ ܻሺݔሻ െ ܲሾ௝ሿሺݔሻ ∥,                                          (17) 
 

∥ ܳିଵሺݔሻ െ ܳିଵሾ௝ሿሺݔሻ ∥൑ const. ∥ ܻሺݔሻ െ ܲሾ௝ሿሺݔሻ ∥,                                          (18) 
∥ ;ݔሺܩ ሻߦ െ ;ݔሾ௝ሿሺܩ ሻߦ ∥൑ const. ∥ ܻሺݔሻ െ ܲሾ௝ሿሺݔሻ ∥. 
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Proof: The subtraction of the corresponding integral equations of (11) and (12), adding, േܬሺܲሾ௝ሿሻܳሺݐሻ and 
taking the norm of both sides give  

∥ ܳሺݔሻ െ ܳሾ௝ሿሺݔሻ ∥൑∥ ܳሺ0ሻ െ ܳሾ௝ሿሺ0ሻ ∥ ൅න ∥

௫

଴

ሺܻሻܬ െ ሺܲሾ௝ሿሻܬ ∥∥ ܳሺݐሻ ∥ 	ݐ݀

			൅න ∥

௫

଴

ሺܲሾ௝ሿሻܬ ∥∥ ܳሺݐሻ െ ܳሾ௝ሿሺݐሻ ∥  .ݐ݀

 
For all ݔ ∈ ሾ0,1ሿ, it is easily shown that  

 
∥ ሺܻሻܬ െ ሺܲሻܬ ∥൑ const. ∥ ܻሺݔሻ െ ܲሺݔሻ|. 

	

And by applying the Gronwall’s inequality (see in [3]) it is obtained that  
 

∥ ܳሺݔሻ െ ܳሾ௝ሿሺݔሻ ∥൑ const. ∥ ܻ െ ܲሾ௝ሿ ∥, ݔ  ∈ ሾ0,  .ሻߦ
 

For equation (18) we can easily deduce that ܳିଵ and ܳିଵሾ௝ሿ satisfy the following differential equation systems  
 

݀
ݔ݀

ܳିଵሺݔሻ ൌ െܳିଵሺݔሻܬሺܻሻ and
݀
ݔ݀

ܳିଵሾ௝ሿሺݔሻ ൌ െܳିଵሾ௝ሿሺݔሻܬሺܲሾ௝ሿሻ. 

 
Therefore, an argument similar to the one used in the above statements shows equation (18). For 0 ൑ ݔ ൏   we have ,ߦ

 
;ݔሺܩ ሻߦ ൌ ܳሺݔሻିܮଵܯ଴ܳሺ0ሻܳିଵሺߦሻ                                                                   (19) 

 
;ݔሾ௝ሿሺܩ ሻߦ ൌ ܳሾ௝ሿሺݔሻିܮଵܯ଴ܳሾ௝ሿሺ0ሻܳିଵሾ௝ሿሺߦሻ.                                                       (20) 

 
Setting ܵ ൌ ଴ܳሺ0ሻܯଵିܮ ൌ   ଴ܳሾ௝ሿሺ0ሻ and subtracting (19) from (20) givesܯଵିܮ

 
;ݔሺܩ ሻߦ െ ;ݔሾ௝ሿሺܩ ሻߦ ൌ ܳሺݔሻܵܳିଵሺߦሻ െ ܳሾ௝ሿሺݔሻܵܳିଵሾ௝ሿሺߦሻ. 

 
Inserting േܳሾ௝ሿሺݔሻܵܳିଵሺߦሻ to the right hand side of the above equation and taking the norm of both sides yield  

∥ ;ݔሺܩ ሻߦ െ ;ݔሾ௝ሿሺܩ ሻߦ ∥൑∥ ܳሺݔሻ െ ܳሾ௝ሿሺݔሻ ∥∥ ܵܳିଵሺߦሻ ∥ 
	

																																																			൅∥ ܳሾ௝ሿሺݔሻܵ ∥∥ ܳିଵሺߦሻ െ ܳିଵሾ௝ሿሺߦሻ ∥. 
 

Since ܳሺݔሻ and ܳିଵሺݔሻ are continuous on ሾ0,1ሿ, applying (17) and (18) follows that  
 

∥ ;ݔሺܩ ሻߦ െ ;ݔሾ௝ሿሺܩ ሻߦ ∥൑ const. ∥ ܻሺݔሻ െ ܲሾ௝ሿሺݔሻ ∥. 
 

Similar arguments hold for ߦ ൏ ݔ ൑ 1.  � 
  

Lemma 2: For problems (2), (4) and for all ݔ ∈ ሾ0,1ሿ, we have  
 

∥
݀௞

௞ݔ݀
ሺܲሾ଴ሿሺݔሻ െ ܻሺݔሻሻ ∥൑ ൝

const. ݄ଶ for ݇ ൌ 0,1,… ,2݉
const. ݄ for ݇ ൌ 2݉ ൅ 1
const. for ݇ ൌ 2݉ ൅ 2

, 
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∥ ሻݔଶሺܧ െ ଶܧ
ሾ଴ሿሺݔሻ ∥൑ const. ∥ ܻᇱᇱሺݔሻ െ ܲሾ଴ሿ

ᇲᇲ
ሺݔሻ ∥,                                     (21) 

 

where ܲሾ଴ሿሺݔሻ ൌ ቈ
ሻݔሾ଴ሿሺ݌
ሻݔሾ଴ሿሺݍ

቉ : ሾ0,1ሿ → Թଶ is a vector valued B-spline interpolating polynomial of odd degree 2݉ ൅ 1	 

ሺ݉ ∈ Ժାሻ with a const.	not depending on ݔ and ݄. 
 
Proof: We know that ܲሾ଴ሿሺݔሻ does not interpolate the exact value of ܻሺݔሻ at ݔ ൌ  ௜ so we need to define theݔ

auxiliary function  
 

߰ሾ଴ሿሺݔሻ ൌ ܻሺݔሻ ൅ ∑ ݄ଶ௡௠ାଵ
௡ୀଵ ଶ௡ܧ ൅ Δ௜ሺݔሻ,                                                     (22) 

 

where ߰ሾ଴ሿሺݔ௜ሻ ൌ ൥
௜ݑ
ሾ଴ሿ

௜ݒ
ሾ଴ሿ൩, ݅ ൌ 0,1,… ,ܰ. Therefore the 2݉ ൅ 1 odd degree B-spline interpolating polynomial ܲሾ଴ሿሺݔሻ 

interpolate ߰ሺݔሻ at ݔ ൌ ௜ݔ . From [8] we have  
 

∥
ௗೖ

ௗ௫ೖ
ሺܲሾ଴ሿሺݔሻ െ ߰ሺݔሻሻ ∥ൌ ܱሺ݄ଶ௠ାଶି௞ሻ,	 ݔ∀ ∈ ሾ0,1ሿ.                                     (23) 

Using the ݇௧௛ derivative of the identity ܲሾ଴ሿሺݔሻ െ ܻሺݔሻ ൌ ܲሾ଴ሿሺݔሻ േ ߰ሺݔሻ െ ܻሺݔሻ and we get  
 

݀௞

௞ݔ݀
ሺܲሾ଴ሿሺݔሻ െ ܻሺݔሻሻ ൌ

݀௞

௞ݔ݀
ሺܲሾ଴ሿሺݔሻ െ ߰ሺݔሻሻ ൅

݀௞

௞ݔ݀
ሺ߰ሺݔሻ െ ܻሺݔሻሻ. 

 
Hence the equations (22) and (23) gives  

 

∥
݀௞

௞ݔ݀
ሺܲሾ଴ሿሺݔሻ െ ܻሺݔሻሻ ∥ൌ ܱሺ݄ଶ௠ାଶି௞ሻ ൅ ܱሺ݄ଶሻ as ݄ → ݔ∀			,0 ∈ ሾ0,1ሿ. 

 

Subtracting ܧଶ
ሾ଴ሿሺݔሻ from ܧଶሺݔሻ in the equations (13) and (14) and inserting േܩሾ଴ሿሺݔ;   ሻ we getߦሻܻᇱᇱᇱሺߦ

 

ሻݔଶሺܧ െ ଶܧ
ሾ଴ሿሺݔሻ ൌ න ሺ

ଵ

଴
;ݔሺܩ ሻߦ െ ,ݔሾ଴ሿሺܩ 	ߦሻ݀ߦሻሻܻᇱᇱᇱሺߦ

																																							൅ ׬ ሾ଴ሿܩ
ଵ
଴ ሺݔ; ሻߦሻሺܻᇱᇱᇱሺߦ െ ܲሾ଴ሿ

ᇲᇲᇲ
ሺߦሻሻ݀(24)                                      .ߦ 

 
Now consider the second term of the right hand side of (24) as  

 

නܩሾ଴ሿ
ଵ

଴

ሺݔ; ሻߦሻሺܻᇱᇱᇱሺߦ െ ܲሾ଴ሿ
ᇲᇲᇲ
ሺߦሻሻ݀ߦ ൌ නܩሾ଴ሿ

௫

଴

ሺݔ; ሻߦሻሺܻᇱᇱᇱሺߦ െ ܲሾ଴ሿ
ᇲᇲᇲ
ሺߦሻሻ݀ߦ	

൅නܩሾ଴ሿ
ଵ

௫

ሺݔ; ሻߦሻሺܻᇱᇱᇱሺߦ െ ܲሾ଴ሿ
ᇲᇲᇲ
ሺߦሻሻ݀ߦ					 ൌ 1ܫ ൅  ,2ܫ

where ܫଵ and ܫଶ represents the corresponding integrals. Applying integration by parts for	ܫଵ, we obtain  
 

ଵܫ ൌ ;ݔሾ଴ሿሺܩ ሻݔሻሺܻᇱᇱሺିݔ െ ܲሾ଴ሿ
ᇲᇲ
ሺݔሻሻ െ ;ݔሾ଴ሿሺܩ 0ሻሺܻᇱᇱሺ0ሻ െ ܲሾ଴ሿ

ᇲᇲ
ሺ0ሻሻ	

								െනܩక
ሾ଴ሿ

௫

଴

ሺݔ; ሻߦሻሺܻᇱᇱሺߦ െ ܲሾ଴ሿ
ᇲᇲ
ሺߦሻሻ݀ߦ. 
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Using the derivative properties of spline interpolation, i.e. ܻᇱᇱሺ0ሻ ൌ ܲሾ଴ሿ
ᇲᇲ
ሺ0ሻ and substituting the corresponding term 

of ܩሺݔ;   ሻ we getିݔ
 

ଵܫ ൌ ܳሺݔሻିܮଵܯ଴ܳሺ0ሻܳିଵሺݔሻሺܻᇱᇱሺݔሻ െ ܲሾ଴ሿ
ᇲᇲ
ሺݔሻሻ	

						െනܳ

௫

଴

ሺݔሻିܮଵܯ଴ܳሺ0ሻܳక
ିଵሺߦሻሺܻᇱᇱሺߦሻ െ ܲሾ଴ሿ

ᇲᇲ
ሺߦሻሻ݀ߦ. 

By applying similar arguments for ܫଶ and usingܻᇱᇱሺ1ሻ ൌ ܲሾ଴ሿ
ᇲᇲ
ሺ1ሻ, we get  

 
ଶܫ ൌ ܳሺݔሻିܮଵܯଵܳሺ1ሻܳିଵሺݔሻሺܻᇱᇱሺݔሻ െ ܲሾ଴ሿ

ᇲᇲ
ሺݔሻሻ	

						൅නܳ

ଵ

௫

ሺݔሻିܮଵܯଵܳሺ1ሻܳక
ିଵሺߦሻሺܻᇱᇱሺߦሻ െ ܲሾ଴ሿ

ᇲᇲ
ሺߦሻሻ݀ߦ. 

 
Sinceܳሺݔሻିܮଵܯ଴ܳሺ0ሻܳିଵሺݔሻ ൅ ܳሺݔሻିܮଵܯଵܳሺ1ሻܳିଵሺݔሻ is identity matrix, we derive  

 

ଵܫ ൅ ଶܫ ൌ ሺܻᇱᇱሺݔሻ െ ܲሾ଴ሿ
ᇲᇲ
ሺݔሻሻ ൅ නܩଵ

ଵ

௫

ሺݔ; ሻߦሻሺܻᇱᇱሺߦ െ ܲሾ଴ሿ
ᇲᇲ
ሺߦሻሻ݀ߦ	

														െනܩଶ

௫

଴

ሺݔ; ሻߦሻሺܻᇱᇱሺߦ െ ܲሾ଴ሿ
ᇲᇲ
ሺߦሻሻ݀ߦ, 

 
where ܩଵሺݔ; ሻߦ ൌ ܳሺݔሻିܮଵܯଵܳሺ1ሻܳక

ିଵሺߦሻ and ܩଶሺݔ; ሻߦ ൌ ܳሺݔሻିܮଵܯ଴ܳሺ0ሻܳక
ିଵሺߦሻ. If we substitute ܫଵ ൅  ଶ in theܫ

equation (24) and taking the norm of both sides we get  
 

ቛܧଶሺݔሻ െ ଶܧ
ሾ଴ሿሺݔሻቛ ൑ ฮܻᇱᇱሺݔሻ െ ܲሾ଴ሿ

ᇲᇲ
ሺݔሻฮ ൅ ׬ ∥

ଵ
଴ ;ݔሺܩ ሻߦ െ ,ݔሾ଴ሿሺܩ ሻߦ ∥∥ ܻᇱᇱᇱሺߦሻ‖݀ߦ

൅׬ ∥
ଵ
௫ ;ݔଵሺܩ ሻߦ ∥∥ ܻᇱᇱ െ ܲሾ଴ሿ

ᇲᇲ
∥ ߦ݀ െ ׬ ∥

௫
଴ ;ݔଶሺܩ ሻߦ ∥∥ ܻᇱᇱ െ ܲሾ଴ሿ

ᇲᇲ
∥ .ߦ݀

				(25) 

 
Since ∥ ;ݔሺܩ ሻߦ ∥, ∥ ;ݔଵሺܩ ሻߦ ∥, ∥ ;ݔଶሺܩ ሻߦ ∥ are bounded for 0 ൑ ݔ ൑ 1 and 0൑ ߦ ൑ 1, combining the results 

in Lemma 1 with the equation (25), we obtain the equation (21).  � 
 

Lemma 3: Let ܧଶ௡ሺݔሻ and ܧଶ௡
ሾ଴ሿሺݔሻ be defined in (13) and (14), then for all ݔ ∈ ሾ0,1ሿ 

 

∥ ଶ௡ܧ െ ଶ௡ܧ
ሾ଴ሿ ∥൑ const. ∥ ܻሺଶ௡ሻሺݔሻ െ ܲሾ଴ሿሺଶ௡ሻሺݔሻ ∥,                                                   (26) 

for ݊ ൌ 1,2, … ,݉ ൅ 1.  
Proof: For	݊ ൌ 1, it is proved in lemma 2. Suppose that the assumption is true for ݊ െ 1 with݊ ൒ 2. The 

subtraction ܧଶ௡
ሾ଴ሿሺݔሻ from ܧଶ௡ሺݔሻ yields  

 

ଶ௡ܧ െ ଶ௡ܧ
ሾ଴ሿ ൌ ℓଶ௡ାଵ න ሾ

ଵ

଴
;ݔሺܩ ሻߦሻܻሺଶ௡ାଵሻሺߦ െ ;ݔሾ଴ሿሺܩ  ߦሻሿ݀ߦሻܲሾ଴ሿሺଶ௡ାଵሻሺߦ

൅const. ׬ ሾ
ଵ
଴ ;ݔሺܩ ሻߦଶ௡ሺܪሻߦ െ ;ݔሾ଴ሿሺܩ ଶ௡ܪሻߦ

ሾ଴ሿሺߦሻሿ݀(27)                                           ߦ 
 

By adding േܩሾ଴ሿሺݔ;   ଶ௡ to the second part of the above integral and taking the norm of both sides we obtainܪሻߦ
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න ∥

ଵ

଴

;ݔሺܩ ଶ௡ܪሻߦ െ ;ݔሾ଴ሿሺܩ ଶ௡ܪሻߦ
ሾ଴ሿ ∥ ߦ݀ ൑ const. ∥ ;ݔሺܩ ሻߦ െ ;ݔሾ଴ሿሺܩ ሻߦ ∥	

																																																																							൅const. ∥ ଶ௡ܪ െ ଶ௡ܪ
ሾ଴ሿ ∥. 

 
Hence; from the similar consideration as in the lemma 2 for	ݔ ∈ ሾ0,1ሿ, we deduce that  

 

∥ ሻݔଶ௡ሺܧ െ ଶ௡ܧ
ሾ଴ሿሺݔሻ ∥൑ const. ∥ ܻሺଶ௡ሻሺݔሻ െ ܲሾ଴ሿሺଶ௡ሻሺݔሻ ∥ ൅const. ∥ ܻሺݔሻ െ ܲሾ଴ሿሺݔሻ ∥ 

൅const. ∥ ଶ௡ܪ െ ଶ௡ܪ
ሾ଴ሿ ∥.		                                                                             (28) 

 
From the induction hypothesis and taking the derivatives of the differential systems (7) and (10), we conclude that  

 

∥ ଶ௜ܧ
ሺଶ௡ିଶ௜ሻ െ ଶ௜ܧ

ሾ଴ሿሺଶ௡ିଶ௜ሻ ∥൑ const. ∥ ܻሺଶ௡ሻሺݔሻ െ ܲሾ଴ሿሺଶ௡ሻሺݔሻฮ,                                              (29) 
 

∥ ܻሺଶ௡ି௜ሻሺݔሻ െ ܲሾ଴ሿሺଶ௡ି௜ሻሺݔሻ ∥൑ const. ∥ ܻሺଶ௡ିଶሻሺݔሻ െ ܲሾ଴ሿሺଶ௡ିଶሻሺݔሻ ∥                                (30) 
 

for ݅ ൌ 2,… ,2݊ െ 1 and also  

∥ ଵܭ െ ଵܭ
ሾ଴ሿ ∥൑ const. ∥ ܻሺݔሻ െ ܲሾ଴ሿሺݔሻ ∥,                                                         (31) 

 

∥ ଶܭ െ ଶܭ
ሾ଴ሿ ∥൑ const. ∥ ܻሺݔሻ െ ܲሾ଴ሿሺݔሻ ∥,                                                         (32) 

 
where ܭଵ and ܭଶ depend on sufficiently smooth functions of ݂ and	݃. Combining the inequalities (29), (30), (31) and 
(32) we get  
 

∥ ଶ௡ܪ െ ଶ௡ܪ
ሾ଴ሿ ∥൑ const. ∥ ܻሺଶ௡ሻሺݔሻ െ ܲሾ଴ሿሺଶ௡ሻሺݔሻ ∥.                                              (33) 

 
Substituting (33) in the inequality (28) gives (26).  � 

 
Lemma 4: For the problems (OP)(2) and (NP)(4), with ݆ ൌ 0,1,… ,݉ െ 1, for all ݔ ∈ ሾ0,1ሿ 
 

ቛ
ௗೖ

ௗ௫ೖ
ሺܲሾ௝ሿሺݔሻ െ ܻሺݔሻሻቛ ൑ ቊ

const. ݄ଶ௝ାଶ for 0 ൑ ݇ ൑ 2݉ െ 2݆
const. ݄ଶ௠ି௞ାଶ for 2݉ െ 2݆ ൅ 1 ൑ ݇ ൑ 2݉ ൅ 2,

                         (34) 

 

ቛܧଶ௡ሺݔሻ െ ଶ௡ܧ
ሾ௝ሿሺݔሻቛ ൑ ቊ

const. ݄ଶ௝ାଶ for 1 ൑ ݊ ൑ ݉ െ ݆
const. ݄ଶ௠ିଶ௡ାଶ for ݉ െ ݆ ൅ 1 ൑ ݊ ൑ ݉ ൅ 1,

                                (35)    

where ܲሾ௝ሿሺݔሻ is B-spline polynomial of fixed degree 2݉ ൅ 1 and ܧଶ௡ሺݔሻ, ܧଶ௡
ሾ௝ሿሺݔሻ satisfy the equations (13) and (14) 

respectively.  
 
Proof: For ݆ ൌ 0	the inequalities, (34) and (35) are proved in lemma 2 and 3. Suppose that (34) is true for 1 ൑

݆ ൑ ݉ െ 2. For 	݆ ൌ ݉ െ 1, we define a new function  
 

߰ሾ௠ିଵሿሺݔሻ ൌ ܻሺݔሻ ൅ ∑ ݄ଶ௡௠ାଵ
௡ୀଵ ൬ܧଶ௡ሺݔሻ െ ଶ௡ܧ

ሾ௠ିଶሿሺݔሻ൰ ൅ ቀΔሺݔሻ െ	Δሾ௠ିଶሿሺݔሻቁ,																					(36) 

where ሺΔሺݔሻ െ Δሾ௠ିଶሿሺݔሻሻ is polynomial of degree 2݉ ൅ 1 which interpolates the values  
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ሺΔ௜ െ Δ௜
ሾ௠ିଶሿሻ ൌ ܱሺ݄ଶ௠ାସሻ 

 

and ∥
ௗೖ

ௗ௫ೖ
ሺΔሺݔሻ െ Δሾ௠ିଶሿሺݔሻሻ ∥ൌ ܱሺ݄ଶ௠ାସି௞ሻ for ݇ ൌ 0,1,… ,2݉ ൅ 1. Taking the ݇௧௛ derivative of (36), we get, 

for ݇ ൌ 0,1,… ,2݉ ൅ 1, 
 

ௗೖ

ௗ௫ೖ
ቀ߰ሾ௠ିଵሿሺݔሻ െ ܻሺݔሻቁ ൌ ∑ ݄ଶ௡௠ାଵ

௡ୀଵ
ௗೖ

ௗ௫ೖ
൬ܧଶ௡ሺݔሻ െ ଶ௡ܧ

ሾ௠ିଶሿሺݔሻ൰ ൅ ܱ൫݄ଶ௠ାସି௞൯,																										 (37) 

 

The term 
ௗೖ

ௗ௫ೖ
ሺܧଶ௡ሺݔሻ െ ଶ௡ܧ

ሾ௠ିଶሿሺݔሻሻ depends on 
ௗೖ

ௗ௫ೖ
ሺܲሾ௠ିଶሿሺଶ௡ሻሺݔሻ െ ܻሺଶ௡ሻሺݔሻሻ. Thus by induction hypothesis we 

get  
 

ቛ
ௗೖశమ೙

ௗ௫ೖశమ೙
ሺܲሾ௠ିଶሿሺݔሻ െ ܻሺݔሻሻቛ ൑ ൜const. ݄

ଶ௠ିଶ for 0 ൑ ݇ ൑ 4 െ 2݊
const. ݄ଶ௠ିଶ௡ି௞ାଶ for 5 െ 2݊ ൑ ݇ ൑ 2݉ െ 2݊ ൅ 2.

                     (38) 

 
Substitution (38) in (37) yields  

 

∥
ௗೖ

ௗ௫ೖ
ሺ߰ሾ௠ିଵሿሺݔሻ െ ܻሺݔሻሻ ∥൑ ൜const. ݄

ଶ௠ for 0 ൑ ݇ ൑ 2
const. ݄ଶ௠ି௞ାଶ for 3 ൑ ݇ ൑ 2݉.

                                      (39) 

 
The identity  

 
݀௞

௞ݔ݀
ሺܲሾ௠ିଵሿሺݔሻ െ ܻሺݔሻሻ ൌ

݀௞

௞ݔ݀
ሺܲሾ௠ିଵሿሺݔሻ െ ߰ሾ௠ିଵሿሺݔሻሻ ൅

݀௞

௞ݔ݀
ሺ߰ሾ௠ିଵሿሺݔሻ െ ܻሺݔሻሻ 

 
and from [8] with (39) implies (34). By using similar technique in proof of lemma 3 and by inequality (34) the inequality 
(35) can be showed. � 

 
Theorem. In case of the algorithms for (OP) (2) and (NP) (4), if we choose the interpolating B-spline 

polynomials of 2݉ ൅ 1 degreeሺ݉ ∈ Ժାሻ, then for all ݔ௜ ∈ ሾ0,1ሿ 
 

∥ ௜ܷ
ሾ௝ሿ െ ܻሺݔ௜ሻ ∥൑ const. ݄ଶ௝ାଶ,	                                                                  (40) 

for ݆ ൌ 0,1,… ,݉ and const.is independent of ݄ and ݔ.  
 
Proof: From the iteration, we write  
 

௜ܷ
ሾ௝ାଵሿ ൌ ௜ܷ

ሾ଴ሿ െ ሺߞ௜
ሾ௝ሿ െ ܲሾ௝ሿሺݔ௜ሻሻ.                                                                   (41) 

If we subtract (9) from (6) we obtain  

∥ ௜ܷ
ሾ௝ାଵሿ െ ܻሺݔ௜ሻ ∥൑ ∑ ݄ଶ௡௠ାଵ

௡ୀଵ ∥ ௜ሻݔଶ௡ሺܧ െ ଶ௡ܧ
ሾ௝ሿሺݔ௜ሻ ∥ ൅∥ Δ௜ െ Δ௜

ሾ௝ሿ ∥,                                (42) 

whereቛΔ௜ െ Δ௜
ሾ௝ሿቛ ൌ ܱሺ݄ଶ௠ାସሻ. Then by using the inequalities (35) in the lemma 4, we get  

 

ቛ ௜ܷ
ሾ௝ሿ െ ܻሺݔ௜ሻቛ ൑ ෍ c

௠ି௝ାଵ

௡ୀଵ

onst. ݄ଶሺ௝ିଵሻାଶାଶ௡ ൅ ෍ c

௠ାଵ

௡ୀ௠ି௝ାଶ

onst. ݄ଶ௠ାଶ ൅ const. ݄ଶ௠ାସ 

					൑ const. ݄ଶ௝ାଶ.                                                                                                         (43) 
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To increase the order of convergence, the relation 2݆ ൅ 2 ൑ 2݉ ൅ 2 must hold for ݆ ൌ 0,1, … , ݆௠௔௫ and it 
implies that ݆ ൑ ݉ and ݆௠௔௫ ൌ ݉. So the results (40) is obtained from (43) for all ݔ௜ ∈ ሾ0,1ሿ. 

 
5. Numerical Results 

 
In this section, we use Example 1 in [24] with known solution to verify the theoretical results. In addition, in 

Example 2 we solve Troesch’s problem to exhibit the efficiency of the IDeC method for ߣ ൒ 10 by comparing the 
results in [6], [23] .  

 
Example 1. 

݂ሺݔ, ሻݕ ൌ
ݔߨଶሺsinߨ ൅ sinସ ߨ ݔ ൅ 3 sinଶ ߨ ݔ cosଶ ߨ ሻݔ

ሺ1 ൅ sinସ ߨ ሻଶݔ
൅ sinସ ߨ ݔ െ  ,ሻݔସሺݕ

݇ሺݕሻ ൌ
1

1 ൅ ଷݕ
, ߙ ൌ ߚ ൌ 0, 

with the exact solution ݕሺݔሻ ൌ sin ߨ  .ݔ
 
Example 2. The Troesch’s problem is defined by  
 

ᇱᇱݕ ൌ sinhሺ ሻݕߣ
ሺ0ሻݕ ൌ 0, ሺ1ሻݕ  ൌ 1

 

 
The numerical results for Example 1 is given in Table 1. In the tables, the data’s about the IDeC iterates ݆ ൌ

0,1,… , ݆୫ୟ୶  are given and ݆ ൌ 0 denotes the results of implicit trapezoidal method. To demonstrate the accuracy of 

the numerical solutionݑ௜
ሾ௝ሿ, we calculate the order of maximum error which is defined by  

 
݌ ൌ logሺ ݁௛/݁௛/ଶሻ/ log 2 

 
and 2݉ ൅ 1 represents the degree of the B-spline polynomials. We use two different step sizes ݄ and ݄/2 respectively 
and investigate the corresponding errors ݁௛, ݁௛/ଶ and their observed orders for various IDeC steps. The results of these 
experiments indicate the increasing order of convergence of IDeC steps and observed orders given in the tables well 
confirm the theoretical results. In [24], maximum convergence order is ܱሺ݄ସሻ for Example 1. However, in our results 
we obtain	ܱሺ݄ଶ௠ାଶሻ. And also, the efficiency of the IDeC method is illustrated for transformed Troesch’s problem by 
ሻݔሺݑ ൌ tanhሺ  ሻ/4ሻ which is known as an inheretly unstable two-point boundary value problem. In Table 2, weݔሺݕߣ
present the errors of the solution to transformed Troesch’s problem with the IDeC steps by comparing the accurate 
results available in [23] and [6] for ߣ ൌ 10. In Table 3, the solutions of transformed Troesch’s problem and the last 
accurate results in [23] for ߣ ൌ 30, 50 are given with the same step size ݄.  

 
It is seen from Table 3 that both results are almost same. However, our method is more effective since [23] 

uses polynomials of degree 30, 50 respectively, but our results obtained using polynomials degree of 5.  
In Table 4, the observed orders are given to emphasize the increasing order of convergence of IDeC steps for 

ߣ ൌ 30,50 using the B-spline polynomials of degree5. The orders are obtained by,  
 

݌ ൌ log | ሺݕ௛ െ ௛/ଶݕ௛/ଶሻ/ሺݕ െ /|௛/ସሻݕ log 2, 
 

where ݕ௛, ,௛/ଶݕ ,݄ ௛/ସ are approximate solutions corresponding to the different stepsizesݕ ݄/2, ݄/4 respectively. 
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Table 1: Maximum error moduli and observed orders for Example 1 

 
2m+1 h j=0 j=1 j=2 j=3 
 
3 

1/32 1.398(-03) 8.148(-06)  
1/64 3.503(-04) 5.710(-07)   
1/128 8.765(-05) 3.638(-08)   

Observed orders  1.99614 3.83488   
 1.99904 3.97249  

 
5 

1/32 1.398(-03) 1.682(-05) 3.447(-07)  
1/64 3.503(-04) 1.032(-06) 6.819(-09)  
1/128 8.765(-05) 6.482(-08) 1.0989(-10)  

Observed orders  1.99614 4.02675 5.65961  
 1.99904 4.02675 5.95551  

 
7 

1/32 1.398(-03) 1.562(-05) 9.401(-07) 2.323(-08) 
1/64 3.503(-04) 1.037(-06) 6.726(-09) 1.2162(-10) 
1/128 8.765(-05) 6.489(-08) 1.111(-10) 4.668(-13) 

  1.99614 3.91347 7.12685 7.57803 
  1.99904 3.99846 5.91966 8.02538 

 
 
 
 
 
 
 
 

Table 2: Errors for Troesch’s problem with λ=10 
 

x j=0 j=1 j=2 j=3 Chang[6] Temimi[23] 
0.1 3.041(-07) 2.688(-10) 6.281(-11) 6.247(-11) 5.821(-11) 6.248(-11) 
0.2 8.566(-07) 4.846(-10) 1.928(-10) 1.919(-10) 1.794(-10) 1.919(-10)
0.3 2.086(-06) 3.349(-10) 5.170(-10) 5.158(-10) 4.854(-10) 5.157(-10) 
0.4 4.881(-06) 1.353(-09) 1.349(-09) 1.349(-09) 1.281(-09) 1.349(-09) 
0.5 1.106(-05) 7.924(-09) 3.303(-09) 3.312(-09) 3.171(-09) 3.312(-09)
0.6 2.409(-05) 2.661(-08) 6.472(-09) 6.517(-09) 6.236(-09) 6.517(-09) 
0.7 4.924(-05) 6.448(-08) 2.685(-09) 2.839(-09) 2.312(-09) 2.833(-09) 
0.8 9.068(-05) 1.511(-07) 6.585(-10) 2.373(-10) 1.121(-09) 2.356(-10)
0.9 1.394(-04) 2.288(-07) 3.279(-09) 2.389(-09) 3.567(-09) 2.386(-09) 
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Table 3: Solutions for Troesch’s problem with λ=30, 50 
 

 λ=30 λ=50 
x j=2 Temimi[23] j=2 Temimi[23] 
0.1 2.499825044(-13) 2.498427550(-13) 2.289910897(-21) 2.168089718(-21) 
0.2 5.033478719(-12) 5.031718066(-12) 3.398683397(-19) 3.269919297(-19)
0.3 1.011007423(-10) 1.010808107(-10) 5.044093407(-17) 4.917006047(-17) 
0.4 2.030662723(-09) 2.030470452(-09) 7.486098374(-15) 7.372216233(-15) 
0.5 4.078695111((-08) 4.078557034(-08) 1.111035509(-12) 1.102228564(-12)
0.6 8.192278125(-07) 8.192233710(-07) 1.648922897(-10) 1.643649842(-10) 
0.7 1.645463056(-05) 1.645463961(-05) 2.447218563(-08) 2.445464917(-08) 
0.8 3.305007649(-04) 3.304990272(-04) 3.631994383(-06) 3.632153512(-06)
0.9 6.643764763(-03) 6.643689371(-03) 5.390439175(-04) 5.389856648(-04) 
0.95 3.025969663(-02) 3.02593407(-02) 6.581608721(-03) 6.580132361(-03) 
0.97 5.753258144(-02) 5.75318891(-02) 1.815582947(-02) 1.815179410(-02)
0.98 8.222382385(-02) 8.22231682(-02) 3.087747331(-02) 3.087419365(-02) 
0.99 1.269719232(-01)) 1.26969423(-02) 5.627316454(-02) 5.625810248(-02) 

 
 

Table 4: The orders for λ=30, 50 with degree of 5 
 

λ j=0 j=1 j=2
30 1.94194 3.95678 5.54841
40 1.85135 3.86983 5.68889
50 1.69808 3.71666 5.75247 

 
Conclusion 

 
We give a numerical treatment for a class of nonlinear boundary value problems by iterated defect correction 

method (IDeC) based on the implicit trapezoid method using B-spline piecewise polynomials. We don’t need to solve 
the piecewise neighboring problem since the derivative properties and the advantage of the construction of B-spline 
polynomials. The maximum attainable order of the defect correction steps that depend on the degree of the polynomial 
are given in the theorem. We observed that the orders in the given tables show good agreement with the order sequence 
to be expected from theory. And we also overcome the difficulty in solving the Troesch’s problem for large values of ߣ 
by increasing the order of convergence. It is expected that this approach can be used to the other unstable or strongly 
nonlinear two point boundary value problems. 
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