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Generalizedextended Weibull Power Series Family of Distributions 
 

Said H. Alkarni1 
 

Abstract 
 
 

In this study, we introduce a new familyof models for lifetime data called generalized extended Weibullpower 
series family of distributions by compoundinggeneralizedextended Weibull distributions and power series 
distributions. The compounding procedure follows the same setup carried out by Adamidis (1998). The 
proposed family contains all types of combinations between truncated discrete with generalized and non-
generalized Weibull distributions. Some existing power series and subclasses of mixed lifetime distributions 
become special cases of the proposed family, such as the compound class of extended Weibull power 
seriesdistributions proposed by Silva et al. (2013) and the generalized exponential power series 
distributionsintroduced by Mahmoudi and Jafari (2012).Some mathematical properties of the new class are 
studied, includingthe cumulative distribution function, density function, survival function, and hazard rate 
function. The method of maximum likelihood is used for obtaining a general setup for estimating the 
parameters of any distribution in this class. An expectation-maximization algorithm is introduced for 
estimating maximum likelihood estimates.Special subclasses and applications for some models in areal 
datasetare introduced to demonstrate the flexibility and the benefit of this new family. 
 

 

Keyword: Generalized extended Weibull power series distributions, Weibull power series distribution, generalized 
power series distributions 

 

1. Introduction 
 

The modeling and analysis of lifetimes is an important aspect of statistical work in a wide variety of scientific 
and technological fields, such as public health, actuarial science, biomedical studies, demography, and industrial 
reliability. In risk modeling, the lifetime associated with a particular risk is not observable, asonly the maximum or the 
minimum lifetime value among all the risks can be observed.In reliability, we observe only the maximum component 
lifetime of a parallel system and the cause of failure. Lifetime data modeling is introduced by compounding any 
continuous distribution and power series distributions. The Weibull distribution is exhaustively used for describing 
hazard rates due to its negatively and positively skewed density shapes. Chahkandi and Ganjali (2009)proposed the 
exponential power series family of distributionsthatgeneralizeinto a two-parameter exponential power seriescalled the 
Weibull power series (WPS) class of distributions by Morais and Barreto-Souza (2011). The WPSdistributions can 
have an increasing, decreasing, and upside-down bathtub failure rate function. In the same manner, the exponentiated 
Weibull power series distribution and itsapplications were presented by Mahmoudi and Shiran (2012). Recently, the 
exponentiatedWeibull‒Poisson distribution and its applications wereintroduced by Mahmoudi and Sepahdar (2013). 
The generalized exponential power series (GEPS) distributions were proposed by Mahmoudi and Jafari 
(2012),following the same approach developed by Morais and Barreto-Souza (2011) by compounding the generalized 
exponential and the power series distributions. Leahu et al. (2013) proposed the power series distributions in the 
lifetime as the maximum or minimum of the sample with a power series distributed size.  
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The complementary exponential power series distribution with increasing failure rate was introduced by Jose 
et al. (2013) as a complementto the exponential power series model proposed by Chahkandy and Ganjali (2009). Silva 
et al. (2013)introduced thepower series distributions of the compound class of the extended Weibull distribution. 
Recently, Bourguignon et al. (2014) proposed a new class of fatigue life distribution as the Birnbaum –Saunders power 
series class of distributions. We combine the GEPS distributions introduced byMahmoudi and Jafari (2012)and the 
compound class of the extended Weibull power series distributions (EWPS) proposed by Silva et al. (2013) into a 
more general family called the generalized extended Weibullpower series (GEWPS). 

 

Consider a system with N components, where N (the number of components) is a discrete random variable 

with support{1, 2,...} . The lifetime of the thi (1, 2,..., N ) component is the nonnegative continuous random 

variable, say iX , thedistribution of which belongs to one of the lifetime distributions, such as exponential, gamma, 
Weibull, and Pareto, among others. The discrete random variable N can have severaldistributions, such as zero-
truncated Poisson,geometric, binomial, logarithmic, and the power series distributions in general. The non-negative 

random variable X denoting the lifetime of such a system is defined by min{ }iX X or min{ }iX X based on 
whether the components are series or parallel.By taking a system with parallel components in which the random 

variable N has the power series distributions and the random variable iX follows the generalized 
Weibulldistribution, we introduce the GEWPS class of distributions that contain the GEPSand the EWPS 
distributions as special cases.  

 

This study aims to generalize the EWPS distributions to obtain a new and more flexible family to describe 
reliability data. The proposed family can be applied to other fields, including business, environment, actuarial science, 
biomedical studies, demography and industrial reliability,and many other fields. This family contains several subclasses 
and lifetime models as special cases. 

 

This paper is organized as follows. In Section 2, we define the class of Weibull and generalized Weibull 
distributions, and demonstrate the many existing models that can be deduced as special cases of the proposed unified 
model. In Section 3, we define the GEWPS class of distributions in terms of distribution functions and special cases 
of some existing classes. In Section 4, we provide the general properties of the GEWPS class, including the densities 
and thesurvival and hazard rate functions. Quantiles, moments, and order statistics of GEWPS are discussed in 
Section 5. The estimation of the GEWPS parameters is investigated in Section 6 using the maximum likelihood 
method withexpectation-maximization(EM) algorithm and a large sample inference. In Section 7, special subclasses 
and some special distributions are introduced along with the flexible mathematical forms of theirproperties. In Section 
8, two models are presented and applied to illustrate how to use the proposed family.Finally, some concluding 
remarks are addressed in Section 9. 
 

2. The class of Weibull and Generalized Weibull distribution 
 

Weibull distribution is one of the most widely used lifetime distributions in terms of reliability. A large 
number of modifications have been suggested for the Weibull distributionto improve the shape of the hazard rate 
function. Pengand Yan (2014) presented many references on this matter. The class of extended Weibull distributions 
(EW) was proposed by Gurvich et al. (1997). This class is illustrated by the following definition. 

 

Definition 1: Arandom variable iX is a member of the Weibull class of distributionif its cumulative 
distribution function (cdf) is given by 

 

- ( ; )( ; , ) ( ) 1- ; , 0,H x
W WG x G x e x     (1) 

  

where H( ; ) H(x)x   is a non-negative monotonically increasing function that depends on the parameter 

vector 0 . The corresponding probability density function (pdf) becomes 
 

( )( ; , ) ( ) ( ) ;  , 0,H x
W Wg x g x h x e x     (2)  
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Where h(x) h( ; )x  is the first derivative of H( )x .The distributions of most Weibull typescan be re-

written in form (1) depending on the choice of the function H( )x . Silva et al. (2013) and Gurvich et al. (1997)listed 
some examples for this class. By using the idea of Gupta and Cundu (1999), the generalized exponential of this class 
can be modified as follows: 

 

Definition 2: Arandom variable iX belongs to the generalized extended Weibull distribution class if its cdf is 
given by 

 

- (x)( ; , , ) ( ) (1- ) ;  , , 0,HG x G x e x       (3)  
 

where H( )x  is a non-negative monotonically increasing function thatdepends on a parametervector    . 
The corresponding pdf becomes 

 

( ) - ( ) 1( ; , , ) ( ) ( ) (1- ) ; , , 0,H x H xg x g x h x e e x          (4)  
 

where h( )x is the first derivative of H( )x .One can see that ( ) ( ( ))WG x G x  ,and thus
1( ) ( ( )) ( )W Wg x G x g x  .The distributions of most Weibull and exponentiated Weibull typescan be written in 

form (3) depending on the choice of the function H( ) and x  . Table 1 displays useful ( )H x  and corresponding 
parameter vectorsfor some existing distributions. 

Table 1: Special distributions and the corresponding H( ; )x  and vector  . 
 

Distribution                 ( )H x    References 
Exponential x  1- Johnson et al.(1994) 

Exponential power
( ) 1xe

   1 [ , ]  Smith and Bain (1975) 

Burr XII ( 0)x  log(1 )cx  1c Rodriguez (1977) 

Weibull ( 0)x  x   1  Johnson et al.(1994) 

Modified Weibull
xx e   1 [ , ]  Lai et al. (2003)Weibull extension

( / )[ 1]xe
   1 [ , ]  Xie et al. (2002) 

Exponential power exp[( ) ] 1x    1[ , ]  Smith and Bain (1975)Pareto ( )x k log( / )x k  1 kJohnson et 
al.(1994) 
Generalized exponential x    -     Gupta and Kundu (2000) 

ExponentiatedWeibull
1x      Nassar and Eissa (2003) 

Exp. Mod. Weibull ext.   
( / )[1 ]xe

    [ , ]  Sarhan and Apaloo (2013) 

Exponentiated Rayleigh
2x             -          Surles and Padgett  (2001) 

 

3. The GEWPS family 
 

In this section, we derive the family of GEWPS distributions by compounding the generalized extended 
Weibull class and power series distributions. 

 

Let ,N be a zero truncated discrete random variable having a power series distribution with the following 
probability mass function:  
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( ) ,   1,2,...,
( )

n
n

n
ap p N n n
c



   
           (5) 

 

where 0na  depends only on 1
,  ( ) ,n

nn
n c a 


 and (0, )s  is chosen in such a way that ( )c  is 

finite.Given ,N  let 1, , NX X be independent and identically distributed (iid) random variables following (3). Let

( ) 1max{ }N
n i iX X  .Then,the cdf of ( )nX N n is given by 

 

- ( )
X( ) (x) [1- ] ,   x 0, n 1.H x n

n N nG e  
   

 
 

That is, ( )nX N n has ageneralized extendedWeibull class of distribution with parameters , ,  and    

based on the same function H( )x . The generalizedpower series distributiondenoted by GEWPSwith anincreasing 

failure rate is defined by the marginal distribution (cdf) of ( )nX
: 

 

( )

- ( )
- ( )

1

( (1- ) )( ) (1- ) ,   x 0,
( ) ( )n

n H x
H x nn

X
n

a c eF x e
c c

 
  

 





  
 

 

which can be written as  
 

( )
1

( ( ))( ) ( ( )) ,   x 0.
( )n

n
X n

n

c G xF x p G x
c







  
   (6) 

 

Note that if H( ) xx  , the model is reduced to the GEPS introduced by Mahmoudi and Jafari (2012). 
 

Remarks.Let (1) 1min{ }N
i iX X  , then 

 

(1) The cdfof (1)X
 is 

(1)

( ( )) ( (1 ( )))( ) 1 1 .
( ) ( )X

c G x c G xF x
c c

  
 

 
   

(7)                                  
 

Note that if 1  , then the  
 

cdf of (1)  is:X
 

 

(1)

- ( )( (1 ( ))) ( )( ) 1 1 ,
( ) ( )

H x
W

X
c G x c eF x

c c

 
 


   

 
 

which is called the EWPS proposed bySilva et al. (2013). 
 

If 1 and if ( )H x x   , then the cdf of (1)X
 becomes 

 

(1)

( ) ( ) 1 ,
( )

x

X
c eF x

c







 
 

 

Which is the exponential power series distributions developed by Chahkandiand Ganjali (2009) thatinclude 
the lifetime distributions class proposed by Adamidis and Lukas (1998), Kus (2007),Tahmasbi and Rezaei (2008). 
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(2) Let
1(1 ( ))Y G G X  ,where

1G 
is the inverse function of ,G thenY has a GEWPS distribution as 

 

(1)

1 1

1

( ) ( ) ( (1 ( )) ) ( (1 ( )))
( ( ))1 ( (1 ( ))) .

( )

Y

X

F y P Y y P G G X y P X G G y
c G yF G G y

c



 



       

   
 

 

Based on the choice of , ( ), (x) and na c H    with form (6), this class covers the entire compound 
truncated discrete distributionswith all of thecontinuous lifetimedistributions in the literature. 
 

4. Density, survival, and hazard functions 
 

The probability density functions associated with (6) and (7), respectively, are given by 
 

( )

' - ( )
( ) - ( ) 1

( G(x))( ) g(x)
( )

( (1- ) )             = ( ) (1- ) (8)
( )

nX

H x
H x H x

cf x
c

c eh x e e
c

 
  











 



 
 

and  
 

(1)

'

' - ( )
( ) - ( ) 1

( (1 ( )))( ) g(x)
( )

( (1 (1- ) ))             = ( ) (1- ) . (9)
( )

X

H x
H x H x

c G xf x
c

c eh x e e
c

 
  









 







 
The survival functions are given by 
 

( )

- ( )( ( )) ( (1- ) )( ) 1 1 (10)
( ) ( )n

H x

X
c G x c es x

c c

  
 

    
 

 

And 
 

(1)

- ( )( (1 ( )) ( (1 (1- ) ))( ) . (11)
( ) ( )

H x

X
c G x c es x

c c

  
 
 

  
 

 

The corresponding hazard rate functions are 
 

( )

( )

( )

- ( )
( ) - ( ) 1

- ( )

(x) ( ( ))( ) ( )
( ) ( ) ( ( ))

( (1- ) )              = ( ) (1 - ) (12)
( ) ( (1- ) )

n

n

n

X
X

X

H x
H x H x

H x

f c G xx g x
s x c c G x

c eh x e e
c c e

 
  

 


 

 




 




 

 



  

 

and  
(1 )

(1)

(1)

'

- ( )
( ) - ( ) 1

- ( )

(x) ( (1 ( )))( ) g(x)
( ) ( (1 ( )))

( (1 (1 - ) ))             = ( ) (1 - ) . (13)
( (1 (1 - ) ))

X
X

X

H x
H x H x

H x

f c G xx
s x c G x

c eh x e e
c e
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The limiting distribution of the GPS when 
  is  

 

( )

1

0 0 0

1

1

0

1
- ( )

( ( ))
( ( ))lim ( ) lim lim

( )

( ( )) ( ( ))
lim

( ( )) (1- )

n

n n
n

n
X

n
n

n

c n c n
c n

n c

n c
c n

n c
c H x c

a G x
c G xF x

c a

a G x a G x

a a

G x e  



 





  






  






 
 

 

 






 









 
 

where min{n 0}nc a     
 

The densities of GEWPS can be expressed as an infinite number of linear combinations of densities of the 

order statistics. Given that

1

1
( ) ,n

n
n

c na 


 




 therefore, 

 

( ) ( )

'

1

( (x))( ) g(x) (N n)g ( ; )
( )n nX Y

n

c Gf x p x n
c







  
, 

 

where ( )
g ( ; )

nY x n
is the density function of ( ) 1max( ,..., ),n nY Y Y

 given by 
 

( )

1 ( ) - ( ) 1g ( ; ) ( )( ( )) ( ; ) (1- )
n

n H x H x n
Y x n ng x G x n h x e e      

. 
 

Moreover, 
 

(1) (1)

'

1

( (x))( ) g(x) (N n)g ( ; )
( )X Y

n

c Gf x p x n
c

 







  

, 
 

where (1)
g ( ; )Y x n

is the density function of (1) 1min( ,..., ),nY Y Y
 given by 

 

(1)

1 ( 1) ( ) - ( ) 1( ; ) ( )(1 ( )) ( ) (1- )n n H x H x
Xg x n ng x G x n h x e e       

. 
 

5. Quantiles, moments, and order statistics 
 

Let X be a random variable with cdf as in (6). The quantile function, i.e.,
( )

nXQ p
,is defined by

( ) ( )
( (p)) p,p (0,1)

n nX XF Q  
. Therefore, 

 

(n)

1
1

1 1 ((p ( ))( ) 1 1 ,X
c cQ p H og
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with the cdf as in (7) 
 

(1)

1
1

1 1 ((1 ) ( ))( ) 1 1 1 ,X
c p cQ p H og


 




  
                 

 

where , 0, (0,1)p     . 
 

The moment generating function is obtained as follows: 
 

( ) ( ) ( )
10 0

( ) ( )
1 10

( ) ( ) ( ) ( )

( ) ( ) ( ) (Y ),

n

tx tx
X X n X n

n

tx k
X n n

n n

M t e f x dx e P N n g x dx

P N n e g x dx P N n E

  



 

 

  

   

 

 
 

 

which can be obtained in the function H( )x . Similarly, 
 

(1) (1) (1) (1)
1 10 0

( ) ( ) ( ) ( ) ( ) (Y ).tx tx k
X X X

n n
M t e f x dx P N n e g x dx P N n E

  

 

      
 

 

Order statistics isamong the most fundamental tools in non-parametric statistics and inference.It enters 
estimationproblems and hypothesis tests in many ways.The probability distribution function of the ith order statistics 

from a random sample 1,..., mX X withdensity function (8) is given by 
 

( )

( )

1

:
( ( )) ( ( ))( ) ( 1 ,

( 1) ) ( ) ( )
n

n

i m i
X

i m X
m c G x c G xf x f x x

i m i c c
 
 

 
   

             


 
 

Using the binomial expansion, the above formula can be written as follows: 
 

( )

( )

1

0
:

! ( ( ))( ) ( 1) , 0.
( 1)!( )! ( )

( )
n

n

m jm i
j

X
X

i
j

m

m i
f x

j
m c G xf x x

i m i c



 



 
      

 
 
 


 

 

For the density function in (9), 
 

(1)

(1)

1

:
( ( )) ( ( ))( ) ( 1 ,

( 1) ) ( ) ( )

i m i
X

i m X
m c G x c G xf x f x x

i m i c c
 
 

 
   

             


 
 

This expression can be written as 
 

1)

(1)

(:

11

0

! ( ( ))( ) ( 1) , 0.
( 1)!( )! ( )

1
( )

m ji
j

X
X

i
j

m

i
f x

j
m c G xf x x

i m i c



 



 
      

 
 
 


 

 

6. Estimation and inference 
 

Let 1, ..., nX X  be a random sample, with the observed values 1,..., nx x obtained from the GEWPS with 

parameters , ,  and     . Let ( , , , )     be the 1p   parameter vector. The log likelihood function is given 
by 
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( )

1 1

( )

1

ln [log log log log(c( ))] ( ) ( 1) log(1 )

log(c ( (1 ) ))

i

i

n n
H x

i
i i

n
H x

i

n H x e

e



 

     





 





       

 

 


 

 

( ; )Consider 1 . Then the score function is given byiH x
ip e   

( ) ( ln/ , ln/ , ln/ , ln/ )T
nU             . 

 

1

1

1 1 1

1 1

( )ln ( ) ,
( ) ( )

(1 ) ( )(1 ) ( )ln ( ) ( 1) ( ) ,
( )

log( )( ( )ln log( ) ,
( )

logh(ln

n
i i

i i

n n n
i i i i i

i i
i i ii i

n n
i i i

i
i i i

k

p c pn cn
c p c

p H x p p c pn H x h x
p c p

p p c pn p
c p

x

 



 



 



 
   

  
  

 
  





  

 

 
  

 

  
    

 


  

 








  

 


1

1 1

) ( ) 1 ( )[1 ( 1) (1 ) ].
( )

n n
i i i i

i i
i ik k i i

H x p c pp p
p c p






  




 

  
    

      
 

The maximum likelihood estimation (MLE) of  say   is obtained by solving the nonlinear system
(x; ) 0nU   . This nonlinear system of equations does not have a closed form. For the interval estimation and 

hypothesis tests on the model parameters, we require the following observed information matrix: 
 

( )

T

T

T
n

I I I I
I I I I

I I I I I

I I I I

   

   

   

  

 
  
    
 
     

  







    , 
 

where the elements of  nI  are the second partial derivatives of ( )nU  . Under the standard regular 
conditions for the large sample approximation (Cox and Hinkley, 1974) fulfilled for the proposed model, the 

distribution of  is approximately 
1( , ( ) ),p nN J   where ( ) E[I ( )].n nJ    Whenever the parameters are in the 

interior of the parameter space but not on the boundary, the asymptotic distributionof ( )n  is
1(0, ( ) ),pN J  where 

1 1( ) lim ( )nn
J n I 


  

is the unit information matrix and p is the number of parameters 

of the distribution. The asymptotic multivariate normal 
1( , ( ) )p nN I    distribution of  can be used to 

approximate the confidence interval for the parameters, the hazard rate, and the survival functions. An 100(1 )  

asymptotic confidence interval for parameter i  is given by  
 

2 2

( , ),ii ii
i iZ I Z I    
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Where iiI  is the ( , )i i  diagonal element of 
1( )nI   for 1,...,i p and 2

Z 

is the quantile1 / 2  of the 
standard normal distribution. 
 

6.1 EM algorithm 
 

Based on the underline distribution, the MLE of the parameters can be found analytically using theEM 
algorithm. The Newton–Raphson algorithm is one of the standard methods to determine the MLEs of the 
parameters. To use the algorithm, the second derivatives of the log-likelihood are required for all iterations. The EM 
algorithm is a very powerful tool forhandling the incomplete data problem (Dempster et al.,1977; McLachlan and 
Krishnan, 1983). It is an iterative method thatrepeatedly replaces missing data with estimated values and updatesthe 
parameter estimates. It is especially useful if the complete dataset is easy to analyze. As pointed out by Little and 
Rubin (1983), the EM algorithm converge reliably but rather slowly, compared withthe Newton–Raphson method, 
when the amount of information in the missing data is relatively large. Recently, EM algorithm has been used by such 
researchers asAdamidis and Loukas (1998), Adamidis (1999), Ng et al. (2002), Karlis (2003), and Adamidis et al. 
(2005). 

 

In estimating , the EM algorithm is a recurrent method in which each step consists of an estimate of the 
expected value of a hypothetical random variable and later maximizes the log-likelihood of the complete data. Let the 

complete data be 1, , nX X , with the observed values 1, , nx x  and the hypothetical random variable 1, , nN N

. The joint probability function is such that the marginal density of 1, , nX X  is the likelihood of interest. Then, we 

define a hypothetical completedata distribution for each ( , ) , 1, ,m,T
i iX N i   with a joint probability function in 

the form of 
 

  ( ) - ( )
X

1
,N ( )f x, z; (1- ) ,

( )

z
H x H x zza z h x e e

c
  




  
 

 

where ,  , ,x    R and z  N . Therefore, it is straightforward to verify that the E-step of an EM cycle 

requires the computation of the conditional expectation of  ( )Z|X; r
, where 

(( ) ( ) ) ( ) ( )( , , ,  )rr r r r    is the 
current estimate (in the rth iteration) of  Θ . Then, the EM cycle is completed with the M-step, which is complete data 

maximum likelihood over    , with the missing Z’s replaced by their conditional expectations  Z|X;E  (Adamidis 
and Loukas,1998), where  

 

   X
1

, N
|

- ( )

' - ( )

(1 - )f x , z
( (1 - ) )

;
,

( )Z

z H x z
z

H xX
X

p z
f

a z e
x c e

  

 




 
 

 

and since

2 1

1
( ) ( ) z

z
z

c c z a  






   
its expected value is 

 

 
1 2 - ( )

2 - ( )
' - ( ) ' - ( )

' - ( ) - ( ) - ( )

' - (

1

1 1

)

(1- ) [ (1- )
( (1- ) ) ( (1- ) )

( (1- ) ) (1- ) (1- ) )
( (1- ) )

(1

1|

-

]
z H x z

H xz
zH x H x

H x H x H

H

z

z z

x

x

a z e z a e
c e c e

c e e c e
c e

e

E Z X
  

 
   

     

 

 
 

  




 




 



 



 

 

 

- ( ) - ( )

' - ( )

) (1- ) )
( (1- )

.
)

H x H x

H x
c e

c e
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7. Special subclasses 

 

In this section, we present four special subclasses of the GEWPS family of distributions. We provide the 

forms of the cumulative, density survival, and hazard rate functions for (1)X
and (n)X

. 
 
6.1 A compound class of the Poisson and lifetime distributions 

 

The compound class of the Poisson distribution (CP) (Alkarni and Oraby, 2012) is a subclass of the GEWPS 

family of distribution, with

1 , ( ) 1, ( 0)na c e
n

      
 . We assume that 1,..., NX X are identically independent 

random variables with a distribution function as in (3) and with N followinga truncated Poisson distribution at zero. 
Table 2 shows the necessary functions for this class. 
 

Table 2: Cdf, pdf, survival, and hazard rate functions for the CL class 
 

(1) 1min( ,..., )NX X X  (n) 1max( ,..., )NX X X  
G(x)1( )

1
eF x

e












  
G(x)( )( )

1
g x ef x

e





 


  

G(x)

( )
1

e es x
e

 



 






  
G(x)

G(x)

( )( ) g x ex
e e



 






 
  

(1 G(x))

( )
1

e eF x
e

 



  






  
(1 G(x))( )( )

1
g x ef x

e





  


  
(1 G(x)) )1( )

1

ees x
e





 






  
(1 G(x))
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7.2 A compound class of logarithmic and lifetimes distributions  
 

The compound class of logarithmic distribution (CL) (Alkarni, 2012) is a subclass of the GEWPS family of 

distribution, with 1, ( ) log(1 ), (0,1)na c        . We assume that 1,..., NX X are identically independent 
random variables with a distribution function as in (3) and with N followinga truncated logarithmic distribution at 
zero. Table 3 shows the necessary functions for this class. 
 

Table 3: Cdf, pdf, survival, and hazard rate functions for the CL class 
 

(1) 1min( ,..., )NX X X  (n) 1max( ,..., )NX X X  
log(1 (1 ( )))( ) 1

log(1 )
G xF x 


 
 

  
( )( )

(1 (1 G(x))) log(1 )
g xf x 

 



    

log(1 (1 ( )))( )
log(1 )

G xs x 


 


  
( )( )

log(1 (1 G(x)))[1 (1 ( ))]
g xx

G x


 



   

log(1 ( ))( )
log(1 )

G xF x 





  
( )( )

(1 G(x)) log(1 )
g xf x 

 



   
log(1 ( ))( ) 1

log(1 )
G xs x 



 

  
( )( )

(1 G(x))[log(1 G(x)) log(1 )]
g xx 

  


   
 

7.3 A compound class of geometric and lifetime distributions 
 

The compound class of geometric distribution (CG) (Alkarni, 2013) is a subclass of the GEWPS family of 

distribution, with
11, ( ) (1 )na c       , (0,1).   
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We assume that 1,..., NX X are identically independent random variables with adistribution function as in (3) 
and with N followinga truncated geometric distribution at zero. Table 4 showsthe necessary functions for this class. 

 

Table 4: Cdf, pdf, survival, and hazard rate functions for the CG class 
 

  
(1) 1min( ,..., )NX X X  

(n) 1max( ,..., )NX X X  

(1 )(1 G(x))( ) 1
1 (1 ( ))

F x
G x



 

 
   

2

(1 ) ( )( )
(1 (1 ( )))

g xf x
G x






   

(1 )(1 G(x))( )
1 (1 ( ))

s x
G x



 


   

( )( )
(1 (1 ( )))(1 G(x))

g xx
G x





  

(1 ) G(x)( )
1 ( )

F x
G x






  

2

(1 ) ( )( )
(1 ( ))

g xf x
G x





  
(1 ) G(x)( ) 1
1 ( )

s x
G x




 

  
(1 ) ( )( )

(1 ( ))(1 G(x))
g xx

G x






 

 

7.4 A compound class of binomial and lifetime distributions 
 

The compound class of binomial distribution (CB) (Alkarni, 2013) is a subclass of the GEWPS family of 

distributions with ( ) ( 1) 1mc     . We assume that 1,..., NX X are identically independent random variables with 
a distributionfunction as in (3) and with N following a truncated binomial distribution at zero. Table 5 shows the 
necessary functions for this class. 
 

Table 5: Cdf, pdf, survival, and hazard rate functions for the CB class 
 

(1) 1min( ,..., )NX X X  (n) 1max( ,..., )NX X X  
( (1 ( )) 1) 1( ) 1

( 1) 1

m

m

G xF x 

  

 
 

m g(x)( (1 ( )) 1)( )
( 1) 1m

G xf x  


 


 
( (1 ( )) 1) 1( )

( 1) 1

m

m

G xs x 

  


   

m g(x)( (1 ( )) 1)( )
( (1 ( )) 1) 1m

G xx
G x

 



 


  

( ( ) 1) 1( )
( 1) 1

m

m

G xF x 


 


   
m g(x)( ( ) 1)( )

( 1) 1m

G xf x  





 
( ( ) 1) 1( ) 1

( 1) 1

m

m

G xs x 


 
 

 
m g(x)( ( ) 1)( )
( 1) ( ( ) 1)m m

G xx
G x

 


 



  

 

Table 6 illustrates examples of some existing distributions with ( )H x  and ( )c  . The other functions can 
be obtained directly from the previous tables.  
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Table 6: Special distributions with cdf and the corresponding ( )H x  and ( )c   
 

 

Distribution ( )H x  na ( )c  ( )
( )

nXF x
References 

Generalized geometric exponential x  11



(1 )(1 )
1 ((1 )

x

x
e
e

 

 








 
  Mahmoudi and Jafari (2012)ExponentiatedWeibull-

geometric ( )x   1                1



( )

( )

(1 )(1 )
1 ((1 )

x

x

e
e





 

 








 

  Mahmoudi and Shiran(2012) 

Generalized Poisson exponential x 
1
n 1e 

(1 ) 1
1

xe e
e

  



 
 Mahmoudi and Jafari (2012) 

ExponentiatedWeibull  Poisson ( )x  
1
n 1e 

( )(1 ) 1
1

xe e
e

  



 
 Mahmoudi and Sepahdar (2013) 

Generalized binomial exponential        x 

m
n

 
 
  ( 1) 1m  

( (1 ) 1) 1
( 1) 1

x m

m
e  


  
  Mahmoudi and Jafari (2012) 

Generalized logarithmic exponential     x 
1
n log(1 ) 

log(1 (1 ) )
log(1 )

xe  


 
 Mahmoudi and Jafari (2012) 

ExponentiatedWeibull-logarithmic    ( )x  
1
n log(1 ) 

( )log(1 (1 ) )
log(1 )

xe
 



 
 Mahmoudi and Sepahdar (2014) 

Pareto Poisson log( / )x k 11 1e 

( / ) 11 ;
1

k xe x k
e






  

  Silva et al. (2013)  

Poisson-Lomax     (1 )x     11               1e 

(1 ) 1
1

xe
e

 



 
 Al-Zahrani and Sagor (2014) 

 
 

8. Submodels and applications 
 

In this section, two models are discussed with real data as examples of the GEWPS family. Geometric 
exponential distribution (GE) and generalized exponentialgeometric (GEG) distribution are fitted for real data.By 

substitutingdirectly in the forms found in Table 4 from Section 6 for ( ) 1max{ }N
n i iX X  , we obtain the following 

pdfs and hazard functions: 
 

2

1

2

1

(1 )( ; , ) ,
[1 (1 )]

(1 )( ; , )
1 (1 )

(1 ) (1 )( ; , , ) ,
[1 (1 ) ]

(1 ) (1 )( ; , , ) .
(1 (1 ) )(1 (1 ) )

x

GE x

GE x

x x

GEG x

x x

GEG x x

ef x
e

x
e

e ef x
e

e ex
e e







  

 

  

   

 
 


   


 
  



    








  



  

 




 



 

 


 

 


     



Said H. Alkarni                                                                                                                                                           65 
 
 

 

Figs. 1 and 2 show the densities and hazard functions of the GEand GEGdistributions for the selected 
parameter values. 

 
Fig. 1. Plots of the density and hazard rate function of the GE for different values of  and  .  

 
Fig. 2. Plots of the density and hazard rate function of the GEG for 1  and different values  and  .  
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Both models are fitted for the data introduced by Birnbaum and Saunders (1969) on the fatigue life of 6061-
T6 aluminum coupons cut parallel with the direction of rolling and oscillated at 18 cycles per second. The data 
arelisted in Table 3, which consists of 101 observations. 

 

Table 7: Fatigue life of 6061-T6 aluminum coupons 
 

70    90    96 97 99 100 103 104 104 105 107 108 108 108 109 
109 112 112 113 114 114 114 116 119 120 120 120 121 121 123 
124 124 124 124 124 128 128 129 129 130 130 130 131 131 131 
131 131 132 132 132 133 134 134 134 134 134 136 136 137 138 
138 138 139 139 141 141 142 142 142 142 142 142 144 144 145 
146 148 148 149 151 151 152 155 156 157 157 157 157 158 159 
162 163 163 164 166 166 168 170 174 196 212 

 

The EMalgorithm is used to estimate the model parameters. The MLEs of the parameters, the maximized log 
likelihood, the Kolmogorov‒Smirnov statistics with its respective p-value, the Akaike Information Criterion (AIC) 
and Bayesian Information Criterion (BIC) for the GE and GEG models are given in Table 8. The fitted densities and 
the empirical distribution versus the fitted cdfs of the GE and GEG models ofthis data are shown in Fig. 4. They 
indicate that the GEG distribution fits the data better than the GE distribution. The KS test statistic takes the smallest 
value with the largest value of its corresponding p-value for the GEG distribution. Moreover, this conclusion is 
confirmed from the AIC and BIC values for the fitted models given in Table 8.Their densities and cumulative 
distributions are plotted in Fig.4.  

 

Table 8: Parameter estimates, KS statistic, P-value, AIC, and BIC of the Birnbaum and Saunders data. 
 

Dist.      MLE(std.)                  K-S            p-value         -log(L)         AIC             BIC 

GE     

ˆ 0.9999
ˆ 0.0695







                   0.076           0.6041           457.14         918.28          923.51 
 

GEG    

ˆ 0.9884
ˆ 0.0795
ˆ 463.5169











               0.0492           0.9673           455.2           916.4          924.245  
 

 

 
 

Fig. 3: Plots of fitted GEG and GE of the Birnbaum and Saunders data. 
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9. Concluding remarks 
 

We define a new family of lifetime distributions called the GEWPS family of distributions, which generalizes 
the extended Weibull power series class and the generalized power series exponential distributions introduced by Silva 
et al. (2013) andMahmoudi and Jafari (2012), respectively. The GEWPS class contains many lifetime subclasses and 
distributions. Various standard mathematical properties were derived, such as density andsurvival, and hazard 
functions were introduced in flexible and usefulforms. Parameter estimation using theEMalgorithm was conducted 
using the maximum likelihood method. Finally, we fitted some of the GEWPS models to a real dataset to show the 
flexibility and the benefits of the proposed class. 
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