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Abstract 
 
 

The traveling tournament problem (TTP) is a sports scheduling problem which has generated considerable 
interest over the last decade. In this paper a mathematical model is introduced in which the home venues of 
all teams lie at equal intervals along a straight line. This model is applied to the six team problem and brute 
force methods are used to find all optimal schedules. These schedules are analyzed and categorized into 
equivalence classes. A number of schedules which have interesting properties are printed in full. 
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1. Introduction 
 

The Traveling Tournament Problem (TTP) is a sports scheduling problem requiring construction of a 
minimum distance double round robin tournament for a group of ݊ teams where ݊ is even and greater than 2. The 
problem was first defined in a pair of papers by Easton, Nemhauser and Trick (2001, 2003).  The motivation for 
studying TTP originated with Major League Baseball (MLB) which was interested in improving the travel efficiency of 
their team schedules.  Trick (2002) established a website with a challenge page which solicited solutions to different 
versions of the problem. The original problem defined at the website involved TTPs for ݊ = 4, 6, 8, … , 16 where the 
home venues for the ݊ teams were cities in MLB's National League.  These TTPs are called the NLn instances. 

 

Since its introduction in 2001, much of the interest in the TTP has focused on developing and refining 
numerical schemes to attack the problem. These have produced steady improvements in schedule efficiency. The 
biggest advances along these lines have come from Anagnostopoulos, Michel, Van Hentenryck and Vergados (2006) 
who used a simulated annealing algorithm to obtain many superior results in the larger NLn instances. 

 

In this paper we will study only the 6-team TTP, but we will introduce a simple geometric model for the 
placement of the 6 home venues. This model will greatly facilitate our analysis and understanding of optimal solutions 
to the 6-team problem. It will enable the use of brute force numerical methods to quantify the total number of legal 6-
team schedules and to discover properties shared by all optimal schedules. 
 

2. The Constrained Traveling Tournament Problem 
 

The TTP considered in this paper is subject to the same constraints imposed on the NL6 instances at Trick's 
website (2002). We seek a double round robin tournament (DRRT) of 6 teams in which each team plays exactly once 
in each of 10 slots. No team can play more than three consecutive home or away games (At-most constraint). A team 
cannot play the same opponent in consecutive slots (No-repeater constraint). The objective is to minimize the total 
distance traveled by the 6 teams collectively. 
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We propose a geometric model in which the 6 teams are named A, B, C, D, E and F and are placed at equal 
intervals along a straight line. In particular, we take team A’s home venue to be located at ݔ = 1 on the number line, 
team B’s home venue is at ݔ = 2, team C’s home is at ݔ = 3, etc. We refer to these distances as “miles”. Therefore 
each team is exactly one “mile” from its nearest neighbor(s). 
 

The distance matrix ܯ଺ is a symmetric 6 × 6 matrix which gives the distance between the team occupying the 
݅௧௛row and the team occupying the݆௧௛ column. The distance matrix ܯ଺ is given in Table 1. 
 

Table 1: The distance matrix for a 6-team TTP 
 

 A B C D E F 
A 0 1 2 3 4 5 
B 1 0 1 2 3 4 
C 2 1 0 1 2 3 
D 3 2 1 0 1 2 
E 4 3 2 1 0 1 
F 5 4 3 2 1 0 

 

3. The Independent Lower Bound 
 

In their 2003 paper, Easton et al. define a team's optimal tour: “A team’s optimal tour minimizes the travel 
distance for that team exclusive of the other teams in the schedule. The sum over ݊ teams of the distances associated 
with their optimal tours provides a simple but strong lower bound on the TTP. We call this the Independent Lower 
Bound (ILB)”. 

 

In the current model the ILB is simple to calculate. Because of the at-most constraint, all teams must make 
two road trips to complete their away-game schedule obligations. Team A is a geographically remote team and should 
take a three-game road trip to D, E, F, and a second two-game trip to B, C. The three-game trip covers a round-trip 
distance of 10 miles (provided D is not the second stop on the trip), and the two-game trip is 4 miles. Therefore A’s 
optimal tour is 14 miles. In a similar way it can be shown that B’s optimal tour is 12 miles and C’s is 10 miles. The 
geometric symmetry built into the model leads to similar optimal tours for teams F, E, D respectively. The ILB for 
our 6-team TTP is 14 + 12 + 10 + 10 + 12 + 14 = 72 miles. 
 

4. Schedule Format 
 

Schedules can be presented in an alphabetic format or an equivalent numerical format. Both schedule types 
involve a 10 × 6 matrix whose columns correspond to the 6 teams A, B, C, D, E, F and whose rows give the “days” 
or slots over which the tournament is held. In the alphabetic format, the team letters are used with road games 
indicated by the symbol “@”. In the numerical format, the teams are referred to by number (A=1, B=2, C=3, etc.) 
and road games are indicated by a minus sign. Tables 2 and 3 give the same schedule in the two formats. 
 

Table 2: A six team schedule in alphabetic format 
 

Row A B C D E F 
1 B @A @D C F @E 
2 E C @B F @A @D 
3 @F E D @C @B A 
4 @E D @F @B A C 
5 D @C B @A @F E 
6 C F @A E @D @B 
7 F @D E B @C @A 
8 @D @E F A B @C 
9 @C @F A @E D B 
10 @B A @E @F C D 
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Table 3: The same schedule in numerical format 
 

1 2 3 4 5 6 
2 -1 -4 3 6 -5 
5 3 -2 6 -1 -4 
-6 5 4 -3 -2 1 
-5 4 -6 -2 1 3 
4 -3 2 -1 -6 5 
3 6 -1 5 -4 -2 
6 -4 5 2 -3 -1 
-4 -5 6 1 2 -3 
-3 -6 1 -5 4 2 
-2 1 -5 -6 3 4 

 
5. Search for Optimal Schedules 
 

The schedule in Table 2 is made up of 10 slots. There are a total of 120 different slot choices from which 
these 10 can be chosen. As we begin to assemble a six team schedule, the first row can be chosen in 120 different 
ways. Because of the no-repeater constraint, there are only 64 slot choices for row 2. For row 3, there are only 45 slot 
choices. This means that for all 6-team legal schedules, the first three rows of the schedule can occur in120 × 64 ×
45 = 345,600different ways. When we move to the fourth row of the schedule, the analysis becomes more 
complicated because the at-most constraint now becomes a factor. If any of the six teams have played all of their first 
three games at home or on the road, then the at-most constraint will dictate a change in venue for such teams. This 
will have a limiting effect on the number of slot choices for row 4 of the schedule. It can be shown, however, that the 
maximum number of slot choices for row 4 will be 30 and the maximum number for row 5 will be 18. 
 

These numbers suggest that the total number of legal 6-team schedules is at least of order 10଼ and probably 
in the billions. This is not so large that it cannot be attacked by brute force methods. A code was developed which 
constructed legal 6-team schedules row by row in a fashion which guaranteed the enforcement of both no-repeater 
and at-most constraints. Whenever a full 10-row schedule was completed, it was counted and its distance calculated. It 
soon became apparent that an optimal 6-team schedule had a distance of 84 miles – twelve miles over the 
Independent Lower Bound. Armed with this statistic, the program was modified to count all legal schedules and to 
save only the optimal ones. A successful run was made which took 100 hours of computing time. 
 

6. Results 
 

There are exactly 6,531,327,360legal 6-team TTP schedules. This result is independent of the model we are 
using and therefore we can conclude that this value defines the total number of NL6 instances as well. The numerical 
work also produced 494 optimal schedules. For every optimal scheduleܵ, there was also found the upside-down 
schedule ܵିଵ which consists of exactly the same rows of scheduleܵ, but in reverse order. Clearly ܵିଵ is also optimal. 
If we identify these two schedules as equivalent, then we have 247 independent schedules. An interesting feature of 
these optimal schedules is that in every case, team A either begins or ends its schedule by playing its closest rival B. 
This is also true of team F. In every optimal schedule, team F either begins or ends its schedule by playing team E. 
Focusing our attention on team A, we can decide which schedule, ܵor ܵିଵ, we will use to categorize the set of all 
optimal schedules. For each pair of inverse schedules, we will choose ܵ to be the schedule in which team A plays team 
B in the first game (row 1).  For schedules in which A plays B in rows 1 and 10, we define ܵ to be the schedule where 
A’s first game is B@A with A being the home team. Using this convention we find that of the 247 optimal schedules, 
82 of them have A playing B in both rows 1 and 10. Clearly the first game is B@A and the last game is A@B.  

 

Furthermore, there are 123 schedules where A’s first game is B@A and A’s last game is against an opponent 
other than B. Finally, there are 42 schedules where A’s first game is A@B and A’s last game is against either C or D or 
E or F. These results are summarized in Table 4. 
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Table 4: Categorization of Optimal Schedules 
 

Category # of Schedules Approx. Fraction of Total = 247 
(+2, –2) 82 1/3 
(+2, x) 123 1/2 
(–2, x) 42 1/6 

 

In Table 4, the category is an ordered pair whose first component is team A’s first opponent using the 
numerical format introduced in Table 4. The second component of the ordered pair is team A’s final opponent. Thus 
category (+2, –2) includes all optimal schedules where A (team 1) hosts B (team 2) in its first game, and visits B (team 
2) in its final game. Category (+2,x) includes all optimal schedules where A hosts B in its first game and plays a 
different team (either home or away) in its final game. Similarly for category (–2, x). Table 4 indicates that roughly ଵ

ଶ
 of 

the optimal schedules belong to category (+2, x), roughly ଵ
ଷ
 are in (+2,–2) and the remainingଵ

଺
are (–2, x). 

 

7. Equivalence Classes of Optimal Schedules 
 

In addition to the distinction that can be made between a schedule ܵ and its inverse ܵିଵ, there is another 
grouping that can be discussed. Given an optimal schedule S, the permutation mapping (A,B,C,D,E,F) → 
(F,E,D,C,B,A) will transform ܵ into another scheduleܵ* which is also optimal because of the geometric symmetry of 
the home venues of the six teams. We will call ܵ*the reflected version of ܵ. The schedule in Table 2 is an optimal 
schedule in the category (+2,–2). Its reflected schedule ܵ* is given in Table 5 (alphabetic format) and in Table 6 
(numerical format). Table 5 also includes the distances traveled by each of the 6 teams, the optimal tours for each 
team and the differences between these values. 
 

Table 5: The reflected version of the schedule in Table 2 
 

Row A B C D E F 
1 @B A D @C @F E 
2 @C @F A @E D B 
3 F @E @D C B @A 
4 D F @E @A C @B 
5 B @A @F E @D C 
6 @E @C B @F A D 
7 @F @D E B @C A 
8 @D E F A @B @C 
9 E C @B F @A @D 
10 C D @A @B F @E 
Distance 14 14 10 18 12 16 
Optimal Tour 14 12 10 10 12 14 
Difference 0 2 0 8 0 2 

 

Table 6: The reflected version of the schedule in Table 3 
 

1 2 3 4 5 6 
-2 1 4 -3 -6 5 
-3 -6 1 -5 4 2 
6 -5 -4 3 2 -1 
4 6 -5 -1 3 -2 
2 -1 -6 5 -4 3 
-5 -3 2 -6 1 4 
-6 -4 5 2 -3 1 
-4 5 6 1 -2 -3 
5 3 -2 6 -1 -4 
3 4 -1 -2 6 -5 

If ܵ(݇,݊) is the10 × 6 matrix representing schedule ܵ in numerical format, ܵିଵ(݇,݊) is the corresponding inverse 
schedule and ܵ*(݇,݊)is the reflected schedule, then 



Mark Dorrepaal, Chackman & Brian Dorrepaal                                                                                                          11 
 
 

 

 ܵିଵ(݇,݊) = ܵ(11 − ݇,݊) (1) 
 ܵ*(݇, ݊) = 7 ௌ(௞,଻ି௡)

|ௌ(௞,଻ି௡)| − ܵ(݇, 7 − ݊) (2) 
 

where1 ≤ ݇ ≤ 10, 1 ≤ ݊ ≤ 6. 
 

Given an optimal schedule S, we define the equivalence class of S to be the set of four schedulesܳ =
{ܵ, ܵିଵ, ܵ*, (ܵ*)ିଵ}. Clearly the operations of inversion and reflection preserve distance. Therefore all four members 
of ܳ are optimal. Equivalence classes provide a more economical way of categorizing optimal schedules. 
 
8. Symmetric Schedules 
 

Clearly there is a discrepancy between the fact reported in section 6 that there are 494 optimal schedules with 
the findings in section 7 that optimal schedules can be grouped into equivalence classes consisting of 4 schedules. The 
resolution of the problem lies in the fact that some optimal schedules are symmetric. A symmetric schedule is one for 
whichܵ* = ܵିଵ; that is, its reflection is exactly the same as its inverse. Furthermore, if ܵ is symmetric, then 
 

 (ܵ*)ିଵ = (ܵିଵ)* = ܵ (3) 
 

An example of a symmetric schedule is given in Table 7 (alphabetic format) and in Table 8 (numerical format). 
Let ܵ(݇,݊) be the 10 × 6 matrix representing a symmetric schedule in numerical format. Equating (1) and (2) yields 
the following criterion for a symmetric schedule 
 

 ܵ(݇,݊) + ܵ(11 − ݇, 7− ݊) = 7 ௌ(௞,௡)
|ௌ(௞,௡)| (4) 

 

Table 7: A symmetric schedule of category (+2,–2) 
 

Row A B C D E F 
1 B @A @D C F @E 
2 F @C B @E D @A 
3 @D F E A @C @B 
4 @C E A @F @B D 
5 E D @F @B @A C 
6 D @F @E @A C B 
7 C @E @A F B @D 
8 @E @D F B A @C 
9 @F C @B E @D A 
10 @B A D @C @F E 
Distance 16 12 14 14 12 16 
Optimal Tour 14 12 10 10 12 14 
Difference 2 0 4 4 0 2 

 

Table 8: The same schedule in numerical format 
 

1 2 3 4 5 6 
2 -1 -4 3 6 -5 
6 -3 2 -5 4 -1 
-4 6 5 1 -3 -2 
-3 5 1 -6 -2 4 
5 4 -6 -2 -1 3 
4 -6 -5 -1 3 2 
3 -5 -1 6 2 -4 
-5 -4 6 2 1 -3 
-6 3 -2 5 -4 1 
-2 1 4 -3 -6 5 
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If a schedule ܵ is symmetric, then its equivalence class ܳ௦௬௠ will contain only two schedules. We 
haveܳ௦௬௠ = {ܵ, ܵିଵ} becauseܵ* = ܵିଵ which is already included, and(ܵ*)ିଵ = ܵ. It was found that of the 494 
optimal schedules, 26 were symmetric. The remaining 468 were non-symmetric. Therefore there are 13 equivalence 
classes each possessing 2 symmetric schedules and 117 equivalence classes with 4 schedules each. In this way the set 
of all optimal schedules divides into 130 equivalence classes of which exactly 10% consist of symmetric schedules. 
 

9. Unique Pairing Schedules 
 

Another characteristic exhibited by the schedule in Table 7 is that it is a unique pairing (UP) schedule. Note 
that the rivalries in row 1 have B@A, C@D and F@E. Teams A and B do not play each other again until row 10 – 
but when they do, the rivalries are once again A@B, D@C and E@F. Thus in rows 1 and 10, the schedule exhibits 
the same rivalries but opposite venues. The same is true for rows 2 and 9, rows 3 and 6, rows 4 and 7, and for rows 5 
and 8. In a UP schedule, for every row in the schedule matrix, there is a complementary row consisting of the same 
rivalries at opposite venues. 
 

A non-unique pairing (XUP) schedule is illustrated in Table 2. Note that the rivalries in row 1 are the same as 
the schedule discussed above: B@A, C@D and F@E. In row 10, team A plays at B; but now team C plays @ E and 
D plays @ F. So the rivalries are different in rows 1 and 10 even though A and B play each other. A similar thing 
happens between rows 2 and 4. Teams A and E play each other, but the other four teams have different opponents in 
those two rows. The one exception to this pattern occurs in rows 6 and 9. In those two rows, the rivalries are the 
same and the venues are opposite. A XUP schedule is one where it is generally true that in the two rows where team 
A plays the same opponent, the remaining four teams play different opponents. All optimal XUP schedules have 
exactly two complementary rows (same rivalries and opposite venues) and no complementary pairs in the remaining 
eight rows. 

 

Not all symmetric schedules are UP. We will examine some very interesting XUP symmetric schedules in 
section 11. Non-symmetric schedules also come in UP as well as XUP forms. 
 

10. Categorizing Equivalence Classes 
 

It was shown in section 8 that the optimal schedules fit into 130 equivalence classes. In section 6 we found 
that there are three categories of optimal schedules based on team A’s opponent in its first and last games. We present 
here tables showing how these categories break down into equivalence classes and schedule type (UP or XUP). First 
consider the symmetric schedules. It was observed in section 8 that there are 13 symmetric equivalence classes 
consisting of two optimal schedules each. Of these, six are in the category (+2, –2), six are in (+2,x) and one is in (–
2,x). Table 9 provides further analysis. In particular, all symmetric optimal schedules in category (+2, –2) are UP while 
those in the remaining two categories are XUP. 
 

Table 9: Symmetric Equivalence Classes 
 

Category UP XUP TOT 
(+2, –2) 6 0 6 
(+2, x) 0 6 6 
(–2, x) 0 1 1 
 6 7 13 

 

In order to extend our analysis to non-symmetric equivalence classes (each containing four optimal 
schedules), we must refine our categorization conventions. Given an optimal non-symmetric schedule S, its 
corresponding equivalence class will beܳ = {ܵ, ܵିଵ, ܵ*, (ܵ*)ିଵ}. We define ܳ to belong to category (+2, –2) if any 
schedule within ܳ has team A playing its first and last games against team B. This definition is necessary because it 
can happen that schedule ܵ is in category (+2,x), but schedule ܵ* is in (+2, –2). Furthermore once all members of 
category (+2, –2) have been identified, we defineܳto belong to category (+2, x) if any schedule within ܳ has B@A as 
its first game. This definition is necessary because it can happen that schedule ܵis in category (–2,x), but schedule ܵ*is 
in (+2,x). In this way all non-symmetric equivalence classes can be categorized. The results are shown in Table 10. 
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Table 10: Non-Symmetric Equivalence Classes 
 

Category UP XUP TOT 
(+2, –2) 28 20 48 
(+2, x) 29 38 67 
(–2, x) 0 2 2 
 57 60 117 

 

Every equivalence class in Table 9 contains two optimal schedules and every equivalence class in Table 10 
contains 4. Therefore of the original 494 optimal schedules mentioned in section 6, exactly2(6) + 4(57) = 240 are 
UP and 254 are XUP. This is interesting because when considering all legal 6-team schedules, there are approximately 
5.5 times as many XUP schedules as there are UP schedules. Clearly the order which is present in a UP schedule is 
more conducive to optimality. This is because the no-repeater constraint is guaranteed for all teams in a UP schedule 
provided team A satisfies the no-repeater constraint. In a XUP schedule, enforcement of the no-repeater constraint 
must be verified individually for all 6 teams. 
 

11. Three Interesting Symmetric Schedules 
 

In this section we present three optimal symmetric schedules with interesting distance configurations. As 
reported in section 5, the six teams in an optimal schedule travel a total of 84 miles. The schedule in Table 11 is one 
where every team travels the same distance – 14 miles. This schedule is a UP schedule in the category (+2,–2). 
 

Table 11: All teams travel the same distance 
 

Row A B C D E F 
1 B @A D @C F @E 
2 C @E @A F B @D 
3 @D @F E A @C B 
4 @F C @B E @D A 
5 @E D @F @B A C 
6 D F @E @A C @B 
7 F @C B @E D @A 
8 E @D F B @A @C 
9 @C E A @F @B D 
10 @B A @D C @F E 
Distance 14 14 14 14 14 14 
Optimal Tour 14 12 10 10 12 14 
Difference 0 2 4 4 2 0 

 

Table 12 exhibits a schedule where each team's distance exceeds its optimal tour by the same amount – 2 
miles. Generally speaking the geographically remote teams like A and F will have to travel further distances to fulfil 
their schedule obligations. On top of this, all optimal schedules require the six teams collectively to exceed their 
optimal tours by 12 miles. The schedule in Table 12 spreads this net excess evenly amongst the six teams. The 
schedule is XUP and of category (–2,x). From Table 9 it is the only optimal symmetric schedule having these 
properties. Of further interest is the fact that team B’s 3-game road trip is inefficient. This means that D is the second 
stop on this trip which makes the distance of this trip 10 miles rather than the usual 8 miles. An attempt to make this 
trip efficient by interchanging rows 2 and 3 leads to a violation of the at-most constraint for team E. 
 

 
 
 
 
 
 
 



14                                                               American Review of Mathematics and Statistics, Vol. 3(2), December 2015  
 
 

Table 12: Each team’s distance exceeds optimal tour by 2 miles 
 

Row A B C D E F 
1 @B A @F E @D C 
2 @D @F @E A C B 
3 @C @D A B @F E 
4 F @E D @C B @A 
5 C F @A @E D @B 
6 @E C @B @F A D 
7 @F E @D C @B A 
8 B @A E F @C @D 
9 E D F @B @A @C 
10 D @C B @A F @E 
Distance 16 14 12 12 14 16 
Optimal Tour 14 12 10 10 12 14 
Difference 2 2 2 2 2 2 

 

The schedule in Table 13 has the property that the majority of teams (4 of 6) travel their optimal tours. This 
symmetric schedule is XUP and is of category (+2, x). Of all the optimal schedules, this one (and its inverse) are the 
only ones where over half the teams travel their optimal tours. 
 

Table 13: Four of six teams travel their optimal tours 
 

Row A B C D E F 
1 B @A @F E @D C 
2 C D @A @B F @E 
3 @E C @B F A @D 
4 @F @E D @C B A 
5 @D @F E A @C B 
6 E @D F B @A @C 
7 F E @D C @B @A 
8 @C F A @E D @B 
9 @B A @E @F C D 
10 D @C B @A @F E 
Distance 14 12 16 16 12 14 
Optimal Tour 14 12 10 10 12 14 
Difference 0 0 6 6 0 0 
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