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Abstract 
 
 

This paper discusses the class of finite of Markov Chains, representing the random transition between 
deterministic dynamical systems. For such chains, the covariance operator B usually has a very rich kernel. 
We'll give a complete analysis of B and discuss its applications to the random number generators (RNG's). 
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1. Introduction 
 

The goal of this paper is to discuss the analysis of the covariance operator for the special class of Markov 
Chains, called "Loop" Markov Chains. These chains have the following description: there are several pure deterministic 
dynamical system and the random process jumps with some distribution from one system to another at some moment 
of time (which can be random or deterministic). A typical example of such a situation gives the algorithmical random 
number generator's (RNG's)(i.e. deterministic dynamical system with discrete time) which randomly changes states at 
the random moments due to seeding by ideal physical RNG's. Such "hybrid" RNG's have much better statistical 
properties than the algorithmical RNG's (see [4] and [5]). 

 

 The idea of "Loop" Markov Chain (LMC) was first proposed by Kai Lai Chung [1] in a completely different 
setting. We'll study the Central Limit Theorem (CLT) and the covariance operator for such chains. Our model will 
contain countably many loops; the case of finitely many loops is much simpler. In contrast to the case of finite 
Markov Chains, the D표̈eblin condition is not fulfilled in the case when the length of the loops are unbounded. 
 

Description of the model: Let's consider a sequence of integers	2 ≤ 푛 ≤ 푛 ≤ ⋯ ≤ 푛 ≤ ⋯, where 
gcd(푛 ,푛 ,⋯ ) = 1,푛 → ∞	푎푠	푗 → ∞. The phase space of LMC has the following structure: there is a common 
point O that connects all of the loops, each loop 푙  consists of successive points. 
 

푙 = 0, 1 , 2 , ⋯ ,푛 − 1 , 푗 = 1,2,⋯ ,푘,⋯                                              (1) 
 

Transition probabilities of "Loop" Markov Chains have a simple structure: 
 

a. 푝 0, 1 = 푝 > 0, 푗 = 1, 2,⋯ ,푘,⋯							∑ 푝 = 1 
b. Inside each loop, the motion is deterministic: 푝 1 , 2 = 1,⋯ ,푝 푛 − 1, 0 = 1,				푗 = 1, 2,⋯ ,푘 

 

This chain is recurrent, aperiodic, and connected (this is due to arithmetic condition on 푛 ,푛 ,⋯ ,푛 ,⋯ ). 
  

 The ergodicity depends on the existence of the expectation for the random variable	휏 : the first return time 
from	0 → 0. One should see that 휏  has values 푛 ,푛 ,⋯ ,푛 ,⋯ with probabilities 푝 ,푝 ,⋯ ,푝 ,⋯,	i.e. 퐸 휏 =
∑ 푝 푛 . We'll assume that	∑ 푝 푛 = 푚 < ∞. 
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Lemma 1.1:   Invariant distribution from the LMC, under the condition	∑ 푝 푛 < ∞, is given by  
 

휋(0) = ∑ ; 	휋(푖, 푗) = ∑ =                                                    (2) 

where 	푖 = 1, 2,⋯ ,푘 and	푗 = 1, 2,⋯ ,푛 − 1. Here 푚 = ∑ 푝 푛 = 퐸 휏 	and 휏  is the time of the first return from	0 →
0. 
 

Proof.    Let 푝 ,푝 ,⋯ ,푝 ,⋯ be the probability of entering a certain loop. The	gcd(푛 ,푛 ,⋯ ) = 1; 
therefore, the chain is aperiodic. Obviously, 휋(푖, 푗) = 휋(0)푝  and  
 

π (x) = 1			 ⇒ 		π(0) + π(0)p (n − 1) = 1
,

 

 

Finally 

휋(0) =
1

1 + ∑ p (n − 1) = 	
1

1 + ∑ (푝 푛 − 푝 ) = 	
1

1 + ∑ 푝 푛 − 1
= 	

1
∑ 푝 푛

 

⟹ 	휋(0) = 	∑  and 휋 = ∑ 				∎ 
 

For aperiodic connected Markov Chains, the ergodicity is equivalent to the positive recurrence, that is, finiteness 
of the expected values of the first return to any state, say 0.        
  

2 Covariance Operators 
  

Let's recall the Central Limit Theorem (CLT) for the Markov Chains. If 푥 ,			푡 = 1, 2,⋯ is a ergodic aperiodic 
Markov Chain on the countable phase space 푋; 	휋 is the invariant distribution of 푃 = [푝(푥, 푥)] is the transition 
matrix, then one can introduce the Hilbert space 

 

퐿 (푋,휋) = 푓휖푋 → 푅 ⋮ ∑ 푓(푦)휋(푦) = 0,			 ∑ |푓 (푦)|휋(푦)∈∈ = ‖푓‖ < ∞                     (3) 
 

Now let 푃∗ be the operator, conjugated to 푃 in 퐿 (푋, 휋). It means that	∀ 푓 ,푓 	∈ 퐿 (푋,휋) , (푃푓 ∙ 푓 ) =
(푓 푃∗ ∙ 푓 ) . It's easy to see  
 

푃∗ = ( ) ( , )
( )                                                                              (4) 

 

where 푃∗is a stochastic matrix. Let 푥∗ ,			푡 = 0, 1,⋯ be a Markov Chain with transition probabilities	푃∗. The invariant 
measure of 푥∗ is again	휋. 
 

Let's formulate the Central Limit Theorem based on the theory of ergodic martingale-difference. 
 

Theorem 2.1   Assume that 푓 ∈ 퐿 (푋,휋) and the homological equation 푓 = 푔 − 푃푔 has a solution 푔 ∈ 퐿 (푋,휋) 
(formally, 푔 = (퐼 − 푃) 	푓 = ∑ 푃 푓,	but in general this series converges ∀ 푓 ∈ 퐿 (푋,휋)  only under the D표̈eblin condition, 
which is not true under the condition	푛 → ∞). Then  
 

√
= ∑ ( )

√
	 ⎯ 푁(0,휎 )                                                              (5) 

 

where 
휎 (푓) = (푔 ∙ 푔) − (푃푔 ∙ 푃푔) = (퐵푓 ∙ 푓)                                                  (6) 
 

(limiting variance) 
 

The covariance operator B (or corresponding quadratic form (퐵푓 ∙ 푓) = 휎 (푓)	can be presented formally as 
 

휎 (푓) = [(푔 − 푃푔) ∙ (푔 + 푃푔)] = [푓 ∙ (푓 + 2푃푓 + 2푃 푓 + ⋯ )] = [푓 ∙ (푓 + 푃푓 + 푃∗푓 + 푃 푓 + (푃∗) 푓 +
 ⋯휋                                                                          (7) 
 

=(푓 ∙ (퐹 + 퐹∗ − 퐼)푓)                                                                       (8) 
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Here 퐹 = 퐼 + 푃 + 푃 + ⋯ is called the fundamental matrix of the Markov Chain	푥 , 푡 = 0, 1,⋯. Operator 
F is bounded under Döeblin condition but in general it is unbounded. This is also true for the covariance 
operator	퐵 = 퐹 + 퐹∗ − 퐼. 
 

3 Spectral Analyses 
       

The spectral analysis of the covariance operator B is an interesting problem with potential statistical 
applications. If instead of the chain푥(푡), we can observe only the additive functional 푆 = ∑ 푓(푥 ) then (for fixed 
퐿 −  norm‖푓‖ = 1) the biggest amount of the information about the chain will provide the top eigenfunction 
Ψ 	of 퐵:	휆 Ψ = 퐵Ψ , 	휆  = max 휆 (퐵) (it is the leading factor in the statistical analysis). Also, the function Ψ ∈
ker 퐵 = {Ψ:퐵Ψ = 0} are also interesting for such functions as 푆  which are bounded in probability if	푛 → ∞. The 
following theorem gives the complete characteristics of ker B. 
 

Theorem 3.1   In the situation in section 2, 푘푒푟 퐵 = 푆푝푎푛	(푓: 푓 = 푔 − 푃푔) and 푔 = 푃∗푃푔, i.e. 푔 ∈
푘푒푟(퐼 − 푃∗푃). Let’s stress that 퐼 − 푃∗푃 is symmetric and nonnegative on 퐿 (푥,휋) due to the fact that 푃∗푃	is symmetric and 
stochastic (with top eigenvalues of 1). 
 

Proof. Assume that 휎 (푓) = 0 ⟹ 푓 = 푔 − 푃푔 and	(푔 ∙ 푔) − (푃푔,푃푔) = 0, i.e. (푔,푔) = (푔,푃∗푃푔) ⇒
(푔, (퐼 − 푃∗푃)푔) = 0. But (퐼 − 푃∗푃) is symmetric and nonnegative and the spectral theorem for (퐼 − 푃∗푃) gives 
immediately that	푔	휖 ker(퐼 − 푃∗푃).			∎  
 

Let’s apply this general result to the LMC. 
 

In the future, 푓(푥),푔(푥) will be the generic functions from	퐿 (푋,휋), while 푓 , 푓 ,푔 ,푔  will be the 
particular function from	퐿 (푋,휋). F will be the functions constant on the loops and G are functions linear on the 
loops. 
 

Theorem 3.2   푘푒푟 퐵 = 푠푝푎푛 푓 ;	푓 , 푖 = 1, 2,⋯ ,푘,⋯ ; 		푗 = 1, 2,⋯푛 − 2 . If we have a finitely many, say k, loops of 
length 푛 − 1, 푗 = 1, 2,⋯ ,푘 then  

푑푖푚푘푒푟 퐵 = 푛 − 2푘 + 1 . 

Here 

푔 (푦) = 훿 (푦) = 1 if 푦 = 0
0 if 푦 ≠ 0																													푓 (푦) = 푔 − 푃푔 =

1 if 푥 = 0
−푝 if 푥 = (푖,푛 − 1)

0 if otherwise
 

For 1 ≤ 푗 ≤ 푛 − 2,			푖 = 1, 2,⋯ ,푘  

푔 (푦) = 훿 (푦),										푓 (푦) = 푔 − 푃푔 =
−1 if 푥 = 0
1 if 푥 = (푖, 푗)
0 if otherwise

	 
 

Proof.   Let’s calculate the stochastic matrix 푄 = 푃∗푃 which corresponds to the following Markov 
Chain	푥±(푡). Assume that the initial chain 푥(푡) starts from	푥 ∈ 푋. Let’s make one step with transition probabilities 
푝∗(푦, 푧) (negative direction at that time) and after one step with probabilities 푝(푥,푦) (positive direction at that time). 
These two steps give the single transition of 	푥± from x to z with probability	푞(푥,푦) = ∑ 푝∗(푥, 푧)푝(푧,푦)∈ . Direct 
calculations using formula (4) gives 
 

푝∗ (푖, 푙), (푖, 푙 − 1) = 1									푙 = 2,⋯ ,푛 ,			푖 = 1, 2,⋯ ,푘,⋯ ; 
푝∗ (푖, 1), 0 = 1								푖 = 1, 2,⋯ ,푘,⋯ ; 

푝∗ 0, (푖,푛 − 1) = 	 푝 								푖 = 1, 2,⋯ ,푘,⋯ 
 

Now from the formula 푞(푥,푦) = ∑ 푝∗∈ (푥, 푧)푝(푧,푦) we get 
 

푞 (푖, 푙), (푖, 푙) = 1							푙 = 2,⋯ ,푛 − 1,			푖 = 1, 2,⋯ ,푘,⋯ ; 
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푞 (푖, 푙), (푗, 1) = 	 푝 							푖, 푗 = 1, 2,⋯ ,푘,⋯ ; 
푞(0,0) = 1			 

It means that for the chain 	푥±(푡) with transition matrix Q state 0; (푖, 푙), 푖 = 1, 2,⋯ ,푘,⋯ ; 푙 = 1, 2,⋯ ,푛 −
2 are absorbing ones and the remaining states set Γ = {(푖,푛 − 1), 푖 = 1, 2, ⋯ ,푘}	are the transient ones.  ∎ 
Remark 3.3   We understand 푠푝푎푛 in theorem 3.2 as a set of the finite linear combinations of the functions 푓  and 푓 	but not as a 
closed linear subspace in	퐿 (푋,휋), except in the case when the number of loops in finite. It’s easy to see if we consider function 푓 =
∑ 푓 ∙ ℎ with sufficiently fast increasing magnitudes	ℎ , we’ll get 푃 − 푎. 푠. unbounding sums	∑ 푓 ℎ = 푆, though formally	푓 ∈
푘푒푟 퐵. 
 

It is well known that all Q-harmonic functions, i.e., the solutions of the equation	푔 = 푄푔, which can also be 
written as	(퐼 − 푃∗푃)푔 = 0, are constant on the ergodic classes of the chain and 푑푖푚{푔:푔 = 푄푔} is equal to the 
number of such classes. As a result,  

dim ker(퐼 − 푃∗푃) = 1 + (푛 − 2) = 푛 − 2푘 + 1 

 

For each function 푔 	and	푔( ), one can calculate the corresponding 푓 such that	휎 (푓) = 0. Namely, 
 

푓 (푦) = 푔 − 푃푔 (푦) =
1 if 푦 = 0
−1 if 푦 = (푖,푛 − 1),			푖 = 1, 2,⋯ ,푘 

푓( , )(푦) =
1 if 푦 = (푖, 푗)
−1 if 푦 = (푖, 푗 − 1),			푗 = 2,⋯ ,푛 − 1,			푖 = 푖,⋯ ,푘		 

 

Our goal now is to give the description of 퐼푚	퐵 = (ker퐵)  in	퐿 (푋,휋), containing the functions	푓:휎(푓) =
(퐵푓, 푓) > 0. 
 

Theorem 3.4   퐼푚	퐵	 ∈ 퐿 (푋,휋). It consist of the functions	훤, constant on the loops 
 

퐹(푥) =
휑 if 푥 = (푖, 푙),			푙 = 1, 2,⋯ ,푛 − 1,			푖 = 1, 2,⋯
퐹(0) if 푥 = 0  

And restricted by the linear conditions 

퐹(0) = 푝 휑 , 푝 푛 휑 = 0,			
휑 (푛 − 1)푝

푚(0)
+
퐹(0)
푚(0)

< ∞. 

 

In case of k loops,	푑푖푚 퐼푚	퐵 = 푘 − 1. 
 

Proof.   Condition of orthogonality, (퐹 ∙ 푓( , )) = 0 gives	퐹(푖, 푙 − 1) = 퐹(푖, 푙); 	푙 = 2,⋯ ,푛 − 1. The 
additional condition of orthogonality (퐹 ∙ 푓 ) = 0 provides the first relation	퐹(0) = ∑ 푝 휑 . Finally, due to the 
definition of	퐿 (푋,휋),∑퐹(푥)휋(푥) = 0, i.e. 퐹(0) + ∑ (푛 − 1)푝 휑 = 0 . Taking into account the previous 
relation, we’ll get	∑ 푝 휑 푛 = 0.			∎           
 

For each function	퐹 ∈ (ker퐵) , we can solve in 퐿 (푋, 휋) the homological equation, 퐹 = 퐺 − 푃퐺 and 
calculate	휎 (퐹) = (퐵퐹,퐹) = (퐺,퐺) − (푃퐺,푃퐺) . Let   
 

퐺 = 퐺(푖, 1) 
then 

퐺 − 푃퐺 = 퐹 
gives 
 

퐺(푖, 1) − 퐺(푖, 2) = 휑 ,퐺(푖, 2) − 퐺(푖, 3) = 휑 ,⋯	⇒ 퐺(푖, 푙) = 퐺 − (푙 − 1)휑 , 푖 = 1, 2,⋯ ,푛 − 1. 
 

Since 
퐺(푖,푛 − 1) − 퐺(0) = 휑  

we have 
퐺(0) = 퐺 − (푛 − 1)휑  

i.e. 
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퐺 = 퐺(0) + (푛 − 1)휑 . 
 
It is easy to see the condition, 퐺 ∈ 퐿 (푋, 휋) is equivalent to 
 

푝 푛 휑 < ∞ ⇒ 푝 푛 휑 < ∞ 

 

Since 퐺(푥) ∈ 	퐿 (푥,휋) for	퐺(0), we have the equation 
 

퐺(0) + 푝 (퐺(0) + 푗휑 ) = 0, 

i.e. 

퐺(0) + 푝 퐺(0)(푛 − 1) + 휑 푝
푛 (푛 − 1)

2
= 0, 

퐺(0)푚(0) + 휑 푝
푛 (푛 − 1)

2
, 

퐺(0) = −
1

푚(0)
휑 푝 푛

2
 

 

In the last, we used the relation	∑ 휑 푝 푛 = 0. 
     

For	휎 (퐹), we have  
	휎 (퐹) = (퐺,퐺) − (푃퐺,푃퐺)  

 

=
퐺 (0) − (퐺(0) − 퐹(0))

푚(0)
+

1
푚(0)

푝 (퐺(0) + 푙휑 ) − (퐺(0) + (푙 − 1)휑 )  

=
2퐺(0)퐹(0) − 퐹 (0)

푚(0)
+

1
푚(0)

푝 휑 (2퐺(0) + (2푙 − 1)휑 ) 

=
2퐺(0)퐹(0) − 퐹 (0)

푚(0)
+

1
푚(0) 푝 휑 (2퐺(0)(푛 − 1) + 휑 (푛 − 1) ) 

=
2퐺(0)퐹(0) − 퐹 (0)

푚(0)
−

2퐺(0)퐹(0)
푚(0)

+
1

푚(0) 푝 휑 (푛 − 1)  

=
1

푚(0)
− 휑 푝 + 푝 휑 (푛 − 1)  

It is better to present the final answer in the different form (using the relation	∑ 푝 휑 푛 = 0): 

	휎 (퐹) =
1

푚(0)
푝 휑 (푛 − 1) − 휑 푝 (푛 − 1)  
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=
1

푚(0)
푝 [푙 (푛 − 1) − 푙] ,			푤ℎ푒푟푒	푙 = 휑 푝 (푛 − 1) = −퐹(0) 

 

One can see now that 휎 (퐹) = 0		iff 휑 = ( ) , 푖 = 1, 2,⋯ ,푘,⋯. Vector 휑⃗ = −1, ,⋯ , ,⋯  is an 
eigenvector for the covariance matrix B with eigenvalue 휆 = 0. The orthogonal complement to this vector if given 
by  

(퐹,휑 ) = 0 ⇒ −퐹(0) + 푝
휑 (푛 − 1)
푛 − 1

⇒퐹(0) = 푝 휑  

 

In other terms, under conditions	퐹(0) = ∑ 푝 휑 ,휎 (퐹) > 0	. If the number of loops is equal to	푘 < ∞, 
this implies that 푅푎푛푘	퐵 = 푘 − 1. 
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