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Abstract 
 
 

This work leads to an understanding of the random time change formulae for Poisson driven process in the 
context of Lie point symmetries without having to consult much of the intense It표calculus theory needed to 
formally derive it. We apply a form invariance methodology to derive the formula and apply it to a few 
examples.  
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1. Introduction 
 

Lie symmetry theory of deterministic differential equations is well understood in literature [16, 17, 18, 19, 20] 
and can used for many important applications in the context of differential equations. For instance, for determination 
of group-invariant solutions, solving the first order differential equation, reducing the order of higher ODE, reducing 
the number of variables of partial differential equations and finding conservation laws. 

 
In contrast to the deterministic differential equation, only a few attempts have been made to extend Lie group 

theory to the stochastic differential equation. It is worth noticing that the theory is still developing. Gaeta and 
Quintero [6] made the first approach to extend Lie symmetry of differential equations to It표 stochastic ordinary 
differential equations by which they consider a small class of transformations, i.e., fiber preserving transformations 

 
푥 = 휃 (푡, 푥, 휖 ),              푡 = 휃 (푡, 휖 ). 
 
The method has been used to study the relationship between symmetries of stochastic systems to the 

symmetries of their corresponding Fokker-Planck equation. This is a restricted transformation that can only work to a 
fiber-preserving class of transformations which is a small sub-class of all possible transformations. 

 
The second attempted [3, 4, 5, 8, 10, 15] succeed in applying symmetry transformations that include all the 

dependent variables in the transformation 
 
푥 = 휃 (푡, 푥, 휖 ),              푡 = 휃 (푡, 푥, 휖 ). 
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This approach has been used to study the symmetry of scalar stochastic ordinary differential equations of first 
order [4] which reconciled the works of Meleshko S. V., Srihirun B. S. and Schultz E. [8] and Wafo Soh and F.M. 
Mahomed [10]. Furthermore, the formal method for finding Lie Point symmetries of scalar  It표 stochastic differential 
equations of the first order driven by the Wiener process was also discussed by E. Fredericks [3] with intention to 
correct and reconcile the finding of Srihirun and Schultz [8]. 

 
To the best of our knowledge in literature, all the methods above were applied only to the It표 stochastic 

differential equations driven by Wiener processes [3-12]. In this paper we extend the Lie symmetry methods to the 
class of It표stochastic differential equations driven by a Poisson process by implementing a more generalized It표 
formula and following the methodology of G. Gaeta [6] and E Fredericks and F. M. Mahomed [3]. 
 
We consider an It표 stochastic differential equation driven by Poisson processes; 
 

        푑푋 (푡) = 푓 푡,푋(푡)  푑푡 + 퐽 푡,푋(푡)  푑푁(푡)                                                                              (1.1) 
 
with initial condition 푋(0) = 푥 . So, equation (1.1) can be written in integral form as 
 

푋 (푡) = 푥 + 푓 푠,푋(푠)  푑푠 + 퐽 푠,푋(푠)  푑푁(푠).                                                                (1.2) 

 
Where 푓 푡,푋(푡)  and 퐽 푡,푋(푡)  are 푛 × 1 dimensional drift vector coefficients and Poisson diffusion 

coefficient respectively, which are assumed to satisfy Ikeda and Watanabe conditions for the uniqueness and existence 
of the solution of (1.1)while 푑푁(푡) is the infinitesimal increment of the Poisson Process [12, 13, 14]. 

 
Symmetries of (1.1)are analysed by considering an infinitesimal generator 
 

퐻 = 휏(푡, 푥)
휕
휕푡

 + 휉 (푡, 푥)
휕
휕푥

.                                                                                                                (1.3) 

 
The determining equations for It표 stochastic differential equations (SDE) driven by Poisson processes  (1.1) 

are derived using It표calculus and are found to be non-stochastic. 
 
Starting with an arbitrary function 퐹 푡,푋(푡) which is once differential with respect to the spatial coordinate 

푥 and differentiable once with respect to temporal variable푡, the It표 Poisson diffusion process for 퐹 푡,푋(푡)  of 
(1.1) exists [1, 2] and is 

 

푑퐹 푡,푋(푡) =
휕퐹
휕푡

+ 푓
휕퐹
휕푥

푑푡 + 퐹 (푡,푋(푡) + 퐽 푡,푋(푡) − 퐹 푡,푋(푡)  푑푁(푡).           (1.4) 

 
The Einstein summation convention is assumed throughout this paper. Let 
 

Γ( ) 푡,푋(푡) =  
휕퐹
휕푡

+ 푓
휕퐹
휕푥

 (1.5) 

and 
Γ( )
∗ 푡,푋(푡) =  퐹 (푡,푋(푡) + 퐽 푡,푋(푡) − 퐹 푡,푋(푡)  (1.6) 

 
Therefore (1.4) can be written as; 
 

푑퐹 푡,푋(푡) = Γ( ) 푡,푋(푡) 푑푡 + Γ( )
∗ 푡,푋(푡) 푑푁(푡).                                                              (1.7) 
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Using the It표 multiplication properties of Poisson processes [1, 2] 
 

푑푁(푡) ∙ 푑푁(푡) = 푑푁(푡), 푑푁(푡) ∙ 푑푡 = 0 and 푑푡 ∙ 푑푡 = 0                                                        
 
And application of infinitesimal transformations the determining equations for (SDE) with Poisson processes 

are derived and are non-stochastic. The main result can be summarised as 
 
Theorem 1.1: The It표 stochastic differential equation driven by Poisson processes 
 

푑푋 (푡) = 푓 푡,푋(푡)  푑푡 + 퐽 푡,푋(푡)  푑푁(푡)                                                                                      (1.8) 
 
Where 푓 푡,푋(푡)  and 퐽 푡,푋(푡)  are the 푛 × 1 dimensional drift vector coefficient and the Poisson 

diffusion coefficient, with infinitesimal generator 
 

퐻 = 휏(푡, 푥)
휕
휕푡

 + 휉 (푡, 푥)
휕
휕푥

                                                                                                                (1.9) 

 
Has the following determining equations; 
 

푓 Γ( ) + 
휆퐽
2
Γ( ) + 퐻 푓 − Γ( ) 푡,푋(푡)  = 0,                                                              (1.10) 

퐽
2
Γ( ) + 퐻 퐽 − Γ( )

∗ 푡,푋(푡) = 0                                                                                  (1.11) 
 
with additional conditions, 
 

Γ( )
∗ 푡,푋(푡) = 0, 푎푛푑    Γ( ) 푡,푋(푡) = 푐 .                                                                            (1.12) 

 
Where the operators Γ 푡,푋(푡)  and Γ∗ 푡,푋(푡) are defined as in (1.5) and (1.6), and 휆 > 0 is called the 

intensity of the jump process or jump rate. 
 

1. Lie Group Transformation 
 
Consider a one parameter group of transformations of the time index 푡 and the spatial variable 푥 respectively, 
 

푡 = 휃 (푡, 푥, 휖 ),              푥 = 휃 (푡, 푥, 휖 ) 
with the infinitesimals 
 

휕휃
휕휖

= 휏(푡, 푥) ,        
휕휃
휕휖

= 휉(푡, 푥) 
 
Satisfying the following initial conditions at 휖 = 0  
 

푡   = 푡,        푥|   = 푥. 
 
A one parameter Lie group of infinitesimal transformations is therefore 
 

푡 = 푡 +  휖휏(푡, 푥) + 푂(휖)                                                                                        (2.1) 
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And 
 

푋(푡) = 푋(푡) +  휖 휉(푡, 푥) + 푂(휖)                                                                                        (2.2) 
 
Where 휖 is the parameter of the group, with the corresponding generator of the Lie algebra of the form  
 

퐻 = 휏(푡, 푥)
휕
휕푡

 + 휉 (푡, 푥)
휕
휕푥

. 

 
The differential point transformations of the spatial, temporal and the Poisson process variables are as 

follows 
푑푡 = 푑푡 +  휖 푑휏(푡, 푥) + 푂(휖),                                                                                        (2.3) 

 
푑푋(푡) = 푑푋(푡) +  휖 푑휉(푡, 푥) + 푂(휖)                                                                              (2.4) 

 
and 

푑푁 푡 = 푑푁(푡) +  
휖
2
푑휏
푑푡

휆 푑푡 + 푑푁(푡) + 푂(휖).                                                     (2.5) 
 
Using the It표formula(1.7), we have the spatial and temporal infinitesimals in It표forms as 
 

푑휉 = Γ( )  푑푡 + Γ( )
∗  푑푁(푡)                                                                                         (2.6) 

 
푑휏 = Γ( ) 푑푡 + Γ( )

∗  푑푁(푡)                                                                                             (2.7) 
 
where Γ( )  , Γ( )

∗ , Γ( ) 푎푛푑 Γ( )
∗ are the drift and diffusion coefficients of the spatial and temporal 

infinitesimals, respectively defined using the operators (1.5) and (1.6).  
 
By substitution of the infinitesimal of spatial (2.6) and temporal variables (2.7) in (2.3), (2.4) and (2.5), and 

also using the It표 multiplication properties we proceed to get the group transformations of temporal, spatial and jump 
variables in It표 forms 

 
푑푡 = 푑푡 +  휖 Γ( ) 푑푡 + Γ( )

∗  푑푁(푡) + 푂(휖),                                                                  (2.8) 
 

푑푥 = 푑푥 +  휖 Γ( )  푑푡 + Γ( )
∗  푑푁(푡) + 푂(휖)                                                               (2.9) 

and 

푑푁 푡 = 푑푁(푡) + 
휖
2
Γ( ) 푑푡 + Γ( )

∗  푑푁(푡)
푑푡

휆 푑푡 + 푑푁(푡) + 푂(휖).                           (2.10) 
 
Expending the It표 infinitesimal of the jump variable (2.10) by utilising the Poisson process differential 

multiplication properties we get 
 

푑푁 푡 = 푑푁(푡) + 
휖
2

휆 Γ( ) 푑푡 + Γ( )
∗  푑푁(푡) + Γ( ) 푑푁(푡) + Γ( )

∗ 푑푁(푡)
푑푡

+ 푂(휖). (2.11) 

1.1 Invariance form of the Spatial Process 
 
To ensures the recovery of the finite transformations from the infinitesimal transformation, we need to 

transform 푑푋 (푡) into 
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푑푋 (푡) = 푓 푡,푋(푡)  푑푡 + 퐽 푡,푋(푡)  푑푁(푡)                                                                          (2.12) 
 
where the transformed drift component  푓 푡,푋(푡)  and  jump component 퐽 푡,푋(푡)  using the infinitesimal 

generator  
 

퐻 = 휏(푡, 푥)
휕
휕푡

 + 휉 (푡, 푥)
휕
휕푥

, 

respectively are 
 

푓 푡,푋(푡) =  푓 + 휖 퐻 푓 푡,푋(푡)  
 

                                                 =  푓 푡,푋(푡) + 휖 휏
휕푓
휕푡

 + 휉
휕푓
휕푥

푡,푋(푡)                         (2.13) 

and 
퐽 푡,푋(푡) =  퐽 + 휖 퐻 퐽 푡,푋(푡)  

 
 

                                                 =  퐽 푡,푋(푡) + 휖 휏
휕퐽
휕푡

 + 휉
휕퐽
휕푥

푡,푋(푡)                       (2.14) 

1.2 Poisson Invariance Properties 
 
We apply the invariance to the moments of the Poisson process to ensure it remains invariant under the 

group transformations, viz the instantaneous mean and variance of the Poisson process which are: 
 

퐸 [푑푁(푡)] = 휆 ∙ 푑푡                                                                                                            (2.15) 
 

퐸 [푑푁(푡) ∙ 푑푁(푡)] = 휆 ∙ 푑푡.                                                                                             (2.16) 
 
The invariance of the instantaneous mean of the transformed Poisson process under new measure 푄 is 
 

퐸 푑푁(푡) = 휆 ∙ 푑푡                                                                                          (2.17) 
 
Expanding (2.17) using the It표 forms of jump (2.8) and temporal group transformations (2.11) we get 
 

Γ( )
∗ 푡,푋(푡) = 0                                                                                          (2.18) 

 
Next, we apply the invariance form to instantaneous variance of the transformed Poisson process measure 

(2.16) from which using (2.11) we have 
 

퐸 푑푁(푡) ∙ 푑푁(푡) = 휆 ∙ 푑푡                                                                      (2.19) 
 
Thus, using (2.18) and the It표temporal group transformation (2.8) we have derived the following generalized 

random time change formula 

푡 = Γ( )(푠)푑푠 (2.20) 

With  
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Γ( ) 푡,푋(푡) = 푐표푛푠푡푎푛푡 = 푐                                                                                          (2.21) 
 
Using the probabilistic invariance property of the transformed time index differential, i.e., 
 

퐸 푑푡 = 푑푡.                                                                                         (2.22) 
 
Finally, we can conclude from (2.18) the temporal infinitesimal 휏(푡, 푥)does not depend on 푥, therefore 

휏(푡, 푥) = 휏(푡). 
 
Definition 2.1The infinitesimal transformations (2.3) and (2.4) i.e., 
 

푡 = 푡 +  휖휏(푡, 푥) + 푂(휖),       푋 = 푋 +  휖휉(푡, 푥) + 푂(휖)(2.23) 
 
Are called Lie symmetry transformations of (1.1) if they leave the It표 stochastic differential equation (1.1) 
 

푑푋 (푡) = 푓 푡,푋(푡)  푑푡 + 퐽 푡,푋(푡)  푑푁(푡)(2.24) 
 
And the infinitesimal moments for the differential Poisson process i.e., 
 

퐸 [푑푁(푡)] = 휆 ∙ 푑푡,   퐸 [푑푁(푡) ∙ 푑푁(푡)] = 휆 ∙ 푑푡 푎푛푑   퐸 [푑푡] = 푑푡(2.25) 
 
Invariant. Where 휆 > 0 and 휖 is the jump intensity and group parameter respectively. 
 

2. Determining Equations 
 
In this section, we will derive the determining equations for the admitted symmetries of (1.1). The intention is 

to transform 푑푋 (푡) into 
 

푑푋 (푡) = 푓 푡,푋(푡)  푑푡 + 퐽 푡,푋 푡  푑푁(푡)                                                                  (3.1) 
 
Substituting the transformed drift coefficient (2.13), Poisson vector coefficients(2.14), It표forms of temporal 

(2.8) and Poisson group transformation (2.11) into (3.1) we get 
 

푑푋 푡 = 푑푋 (푡) + 휖 푓 Γ( ) 푡,푋(푡) +
휆퐽
2
Γ( ) 푡,푋(푡) + 퐻 푓 푑푡 

 

                           + Γ( )
∗ 푡,푋(푡) +

퐽
2
Γ( ) 푡,푋(푡) + 퐻 퐽 푑푁(푡)                         (3.2) 

 
Therefore, by comparing transformed stochastic differential equation (3.2) and the It표 form of the spatial 

group transformation (2.9) we have the following determining equations 
 

푓 Γ( ) + 
휆퐽
2
Γ( ) + 퐻 푓 − Γ( ) 푡,푋(푡)  = 0,                                                                 (3.3) 

and 
퐽
2
Γ( ) + 퐻 퐽 − Γ( )

∗ 푡,푋(푡) = 0.                                                                                   (3.4) 
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The invariance of the instantaneous mean of the transformed differential Poisson process (2.17) gives 
additional conditions i.e., from (2.18) and (2.21)we get 

 
Γ( )
∗ 푡,푋(푡) = 0 푎푛푑 Γ( ) 푡,푋(푡) = 푐 .                                                                                 (3.5) 

 
Equation (3.3) can be interpreted using the definition of first prolongation of an infinitesimal generator for 

non-stochastic ordinary differential equations as follows 
 

퐻[ ] = 퐻 + 휂[ ] 휕
휕푥̇

.                                                                                                                      (3.6) 

Where 

푥  ̇ =
푑푥
푑푡

= 퐷  푥                                                                                                                             (3.7) 
and 
 

휂[ ] = 퐷 (휉 ) − 푥̇ 퐷 (휏)                                                                                                                (3.8) 
 

                               =
휕휉
휕푡

+ 푥̇
휕휉
휕푥

− 푥̇
휕휏
휕푡

+ 푥̇
휕휏
휕푥

                                                              (3.9) 
 
with total time derivative 퐷  defined as 

퐷 =
휕
휕푡

+ 푥̇
휕
휕푥

+ 푥̈
휕
휕푥̇

+ ⋯                                                                                                   (3.10) 

 
Using the definition of first prolongation on  푥̇ − 푓 at 푥̇ = 푓 , can be expressed as 
 

퐻[ ]( 푥̇ − 푓 ) ̇ = 휂[ ] −퐻(푓 ).                                                                                 (3.11) 
 
Using (3.8) and (3.11) equation (3.4) can be written as 
 

퐻[ ]( 푥̇ − 푓 ) ̇ −
휆퐽
2
Γ( )

휕휏
휕푡

+ 푓
휕휏
휕푥

= 0.                                                              (3.12) 
 
Where the operators Γ( ) 푡,푋(푡) , Γ( )

∗ 푡,푋(푡)  are defined in (1.5), (1.6) respectively, and 휆 is called the 
jump rate or jump intensity of the Poisson process. 

 
Remark 3.1: The extra condition obtained from the invariance of the instantaneous mean of the transformed 

differential Poisson process (2.17) forces the temporal infinitesimal 휏(푡, 푥) to be a function of the time variable only. 
This implies that we are now dealing with a fiber-preserving infinitesimal generator i.e., 

 

퐻 = 휏(푡)
휕
휕푡

 + 휉 (푡, 푥)
휕
휕푥

.                                                                       (3.13) 

 
3. Applications 

 
In this section, we are going to apply the derived determining equations of Poisson It표 stochastic differential 

equations obtained in the previous section to some Poisson process models to show how the determining equations 
can be used to find the admitted Lie point symmetries of each model. 
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Example 4.1:  Consider the Poisson SDE, linear in the state process 푋(푡), with constant coefficients, 
 
푑푋(푡) = 푋(푡) 푢 (푡) 푑푡 + 푣 (푡) 푑푁(푡)                                                                                        (4.1) 

 
With initial condition 푋(푡 ) = 푥 > 0, 푢 (푡) = 2 is called the drift or deterministic coefficient and 푣 (푡) =

1 is the jump amplitude coefficient of the jump term, with jump rate휆 = 휆 . 
 
Using the determining equations (3.3) 푎푛푑 (3.4)respectively we have 
 

2푥Γ( ) + 휆 푥
Γ( )

2
+ 2휉(푡, 푥) − Γ( ) 푡,푋(푡) = 0                                                                    (4.2) 

 

2푥
휕휏(푡)
휕푡

+
휆 푥

2
휕휏(푡)
휕푡

+ 2휉(푡, 푥) −
휕휉(푡, 푥)
휕푡

− 2푥
휕휉(푡, 푥)
휕푥

= 0                                               (4.3) 
 
and 

푥
Γ( )

2
+ 휉(푡, 푥) − Γ( )

∗ 푡,푋(푡) = 0                                                                                            (4.4) 
 
푥
2
휕휏(푡)
휕푡

+ 휉(푡, 푥 + 푥) + 휉(푡, 푥) = 0.                                                                                               (4.5) 
 
 
Using (2.18) and (2.21) we get the temporal infinitesimal as  
 

휏(푡) = 푐 푡 + 푐 . (4.6) 
 
Substituting the temporal infinitesimal (4.6) in (4.3) and (4.5) respectively gives  
 

푐 푥(휆 + 4)
2

+ 2휉(푡, 푥) −
휕휉(푡, 푥)
휕푡

− 2푥
휕휉(푡, 푥)
휕푥

= 0(4.7) 
and 

푐 푥
2

+ 2휉(푡, 푥) − 휉(푡, 2푥) = 0. (4.8) 

Differentiating (4.7) with respect to 푥 gives 
 

푐 (휆 + 4)
2

+ 2
휕휉(푡, 푥)
휕푥

−
휕 휉(푡, 푥)
휕푡휕푥

− 2
휕휉(푡, 푥)
휕푥

− 2푥
휕 휉(푡, 푥)
휕푥

= 0. (4.9) 
 

Differentiating (4.8) with respect to 푥 gives 
 

푐
2

+ 2
휕휉(푡, 푥)
휕푥

− 2
휕휉(푡, 2푥)

휕푥
= 0.                                                                                                  (4.10) 

 
Differentiating (4.10) with respect to 푡 gives 
 

휕 휉(푡, 푥)
휕푡휕푥

=
휕 휉(푡, 2푥)
휕푡휕푥

.                                                                                                                     (4.11) 
 
Equation (4.11) implies  
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휕 휉(푡, 푥)
휕푡휕푥

=
휕 휉(푡)
휕푡휕푥

=
푑푓(푡)
푑푡

 .                                                                                                          (4.12) 
 
Solving the differential equation (4.12) we get 
 

휉(푡, 푥) = 푓(푡)푥 + 푔(푥).                                                                                                                   (4.13) 
 
By substituting (4.13) into (4.9) we get 
 

푐 (휆 + 4)
2

=  
푑푓(푡)
푑푡

+ 2푥
푑 푔(푥)
푑푥

.                                                                                                 (4.14) 
 
When differentiating (4.14) with respect to time we get 
 

푑 푓(푡)
푑푡

= 0.                                                                                                                                             (4.15) 
 
Solving the ordinary differential equation (4.15) implies 푓(푡) is linear in 푡 i.e., 
 

푓(푡) = 푐 푡 + 푐 .                                                                                                                                    (4.16) 
 
After substituting (4.16) into (4.13) we arrive at the spatial infinitesimal 
 

휉(푡, 푥) = (푐 푡 + 푐 )푥 + 푔(푥).                                                                                                           (4.17) 
Substituting (4.17) into (4.14) results in  
 

푐 (휆 + 4)
2

=  푐 + 2푥
푑 푔(푥)
푑푥

,                                                                                                       (4.18) 
 
Which implies that  
 

푑 푔(푥)
푑푥

=
( ) − 푐

2푥
.                                                                                                                (4.19) 

 
Solving the differential equation (4.19) for 푔(푥) finally gives 
 

푔(푥) =
( ) − 푐

2
(푥푙푛|푥| − 푥) + 푐 푥 + 푐 ,                                                                       (4.20) 

 
Therefore, using (4.20) the special infinitesimal (4.17) can be written as 
 

휉(푡, 푥) = (푐 푡 + 푐 )푥 +
( ) − 푐

2
(푥푙푛|푥| − 푥) + 푐 푥 + 푐 .                                         (4.21) 

 
However, substituting (4.21) in (4.8) we have  
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푐 푥
2

+ 2 (푐 푡 + 푐 )푥 +
( ) − 푐

2
(푥푙푛|푥|− 푥) + 푐 푥 + 푐

= 2(푐 푡 + 푐 )푥 +
( ) − 푐

2
(2푥푙푛|2푥| − 2푥) + 2푐 푥 + 푐 .               (4.22) 

 
Which can be simplified to get  
 

푐 푥
2

+ 푐 =
( ) − 푐

2
(푥푙푛|4|).                                                                                     (4.23) 

 
Further comparison of the coefficients of powers of 푥 in (4.23), gives 
 

 푥 ∶ 푐 = 푐 ( ) − | |  푎푛푑 

 푥 ∶ 푐 = 0. 
 
Thus, the spatial infinitesimal (4.21) finally becomes 
 

휉(푡, 푥) = 푐
푙푛|4|(휆 + 4) − 2

푙푛|16| 푡푥 +
푥푙푛|푥| − 푥
푙푛|16| + 푐 푥 + 푐 푥.                              (4.24) 

 
So we have three symmetry generators corresponding to the infinitesimals  
 
 

퐻 = 푡
휕
휕푡

 + 
푙푛|4|(휆 + 4) − 2

푙푛|16| 푡푥 +
푥푙푛|푥| − 푥
푙푛|16|

휕
휕푥

,      퐻 =
휕
휕푡

,       퐻 = 2푥
휕
휕푥

.   (4.25) 

 
The infinitesimal generators (4.25) give the following Lie bracket relations in Table 1 below 
 

퐻 ,퐻  퐻  퐻  퐻  
퐻  0 −퐻  −

퐻
푙푛|16| 

퐻  퐻  0 0 

퐻  퐻
푙푛|16| 

0 0 

 
Table 1: Commentator table for the Lie algebra generators (4.25) 

 
The commentator table shows that the infinitesimals generators (4.25) is closed under Lie bracket relations 

and hence is a Lie algebra, where 퐻   is linear combination of 퐻  푎푛푑 퐻  given as  
 

퐻 = 훼 퐻 + 퐻    푤푖푡ℎ 훼 =
푙푛|16| − 1 + 푙푛|2|휆

푙푛|16| .                                                            (4.26) 

 
Example 4.2: Consider a Poisson driven stochastic differential equation 
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푑푋(푡) = −푘푡 푑푡 + 푏 푑푁(푡)  푤푖푡ℎ 푏 ≠ 0                                                                              (4.27) 
 
And initial condition 푋(0) = 푥 . 
 
Using the determining equations (3.3) 푎푛푑 (3.4)respectively we have 
 

−푘푡
휕휏
휕푡
− 푘푡

휕휏
휕푥

+
푏 휆
2

휕휏
휕푡
− 푘푡

휕휏
휕푥

− 2푘푡휏(푡, 푥) =
휕휉
휕푡

− 푘푡
휕휉
휕푥

                        (4.28) 
 
and 
 
푏 
2

휕휏
휕푡
− 푘푡

휕휏
휕푥

= 휉(푡, 푥 + 푏) − 휉(푡, 푥).                                                                               (4.29) 
 
Using equation (2.18) and (2.21) we get the temporal infinitesimal as 
 
휏(푡) = 푐 푡 + 푐 .                                                                                                                                (4.30) 

 
Using temporal infinitesimal (4.30) in (4.28) and (4.29) we respectively have 
 

푐
푏 휆
2
− 푘푡 − 2푘푡(푐 푡 + 푐 ) =

휕휉
휕푡

− 푘푡
휕휉
휕푥

                                                                      (4.31) 
 
And 
 

휉(푡, 푥 + 푏) − 휉(푡, 푥) =
푏 푐

2
.                                                                                                        (4.32) 

 
Differentiating (4.31) and (4.32) with respect to 푥 respectively gives 

 
휕 휉
휕푡휕푥

− 푘푡
휕 휉
휕푥

= 0                                                                                                                       (4.33) 
 
and 
 
휕휉(푡, 푥 + 푏)

휕푥
=
휕휉(푡, 푥)
휕푥

.                                                                                                                (4.34) 
 
Equation (4.34) implies 
 

휕휉(푡, 푥)
휕푥

=
휕휉(푡)
휕푥

= 푓(푡).                                                                                                            (4.35) 
 
Differentiating (4.35) with respect to 푥 gives 
 

휕 휉
휕푥

= 0,                                                                                                                                         (4.36) 
 
Solving the differential equation (4.36) we have 
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휉(푡, 푥) = 푓(푡)푥 + 푔(푡).                                                                                                           (4.37) 
 
Substituting (4.37) into (4.33) implies  
 

푑푓(푡)
푑푡

= 0.                                                                                                                                 (4.38) 
 
Equation (4.38) implies 푓(푡) is constant i.e., 
 

푓(푡) = 푐 ,                                                                                                                                    (4.39) 
 
Therefore, using (4.39) and (4.37) we have 
 

휉(푡, 푥) = 푐 푥 + 푔(푡).                                                                                                              (4.40) 
 
Substituting (4.40) into (4.32) gives this relation 
 

푐 = 2푐 .                                                                                                                                       (4.41) 
 
Using (4.40) and (4.41), equation (4.31) gives 
 

푐
푏 휆
2
− 3푘푡 − 2푘푡푐 =

푑푔(푡)
푑푡

−
푘푡 푐

2
.                                                                     (4.42) 

 
Solving the differential equation (4.42) gives 
 

푔(푡) = 푐
푏휆푡

2
−

5푘푡
6

− 푘푡 푐 + 푐 .                                                                            (4.43) 

 
Therefore, substituting (4.43) into (4.40) the spatial infinitesimal finally becomes  
 

휉(푡, 푥) = 푐
푏휆푡

2
−

5푘푡
6

+
푥
2

− 푘푡 푐 + 푐 .                                                               (4.44) 

Finally, the Poisson diffusion model admitted three dimensional symmetry infinitesimal generators; 
 

퐻 = 푡
휕
휕푡

 +  
푏휆푡

2
−

5푘푡
6

+
푥
2

휕
휕푥

,      퐻 =
휕
휕푡
− 푘푡

휕
휕푥

,       퐻 =
휕
휕푥

.                    (4.45) 

 
With the corresponding Lie bracket relations of the generators (4.45) given in Table 2 as 

 
퐻 ,퐻  퐻  퐻  퐻  
퐻  0 −퐻  −

퐻
2  

퐻  퐻  0 0 

퐻  퐻
2  0 0 

 
Table 2: Commentator table for the Lie algebra generators (4.45) 
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The Lie bracket relations in Table 2 above show that the infinitesimal generator (4.45) satisfied Lie 
commutative relation properties and hence forms a Lie algebra, where  

 
퐻 = 퐻 − 퐻  is the linear combination of 퐻  푎푛푑 퐻 . 

 
4. Conclusion 

 
Lie Symmetry analysis for It표 stochastic differential equations driven the by Poisson processes was carried 

out, infinitesimals of the Poisson process 푑푁(푡) were derived using the moments invariance properties of the 
process. Determining equations were derived and found to be deterministic even though they describe stochastic 
differential equation. Examples are given to show how the determining equations can be used to find the symmetries, 
symmetries admitted by (1.1) are found to be fiber-preserving symmetries. Finally, the Lie bracket relation was 
obtained which shows that all the infinitesimal generators found are closed under the Lie bracket and hence they form 
a Lie algebra. Classification of the given examples is presented in Table 3. 

 
Group Dimension Basis Operators Equations 

3 
퐻 = 푡

휕
휕푡  +  

푙푛|4|(휆 + 4) − 2
푙푛|16| 푡푥

+
푥푙푛|푥| − 푥
푙푛|16|

휕
휕푥, 

퐻 =
휕
휕푡 ,       퐻 = 2푥

휕
휕푥. 

 

 
푑푋(푡) = 푋(푡) 2 푑푡 + 푑푁(푡)  

 

3 
퐻 = 푡

휕
휕푡  +  

푏휆푡
2 −

5푘푡
6 +

푥
2

휕
휕푥, 

퐻 =
휕
휕푡 − 푘푡

휕
휕푥 ,       퐻 =

휕
휕푥 

푑푋(푡) = −푘푡 푑푡 + 푏 푑푁(푡), 
 푏 ≠ 0 

 
Table 3: Lie Group Classification 
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