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Nonlinear Retarded Integral Inequalities of Gronwall Type 
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Abstract 
 
 

In this paper we establish some new nonlinear integral inequalities of Gronwall-Bellman type. These 
inequalities generalize some famous inequalities which provide explicit bounds on unknown functions. The 
inequalities given here can be used as handy tools to study the qualitative as well as quantitative properties of 
solutions of some nonlinear ordinary differential and integral equations. 
 

 

Keyword: Integral inequalities, nondecreasing, integral equations, ordinary differential equations. 
 

1. Introduction 
 

The integral inequalities involving functions of one and more than one independent variables which provide explicit 
bounds on unknown functions play a fundamental role in the development of the theory of differential equations. 
 

Lemma1.1.Gronwall in 1919 established the following inequality: 
 

Let )(),( tatx and )(tf be real-valued nonnegative continuous functions defined on ),0[ I with  
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Lemma1.2: Bellman in 1943 studied the following inequality: 
 

Let )(tx  and )(tf be real-valued nonnegative continuous functions defined on ),0[ I and 
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x is a 

constant.If the inequality  
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Lemma1.3: Lipovan in 2000 established the following inequality: 
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Many of the results of Gronwall-Bellman can be cited in [1-11].  
 

2. Main results: In this section,some new retarded integral inequalities of Gronwall-Bellmantype are 
introduced. Throughout this paper,denotes the set of real numbers, ),0[ I , ),0( 

 , ),1[1  .

),( IIC Denotes the set of all nonnegative real-valued continuous functions from I into I and ),(1 IIC denotes the 

set of all nonnegative real-valued continuously differentiable functions from I  into I .  
 

Theorem 2.1: Let ),()( and )(),( 


 ICtgtftx , ),(1 IIC be nondecreasing with tt )( on I .If 
the inequality 
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holds for all It where 10 ,20  ,00  qpx , are constants. Then 
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for all It . 
 

Proof: Let )(tM be defined as a function by the right-hand side of (2.1).Then 
 

)()( tMtx  ,       or    )())(())(( tMtMtx   It  (2.4) 
 
 
 Differentiating )(tM with respect to t  and using (2.4) implies that 
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Differentiating )(tL  with respect to t  and using (2.5) and (2.6) leads to 
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Since 0)( tL , then the inequality (2.7) can be rewritten as 
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then inequality (2.8) takes the form  
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The inequality (2.11) implies the estimation for )(tz by using (2.10) as 
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It .By using (2.9) ,the above inequality takes the form 
 

)()( 1 tktLp      (2.12) 
 

where )(1 tk  is defined as in (2.3).By substituting (2.12) in (2.5) we observe that 
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By integrating both sides of inequality (2.13)  from 0 to )(t and using (2.6) yields  
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Using (2.14) in (2.4), we get the inequality (2.2). 
 
Remark: If we put 1 ,  0)(  ptg , ),(0 tax  1q and tt )(  in Theorem2.1 then it reduces to Lemma1.1. 
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Theorem 2.2: Let ),()( and )(),( 


 ICtgtftx , ),(1 IIC be nondecreasing with tt )( on I .If the 
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for all It . 
 

Proof: Let )(tM be defined as a function by the right-hand side of (2.15).Then 
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 Differentiating )(tM with respect to t  and using (2.18) implies that 
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Differentiating )(tL  with respect to t  and using (2.19) and (2.20) leads to 
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By integrating both sides of inequality (2.21)  from 0 to )(t and using (2.20) yields 
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Using (2.24) in (2.18), we get the inequality (2.16). 
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Theorem 2.3:Let ),()( and )(),( 


 ICtgtftx , ),(1 IIC be nondecreasing with tt )( on I .If the 
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Proof: Let )(tM be defined as a function by the right-hand side of (2.25).Then 
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Differentiating )(tM with respect to t  and using (2.27) implies that 
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Differentiating )(tL  with respect to t  and using (2.28) and (2.29) leads to 
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By integrating both sides of inequality (2.30)  from 0 to )(t and using (2.29) yields 
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    (2.31)                       
By substituting (2.31) in (2.29) and using the fact that 0)0( xM   and by integrating both sides of resulting inequality  
from 0 to )(t and using (2.27) also we get the required inequality (2.26). 
 

Theorem 2.4:Let ),()( and )(),( 


 ICtgtftx , ),(1 IIC be nondecreasing with tt )( on I .If 
the inequality 
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for all It . 
 

Proof: The proof of Theorem2.4 is the same as the proof of Theorem2.1 with suitable modifications. 
 

Theorem 2.5:Let ),()( and )(),( 


 ICtgtftx , ),(1 IIC be nondecreasing with tt )( on I
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for all It . 
 

Proof: Since )(tn is positive,monotonicnondecreasing function then  inequality (2.35) can be written as 
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Let )(tM be defined as a function by the right-hand side of (2.38).Then 
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It .By using (2.43) ,the above inequality takes the form 
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where )(4 tk  is defined as in (2.37).By substituting (2.46) in (2.39) we observe that 
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Remark: If we put 0 ,  0)(  ptf , 0)( xtn  and tt )(  in Theorem2.5 then it reduces to Lemma1.2. 
 
Theorem 2.6:Let ),()( and )(),( 
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for all It . 
Proof: The proof of Theorem2.6 is the same as the proof of Theorem2.5 with suitable modifications. 
 

3. Application:In this section we present an application of the inequality given in Theorem2.3 to illustrate 
the usefulness of our results. 
 

Consider the retarded integral equation 
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where  and ,,, pxgf  are defined as in Theorem2.3.Integrating both sides of (3.1) from 0 to t  ,we have   
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Now a suitable application of the inequality given in Theorem2.3 with modifications to the above inequality leads to 
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For all .thus from the hypotheses (3.4) and the estimation in (3.6) implies the boundedness of the solution of (3.1). 
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