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Orbital Hausdorff Stability of the Solutions of Differential Equations with Variable
Structure and Impulses

Katya G. Dishlieva'

Abstract

The concept of orbital gravitation for the systems of differential equations (SDE) with fixed structure and
without impulses is introduced. The problems for non-autonomous nonlinear SDE with variable structure
and impulses are the main object of investigation. Sufficient conditions for Hausdorff orbital stability of the
solutions of such systems are found. The main requirement is any component of the systems to be orbital
gravitating.
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1. Introduction

There are many continuous dynamic processes which are subjected to the "short-term™ discrete external
influences. As a result of these effects, they have a "break character” of development. Their dynamics are described
(modeled) by the piecewise continuous functions. In general, these modeling functions are the solutions of impulsive
differential equations (with fixed or variable impulsive moments). The approximation of such solutions by means of
the smooth functions (such as algebraic polynomials, trigopnometrical polynomials, etc.) on the uniform distance is not
effective. The "significant differences” between discontinuous solutions and the smooth functions from the
approximating class (in the terms of uniform distance) are the reason for this conclusion. These differences are
"irreparably large" in sufficiently small surroundings of the breakpoints. In such cases it might use a considerably
“weaker” metrics, such as the metrics based on a different integrated distances.

In some cases, taking into account the research objectives, the integral metrics is not adequate and therefore
useless. On the other hand, the approximation of piecewise continuous solutions of the impulsive SDE using some
classes of approximating piecewise smooth functions again in the terms of uniform distance is satisfactory only when
the moments of impulses (breakpoints of the solutions) are fixed in advance. If we remove some "parts” of the
solutions, we can approximate uniformly the solutions of impulsive equations with variable moments of impulsive
effects. Usually, these parts are defined in the symmetrical surroundings of the impulsive moments. It is clear that
such approximations are also not meaningful. Abovementioned problems could be overcome by using the Hausdorff
distance between the trajectories of the studied solutions and the approximating functions. Research in this work are
motivated by the notes made above. During the last years, a number of scientific papers are devoted to the qualitative
theory of differential equations without impulses which use the Hausdorff metric see Ahmad and Sivasundaram
(2006, 2008), Dishliev et al. (2011), Dishliev and Dishlieva (2011) and Dishlieva et al. (2014). Here, this metric is
fundamental in the study of the solutions properties of non-autonomous systems of differential equations with
variable structure and impulses. The qualitative research of SDE with variable impulsive effects is basic subject in a
number of publications, we will mention: Akhmet (2005), Bainov and Dishliev (1989, 1997), Benchohra and Ouahab
(2003) and Benchohra et al. (2004, 2005).
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The interest towards these equations is determined by their many applications see Akhmet et al. (2006),
Dishliev et al. (2011), Bainov et al. (1989, 1997), Gao et al. (2006, 2007), Nenov (1999), Nie and Peng et al. (2009) and
Nie and Teng et al. (2009). In this paper, we study one specific class of non-linear non-autonomous SDE with
variable structure and impulses. The change of the right hand sides of system and the impulsive effects are realized
simultaneously at the moments in which the trajectory of corresponding initial value problem meets the consecutive
"switching” set.

These sets are situated in the phase space of SDE. Our investigations are performed in the particular case for which
the following assumptions are valid:

- the sets: {f,; i=12,...} of the right hand sides of SDE, {®;;

i=12,..} of the switching sets and

{Ii; i=1 2} of the impulsive functions consisting of a finite number of different elements:
{f(t,x); i:1,2,...}:{@j(t,x); j:1,2,...,k},
{0 i=12.}={®;; j=12..k},

{1L(x); i=12..}= {FJ (x); :1,2,...,k};
- the switching sets coincide with the parts of predefined hyperplanes.

For the problem described above, the following terms are introduced:

- orbital gravitation;
- orbital Hausdorff stability on the initial condition.

These terms could be related for SDE without impulses and with a fixed structure. For instance, we will say
that such a system is orbital gravitating with constant x if the Hausdorff distance between its two arbitrary
trajectories is x times less than the Euclidean distance between them.m Let the right hand side of the system with

variable structure and impulses consistently coincides with the functions fl, f2 ,.... Assume that the solutions of each

of the corresponding system without impulses 3—);: f. (t, x), i=12,..., are orbital gravitating. Under this basic

assumption, the sufficient conditions are found under which the solutions of the basic (studied) system with variable
structure and impulses are orbital Hausdorff stable on the initial condition.

2. Preliminary Remarks
Further, we will use the following notations. Let the points a(al,az,...,a”), b(bl,bz,...,b”)e R". Their

scalar product is (a,b) = a'b" +a’h® +...+a"h". The Euclidean distance between these points is denoted by

p(a,b)=||a—b||=\/(a1—b1)2 +(a?=b?) +..t(a"-b") |

Let the nonempty sets A, B< R". Then the Euclidean and Hausdorff distance between them is denoted by

pe (AB)=inf {inf {p(a,b), ac A}, beB}

and

pu (A B)= max{sup{inf {p(ab),acA} be B}, sup{inf{p(a,b), beB},ae A}}
If at least one of the sets A or B is empty, then for convenience we shall assume that

pe(AB)=0 and p, (AB)=0.
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We will denote the contour and closure of the set A with 0A and K, respectively.

The following theorem will be used.

Theorem 1 (Dishlieva et. al. (2014)). Assume that the sets A, A,,..., A., B,, B,,...., B, < R" are bounded.

Then
Ph (A1UA2 U..A, B UB, U---Bk) Smax{pH (AuBl)pr (Azf Bz)v---va (AWBK)}'

We will define the concept of orbital gravitating SDE. Consider the initial value problem

dx
i f(tx), x(t)=X.

where: function f:RTxD — Rn; set D is a domain of R"; the point (to, XO) € R"x D. The solution of

this initial value problem will be denoted by X (t;to, XO) and the corresponding trajectory of the solution will be
T[ty,0), ke T[ty,0) ={X (t;t;, %)), t, <t<oof,

*

The solution and trajectory of the perturbed initial value problem % =f (t, x), x(tg) =X,

where the point (t; x;) € R"x D, we will be denoted by X~ (t 1, x;) and T~ [tg oo) , respectively.
We introduce the definitional equations for the Euclidean, Hausdorff and uniform distance, between the
trajectories of the above mentioned problems, respectively:

pE(r*[tg,oo),r[to,oo)):inf{inf{p(x*(t;tg,xg), X (tit5, %)), tgét*<oo}, t0£t<oo};
pu (I [t5.). T [ty,0)) :max{sup{inf{p(x*(t;tg,xg), X (4, %)), tggt*<oo}, t0£t<oo},
sup{inf{p(x*(t;tg,xg), X(t;to,xo)), t0£t<oo}, tggt*<oo}};

Pr (F*[to,oo),r[to,oo)) :sup{p(x*(t;to,xg), X (t;to,xo)), t, £t<oo}.
It is natural to assume that t, =t, for the uniform distance.

Definition 1. We will say that the system considered is orbital gravitating in the domain D with a constant x >1, if:
(Vt,t, € D)(¥X5, % € D) = py, ( T 15,%0), T [t5,0) )< ke ( T[ 15,0) T [1t5,0)
(:)max{sup{inf {pE(x*(t*;tg,xg),x(t;to,xo)),tZto}, t>t }
sup{inf{pE(x*(t*;tg,x;),x(t;to,xo)), t*zt;}, t>t, }}
<.inf {inf{pE (X (158555), X (55, %)) t Zto}, t Zt;}.
The main object of investigation is the following initial value problem

(10, (aux(0)2a ®

X(t+0) = x(t) + 1(x(1)), (a.x(t))=a;, i=12,..; @)
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X(t) =%, 3)

where: the dimensionality is ne N ; set D is a nonempty domain in R"; the functions f:R"xD—>R";
the vectors a =(a,a,...a)eR", [a]=1; the constants & €R; the functions I :®, —>R", where
@, ={xeD; (a,X)=a,}; the initial point (t,,X,) eR*xD.

The sets @, 1=12,..., are called switching sets. They are parts of the hyperplanes, situated in D. The
functions 1, 1=1,2,..., are named impulsive functions. Assume that (Id +1, ):(I)i — D is fulfilled, where Id is an

identity in R". The moments in which the trajectory of initial value problem above meets consistently the switching
sets @,,D,,... are denoted by t,t,,.... The inequalities t, <t <t, <... are fulfilled.

The solution x(t;to, XO) of the problem studied is a piecewise continuous function. We have:

1.1. For t, <t<t, the solution of problem (1), (2), (3) coincides with the solution of problem (without impulses)
(1), (3) for i =1. The next inequality is valid

<a1, X(t;t,, x0)> =

1.2. At the moment t;, the following equalities are fulfilled:

X(titg %) = X(t, =05ty X, ) =%, and (a, X(t;t,, %,)) =(a, %) = a;

1.3. At the moment t, +0, we have

X(t,+05ty, % ) =X (tity, % )+ 1 (X(titg X)) = (1d + 1) (x(t5t5,%,) ) = (1d + 1, ) (%) = %;

2.1. For t, <t<t,, the solution of problem (1), (2), (3) coincides with the solution of system (1) for i =2 with the
initial condition x('r1 + 0): X,". The next inequality is valid

<a2, X(t;t,, x0)> *ad,;

2.2. At the moment t, , the following equalities are satisfied:

X(tyity, %) = X(t, = 0ity, X, ) =X, and (8, X(t,ity, %)) =(8,, %, ) = ay;

2.3. Furthermore,

X(t, + 05t % ) =X (L5t X ) + 1, (X (thite, %)) = (1d + 1, ) (X(t,t5, %)) = (1d +1,) (x,) = X5 , etc.

Along the problem (1), (2), (3), we consider the corresponding perturbed problem (1), (2) with the initial
condition

X(ty) = %, (4)

where the initial point (tg,xg)e R*xD. The solution of perturbed problem (1), (2), (4) will be denoted by
X (t;tg,xg) and the moments at which the trajectory of this initial value problem meets the switching sets
®,,D,,... by t,t,... respectively. The inequalities t, <t, <t, <... are valid.

Also, we will use the following notations:
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X = X(t:t5, % ) =X (t =05y, %, ).
X, = x*(ti*;t;’,x;’): x*(t:—o;t;,x;),
X=X (4t %)+ I (X(tte. %)) = (1d + 1) (%) = X (t + 055, %, ).
X" :X*(ti*;t;,xg)+ Ii(x*(t:;tg,x;)) =(Id+ Ii)(xi*): x*(ti*+0;t;’,x;’), i=12,...
The trajectories of problems (1), (2), (3) and (1), (2), (4) are denoted respectively by:
7 [tgr00) ={X(t;ty, %), t, <t <oo} and y'[tg,0) ={x*(t;t;,x;), £ £t<oo}.
For each i =1,2,..., the solutions and trajectories of the problems without impulses (1), (3) and (1), (4) are denoted
respectively by X; (t;ty,%,), T [t;,0) and Xi*(t;t;,x;), F:[t;’,oo).
The notations for the parts of trajectories y [ty,0), 7~ [t;,oo), I [t ), T] [tg,oo), which are defined for
0<0'<t<O" are:
;/[0',0"], ;/*[0',6’"], I, [90] F:[H',Q"].
Definition 2. We will say that the solution of problem (1), (2), (3) is an orbital Hausdorff stable on the initial condition
(initial point) if:
(Ve >0) (V(to, X,) € R x D)(36:6(8,t0, %,)>0):
(Vtg eR", tg—t0‘<5)(VX; eD, HX;_XOH<5) = py (y*[t;,oo),y[to,oo))<g.

The main objective in the paper is to find the sufficient conditions for the Hausdorff orbital stability on the
initial condition of the solution of problem (1), (2), (3). We assume that the successive changes in the structure (right
hand side of the system); the impulsive functions and the switching sets are restricted to a finite number of options.

Consider that there are k eligible options. More precisely, we suppose that the following condition is valid:

HO. There exist: right hand sides of the system @J R*xD — R": the vectors Qj eR", HQJH =1; the constants @j e R the

switching sets @j ={XE D; <Q X>=@j} and the impulsive functions @] :@j —R", j=1,2,...,k, such that

(Vi=12..)(3j e{1.2,..k}):

fi(t,x):@ji(t,x), (t,x)eR*xD; a =4 ; a, =4, ; CDi=5ji; Ii(x):@ji(x), XEEji.

Ji ! i

Further, we assume that for each j =1,2,...,k, the following conditions are fulfilled:
H1. The functions @J eC[R+ xD, R”]and @J € LipX[R+ x D, R”].
H2. There exist positive constants C} such that

(v(tx)eR"xD) = [ (t.x)| <C}.
H3. For every point (to, xo) e R" x D, the initial value problem without impulses % = @J (t, x), x(to) = X, Possesses the

unique solutions which are defined for t >t .

H4. The switching sets @j are bonded and following inclusions are valid (@j )\@j cD\D.
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H5. There exist constants C, 0 < C? <1, and function ¢, @ € C [5, R], @(x)>0 for x e (@j ) , such that

(v(tx)eRx®,) = (&1 () =i (t.0)] =0 (x).

it
H6. There exist positive constants Cf such that the next inequalities are valid

pe (10 +1])(®,))=C], =12k,

H7. There exist positive constants C;‘ such that
(VX',X"G @)J—) = pE(x'+pj(x') ,x"+pj(x"))§C?.pE(x‘ X").

Remark 1. Using condition HO, we deduce that the conditions H1 - H7 are satisfied if we replace
@j, @j, Qj @J 1=12,...,k, respectively by f,,®,, a,l,, 1=12,...

In the next theorem, the sufficient conditions for the absence of condensation at the switching moments are
found, i.e. the conditions under which limt, = «.

Theorem 2. Assume that:

1. The conditions HO, H1, H2, H3 and H6 hold.

2. The trajectory of problem (1), (2), (3) meets infinitely many switching sets @, ®D,,... at the switching moments t,,t,,...,
respectively.

Then limt; = 0.

Proof. We evaluate below the difference (t2 —tl), i.e. the difference between the second and first switching
moment of basic problem (1), (2), (3). According to the conditions H6 and HO and since X, = x(tz;to, XO) ed, and
X e(1d+1,)(D,), we find that

Ci < Pe (@)J—Z,(IdJr@jl)(@)h)) = Pe ((Dz,(ld+ Il)(CDI))SpE (CDZ,)q)SpE(Xz,Xf)

[ =] = (bt )= x(t+ it 3 )| = [ 8 (x(ti )l = [, (x(eit o
<Cj (t,-t,).

(o . . o . . .
Therefore, t, —t, > /Cl . Similarly, using that the switching moments are innumerable, we obtain the estimates
i

3

tm—tizcii ct o i=12,...

Jia

From the above, it follows that

limt, =t +1im(t —t) =t +1m((t —t)+ (t, —t) ++ (4 ~t,))

(¢ c? c? min{C; j=12,.k}
toHlim| 2 2 >+ : lim(i-1)=oo.
e| C1 o C] C max{Cj; j=12,..,k} ™"

Ji Jia )2
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The Theorem is proved.

Using Theorem 2, we deduce that the solution of the problem (1), (2), (3) is continuable up to infinity
independently of the choice of initial point X, of the set D\ ®, .

Theorem 3. Assume that the conditions HO, H1, H2, H3 and H6 are satisfied.
Then for each point (to, xo) eR” ><(D \ (I)l) , the solution of problem (1), (2), (3) exists and is unique for t >t .

In particular, from the proposition above, we obtain that (v(to, XO) eR"x D): 7/[t0 : oo) eD.

The case when the trajectory of problem (1), (2), (3) does not intersect the first switching set is studied in the
next theorem. In this case, the basic system degenerates into a system with a fixed structure and without impulses.

Theorem 4. Assume that;
1. The conditions HO, H1, H3, H4 are fulfilled for j = J,.

2. The system 3—); =fi(tx) = 3—:: @h (t,x) is orbital gravitating in domain D with constant -, >1.
3. The trajectory y [t,,00) does not intersect the switching set @, = @ -

Then for every initial point (to, xo) e R"xD, x, ¢ ®,, the solution of problem (1), (2), (3) (in the case, the solution of
basic initial value problem coincides with the solution of problem (1), (3) for i =1) is an orbital Hausdorff stable on the initial condition.
Proof. Let ¢ be an arbitrary positive constant.

Since the trajectory y[t,,0) does not cross the switching set @, , then y[t,,00) =T [t,, ). Assume that

Pe (;/ [to, oo),i)zo . According to condition H4 we have that the set 51 is compact. As y [to,oo) is a closed set,

we conclude that ¥ [t,,c0) N®, =&, whence we find that ¥ [t),c0) N "D, \d, =& . Taking into account the

inclusion 51\(13l — D\D, we deduce that y[to,oo)m ND\D #@. In other words, the trajectory of problem

(1), (3) meets the contour of domain D, i.e. the solution of problem without impulses is not continuable after a
certain moment. Therefore, the condition H3 is not satisfied. Thus, we derive the validity of inequality

Pe (y[to,oo),gl)> 0. Suppose that
PE(?/[to’OO)’(Dl):r’ ©®)

where I is a positive constant. Let o :—mln(g, r). Given that system (1) is orbital gravitating for 1=1 in

Kj

domain D with the coefficient K >1, we conclude that for any initial point xg e D, for which ng - XOH <0,itis
fulfilled

P (FI [tg, OO)’ I [to 1 OO)) SKj-Pe (FI [t;’ Oo)’ I [to,oo)) (6)
<K -Pe (XS XO) = Kil'HX; - XOH <K,.6=min(s, r).
Taking into consideration equality (5) and evaluation (6), we find

Y (r;‘[tg,oo),cpl)z-pH (r[ta.0). Fl[to,oo))+pH (Ty [ty ), ®,) >-r+r=0.
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Therefore, the trajectory FI [tg , oo) of perturbed problem without impulses (1), (4) (for i =1) does not meet

switching set @, , which means that [t; ,oo) =T, [t; ,oo). In other words, the perturbed solution is not subjected

to the impulsive effects (as, incidentally, the solution of basic problem). Using this conclusion and evaluation (6), we
obtain that

(VX; €D, pe HXS _XOH < 5) = Pu (7* [tg,oo),y[to,oo)) = Pu (Ff[tg,oo),rl [to,oo))<g,
i.e. the solution of problem (1), (2), (3) is an orbital Hausdorff stable on the initial point.
The Theorem is proved.
3.Basic Result

Theorem 5. Assume that;
1. The conditions HO - H7 are satisfied.

2. The systems % — g (t, x) are orbital gravitating in domain D with the constants k. >1, j=1,2,...,k , respectively.
dt ] ]

3. The trajectory y [t,,00) intersects the switching set @, = @ -

2
i

m, J 21,2,...,k.

4. The following inequalities are valid C;‘ <
J

Then for every initial point (to, xo) eR"xD, x, ¢ ®,, the solution of basic problem (1), (2), (3) is orbital Hausdorff
stable on the initial value condition.

Proof. Using Theorem 4, we assume that the trajectory y[to,oo) intersects consecutively (repeatedly,
including infinitely many times) the switching sets @, @,, ...

The proof of this theorem is separated into several parts:

Part 1. We will show that if the difference ‘tg —to‘ between the initial moments t, and t, on the one hand
and the Euclidean distance p (x; : XO) :ng —XOH between the initial points X, and X, on the other hand are
“sufficiently small", then the trajectory 7~ [t; ,oo) of perturbed problem (1), (2), (4) also intersects the switching set
@, =@>jl . According to condition H3, the solutions X, (t;t),%,) and Xl*(t;to,x;) of the problems without

impulses (1), (3) and (1), (4) (for i =1) are defined for every t >t, and t > t; , respectively. These solutions are not
subjected to the impulsive effects (regardless of the presence or absence of the meetings with the switching set @, ).

By condition H5, it follows that for each point (t,x)eR" ><@Jjl , the scalar product <Q £ (t, X)> has a

h' ' h

permanent sign. Further, we suppose that <Q £ (t, X)> >0, (t,x)eR"x @)h :

h' ' h

There are similar considerations in the other case. Using condition H5 and the additional clarification made
above, we obtain that

(@, f.(tx) =(a,. %, (£))=CF [F, (tx)| 2Clo(x)>0, (tx)eR x@, .
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Assume that w, 0 < u <1, is an arbitrary constant which value will be specified further. From the inequality above,
we deduce that

(8., (L) -C |f, (L)) = @-w)C} [, (%) 2(21-p)Cle(x) >0, (tx)eR <D, .
Using again condition H5, we derive that

(ECJ.SI :const>0): (VXECDjl) = ¢(x)>Cj].

Then

(8.1, (tx))-C;

Since:
- left hand side of the latter inequality is continuous function;

£, (t.x)| > (1-#)CIC} >0, (tx)eR x®, .

- this function is greater than a positive constant over the switching set @ W

- switching set @ i 1s bounded, it follows that there exists a positive constant A :A( u) such that for every
constant d, 0<d <A, the following relations are satisfied:

- the initial point X, ¢ B(®,,d)={xeD, o, —d <(a,x)<a, +d};

- the next inequalities are valid

(a, f,(t,x)) > uC2 | f, ()] and | f,(t,x)|>C], (tx)eR" xB(®,,d), (7

where Cf is a sufficiently small positive constant. Set B(CI)l,d) consists of all the points belonging to

phase space D, which are situated between the hyperplanes:
®,, ={xeR"(a,X)=c,—d} and @, ,={xeR"(a,x)=c,+d}.

Let t, >0 be the moment of the first meeting between the trajectory }/[to,oo) and switching set @, .
Consider a function A(t)= <a1, X, (T, % )>—al, t>t,. Itis fulfilled

A(t) =(a, X, (Lt %)) — e =(a, X (Lt %, )~y =(a, %)~ =0.  (8)

This means that point X, (t;;t,, %, )€ ®, € B(®,,d). On the other hand, since the point
X =X, (ty;ty, % ) B(®@,,d), it follows that there exists a point t,, t,<t,<t, such that
X, (t gty %) €@y ND.

Using first estimate of (7), we obtain that for every point t >t , with property —d < A(t) <d, i.e. for which
X, (t;ty, %) € B(®,,d), the next inequality takes place
d

aA(t):%((ai,Xl(t;to,xo)>—ozl) )

:<a1, fl(Xl(t;to,xo))>2uCiH fl(Xl(t;to,xo))H > uC:C° =const > 0.

From (8) and (9), it follows that there exists a point t,, >t,, such that A(t,q)=d,ie. X;(t,qity,%,) €@, g ND
(fig. 1).
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Fig. 1

The following notations are used in the figure:
Xy (t—d ): Xy (t—d e Xo)’ Xy (t+d ) = Xl(t+d o, Xo)’

X (€0 )= X5 (E016.6). %] (s ) =X (£4:6).
We conclude that:
(Yu, 0< p<1)(3A=A(u)>0):(vd, 0<d <A)(Vx, e D\B(®,,d))
=Tty tgeR, O<t <t <ty): X (tyity,X)ed, 4 and
Xl(tm;tho)eq)nd-
Since [[a,||=1, then it is fulfilled d = p (®,,D, 4) = pe (@,, D) > 0. According to condition 2 of this

theorem, system (1) (for i=1) is an orbital gravitating in domain D with the coefficient K >1. Let

d <min(e,r) and 5:%_. Using the inequality HX;—XOH=p(X;,XO)<%hand that point

h
X, (tgity, %) € @y, it follows that

pe (T1[6,0), @y ) < pe (5[ 15,50), Xy (Laiter % ) (10)
ssup{pE(r’;[tg,oo),xl(t;to,xo)), tzo} :sup{inf{pE(xl*(t*;t;‘,x;),xl(t;to,xo)), t*zo}, tzo}
< (T3] 65,0).Tu[to,0)) <5, pe (T3 [ 15,0), T [t 0) | SKjlpE(X;,XO)SKjl.:—jZd.

similarly, it is obtained

Pe (FI [tg,oo),(l)hd)ﬁ d. (11)

From the inequalities (10) and (L1), it follows that there exist the points t", and t,, t; <t’, <t such that the
next estimates are valid:
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pe (X: (U55.%5), <d andpe (X (6:6,%), @py)<d. (12

Consider a function A" (t):<a1 X, (t t, X0)>—a1, t>0. Assume that X', and X, are orthogonal projections
or X

of the points X ( Tt ) and X (+d t X ) respectively on the hyperplane @, . By (12), it follows that:

(de —~ Xf(tfd i, XS)) and (X (t+d t; xo) X*d) are one-way vectors. Consider the case when vector a, has

the same direction. The other case is considered similarly. Moreover, under the assumptions made at the beginning of
Part 1 of this proof, i.e. if the inequality below is valid

<Qh’ @il (t X)> >0, (t,x)eR” ><@)jl 2= <a1, f,(t, x)> >0, (t,x)eR"x®,,
it can be shown that the vectors:

*

a, (de—Xl*(tfd;t;,xg)), (X*(tmt xo) X:d) have one and the same direction. Then the next

inequalities are valid:

A (€)= (2 X (Fait5, ) = )+ (2, X (i)~ X g ) —en
:—<a1,X7 ~X; (Cit; x0)> ‘x ~ X, ( .t xo) 0;
A () = (X (L6t ) e = (2, X )+ (0 XS (Eaitoxg) = X ) -t

4> 0.

:<a1,xl(t+d;t;x3)—x+d>= I(Ld,toXo)—

From the continuity of function A" and both inequalities above, it follows that there exists a point
t;, O<t’, <t <t ,,suchthat

A(t)=0< <81 Xf(tf;tg,xg»—al:o e X, (4% ) e @y,
i.e. trajectory T} [tg ,oo) (respectively trajectory 7~ [t; ,oo) of perturbed problem (1),
(2), (4)) crosses the switching set @, .

Part 2. We will evaluate the Euclidean distance between the trajectory T} [tg ,oo) and the point X, . For this
purpose, we introduce new function T*:[to,oo)—>[t;’,oo), defined in such way: For any te[ty, ), the

corresponding function value T =T (t) satisfies the restrictions:

pE(X;(T*;t;’XS)’Xl(t;tO’XO)):pE (FI[tS,OO), Xl(t;to’xo))

Pe (T3 [6,T7), Xu (tite, %)) < e (T2 6,50), X4 (85, %))
<:>pE(Xl*(T*;t;,xg),Xl(t;to,xo))<pE(Xf(t*;tg,xg), Xl(t;to,xo)), 0<t <T =T (t).

In other words, for every point t >t,, its corresponding moment T ztg is the first in which the distance

and

between both points X, (T*;tg X ) and X, (t;t;,%,) is equal to the Euclidean distance between the trajectory
I;[t5,00) and the point X, (t;t,%,) (fig. 2)
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Fig. 2
As the system (1) (for i =1) is gravitating, then for any t > t,, we have

pe (xl*(T*(t);t;‘x;‘), Xl(t;to,xo)) = pe (r;‘[tg,oo), Xl(t;to,xo))

—inf {pE(xl*(t*;t;,x;),xl(t;to,xo)), 0<t’ <oo}

SSup{inf{pE(xf(t*;t;‘,x;‘),xl(t;to,xo)), OSt*<oo}, O£t<oo}£pH (F;‘[t;‘,oo),rl[t oo))

01
<K, Pe (FI [t;,oo),l“l [to,oo)) <K; -Pe (X; XO) = kh.HXS - XOH <k, 0=0d<e¢.
From the last inequality, we find that

pe (T [ta.0). %) = pe (X1 (T7 ()55 %5) %) :Hx;(T*(tl);tg,x;)_xlu<d.
Part 3. We will find the estimate above of the distance

pE(Xfixl):pE(X*(t;;tgiXg)ix(tl;tmxo))-

Let point X be an orthogonal projection of point X (T*(tl);tg , XO) on the switching hyperplane @, (fig. 3).

Fig. 3

The following notations are used in the figure:
X, (8) =X, (Lt %), Xo (6)= X7 (6585, % ), X7 (T7) =X, (T7(t,)itg, % ). Itis fulfilled

G =3 (T ()st6)] < o= (T ()it )] = e (X3 (T (0)56.6). % ) <
We have

<
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[5 (X (rit.%))dr.a,

()

jjﬁ(ﬁ) (X (rits ) de
I (R (6 a)dd |15, s (X (m6%)

= 2>

[5 (X (e.))de [5 (X (i) )de
T'(t) T ()
from where we find

(6 =% (T (1)) &) )
X =X (T (1)t % |

dr

2

= uCi,

I - X; (7 (1)t %) Suéz (6 =X X, =X (T (1)1, a,)
iy
:uéi (06 =5 @)+ =X (T"(4):6.%6). &) =%CEHXE—XI(T*(Q);tS,XS)H < u-ilﬁ .
By the last inequality, we conclude
[ =X < =% (T (1)t )| < u-iﬁ .
Then
pe (%) =X =< =X |+ x5 -] 1)
SHXI_X;HJF Xf(T*(tl);tg,x;)—xluSul(i:j21 +d :d{l+ #éi]

Part 4. We will find the estimate above of the distance between the points x,* and X . The operator

(Id + Il) :(Id + @h) is a shrinking (see condition H7). Using condition H7 and inequality (13) we obtain the
estimate

pe (4 6) =2 (X (656.06)+ 1 (X (£:6.%)) X(bit)+ (X)) @4)

SCi.pE (x*(tl*;t;, X;)’X(tl;tO’ Xo)) =C?l.p(xf,x1)£ d'Ci'{h— /,1.](-32 ]

i
By condition 4 of Theorem 5, the inequalities
x,C;
< <1
Ci (1_K11Cil)
are valid. As u is an arbitrary constant satisfying the inequality 0 < u <1, without loss of generality we assume

K; C? . 4 ‘quz
ﬁ < u <1, from where we find that le < —12
Ci (1_"11le) Ky (1+“Ch)

the estimate o, (Xf+ Xf) < % :
h

. From (14), using the last inequality, we find
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Part 5. Since d is an arbitrary constant satisfying the inequalities0<d < min{g,r,A}, we assume in

additional that d < Ci. Then by condition H6, it follows that for point x;", it is valid
Pe ((Dl’ X1+) = Pe ((Dl’ X+ |1(X1)) Z Pe ((D17( d + |1)(CD1))

=pE(@)J—l,(|d +@h)(@)h)) >C? >d.

The last inequality means that the point

X ¢B(®,d)={xeD, a,-d<(a,X)<a,+d}.

Part 6. Let t_, be a moment at which the following equalities are valid:
[t 0) Dy =X, (tyite, %) and Tty t )nd, =D,

(see Part 1). Clear that 0 <t , <t,. From Part 2, it follows that for every t > t,, it is fulfilled
pE(X;(T*(t);tg,XS), Xl(t;to,xo))<d .

Since the inequality p (X1 (t Lo, XO) \ CI)l) >d isvalid for t; <t <t ,, then we deduce that

pE(Xf(T*(t);tg,x;),d)l) Z—pE(XI(T*(t);t;,XS),Xl(t;to,xo))+pE(Xl(t;to,xo),d)l) >—d+d=0

eI |tho)nd =0 T (1)<t t,<t<t,.
Part 7. Using the results obtained in Part 6, we derive
sup{inf{pE(x*(t*;tg,x;‘),x(t;to,xo)), tgét*ST*(tfd)}, toétﬁtd}

:sup{inf {pE(xj(t*;tg,x;‘), X, (Gt,%)), & <t ST*(tfd)}, t, <t Std}
=sup{pE (5[t T (L)) X (it %)) Stétfd}

=sup{pE (15 [t o0). Xa (tit, %)) 4 Stétfd} < py (T3 [t5.). Tt t )

*

< pu (T3 [t0,0), T [t 0) ) <1, e (T [ta,00) T [t 0) ) < ¢, 15 = < 6 = d <&

Part 8. Here, we will evaluate above the difference t, —t ;. Let point X be orthogonal projection of

X, (tfd 1o, XO) on the switching hyperplane @, . It is satisfied

HX —Xl(tfd;to,XO)H:d :

p

We have

‘<X1_X1(t—d;to’xo)aa1>‘ :K.[:ld fl(Xl(T;to’Xo))dT’a1>‘
L I [FETCAE
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[ A

Lt: fl(X1 (7315, XO))dT

2

=H !

J’: < fl(Xl(T;to’Xo))’a>dT >
J.tt,ld fl(xl (T;tO’ Xo))d’[ -

From where, we find

Hxl—xl(td;to,xo)Héu%<xl—Xp X, = Xy (it %), 8y )

h

! (<><1—Xp,a1>+<xp —Xl(tfd;to,xo),a1>)

= 2
‘Ll.le

1
/,t.Cjzl

d
X, = X (gt % )£ .
RS
Function f, does not change its sign under (t,x) e R" x B((I)l,d) according to the second estimate of (7), we
obtain

1

fl(xl(T;to,Xo))HdT :C_i

J‘: fl(xl(T;to,Xo))dT

t -t :j: de sci?j::
i

:Cieuxl ('[1;'[0, Xo)_ X, (tfd o, X )H :Cieuxl - X (t—d 1, X )H <

N N

qulejel '
Part 9. Using the inequality from the previous part, we will evaluate the Euclidean distance
PE (Fl [t—d ’tl]’ Xl* (T*(t—d);t;’ X:;))
:inf{pE(Xl(t;to,XO),X;(T*(tfd);t;,xg)), tfdététl}\
. t - . s
= inf pE(Xl(td;to,Xo)+Ld (X, (zity, %))z, X, (T (td);to,xo)), t, stsg}

Xl(tfd;to,xo)jtf (X, (23t %) )z = X, (T7 (L )ite. %6 )|

Xl(td;to,xo)—Xl*(T*(td);t;,XS)Han{“: £(X, (73, %) e, tdstsg}
Lt f, (X, (7315, %) )z,

=inf

t, ststl}

<

< P (X, (it ) X (T (1):855 ) inf |
Cid _uCic; +C;
/,thle?l uC?C?®

h )

tdstsg}

<d+

Part 10. We have
sup{inf{pE(xf(t*;tgx;‘),xl(t;to,xo)), t;‘sf‘sq}, togtgg} (15)
Ssup{inf{pE(Xf(t*;tgxg),Xl(t;to,xo)), £t T }
Smax{sup{inf{pE(Xl*(t*;t;,xg),Xl(t;to,xo)),t1 <t*£T*(td)},t0£t£td},

sup{inf{pE(xl*(t*;t;,x;),xl(t;to,xo) ,
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Smax{d , sup{pE(XI(T*(tfd);tS,x;),Xl(t;to,xo)), t, <t£t1}}
ucict +Cl

‘uCth
Analogously to the proof above, we conclude that
1CCE +C
sup! inf (58,5 ), X, (5t %)), <t < } <~ 22, 16
plinf{ e (X (€36, X, (t85)), L <t <t <t <t o (16)

Finally, from (15) and (16), it follows that

PH {f[t;’tl*} [t01t1]} { [tmt ]Fl[tmt]}
:max{sup{inf{pE( L(E3.6) X, (Gt %)), 6 <t*£tf},t0£t£t1},

Sup{lnf{pE( S(E56.6), X, (Bt %), togtgtl},tggt*gtf}}
e
- uc:ce

w7y
Part 11. From the previous parts of the proof, we derive the conclusion

4

(Ve =const >0) | Vu=const AT <1; j=12,...k
&= = vy o . N = ’ =4 4.,
8 Cjz(l_"ic?) g

(3A=A(u)>0):

| uC’Cle .
vd =const, 0<d <min<——"——=,A(u),C; j=12,..k
uCxCe+C!

(VS const0<6<y i=12,. kj(Vt;eR*, ‘t;—t0‘<5)(VXSED,HXS—XOH<5):>

111 pe (%7, %) / (Part 4)

112. X ¢ B(a,d) (Part 5);
11.3. limt, = oo (Theorem 2);

14, py (7' [6.8 ] 7[toot]) <& (Part10)

Part 12. Options are as follows:

12.1. The solution of the studied problem is subjected to a change of its structure and (of course) an
impulsive effect taking place at the moment t; of the meeting between trajectory y[to,oo) and switching set @, .
From 11.1 and 11.2, analogously to Theorem 4, it follows that
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o (;/*(t;,oo),y(tl,oo)): o (7/*['[;+0,oo),7/[t1+0,oo)) = py (FZ [t:+0,oo),r2 [t1+0,00))<8.
In this case, the proof follows from the last inequality and 11.4. Using Theorem 1, we obtain

P (77[6:%) 7 [t0,0)) = pu (7 [0, JU7 (8,0, 7[to, ] W7 (1,0))

<max{py (¥ [ 6.6 ] 7 [tot]) s o (7 (80).7 (t0))f <.

12.2. The solution of the considered problem is subjected to the finite number (e.g. - p ) impulsive effects,
accompanied by a change of the right hand side of the system. These changes take place at the switching moments

tl,tz,...,tp , iIn which trajectory y[to,oo) meets the switching sets @, D,,..., CDp, respectively. Similarly to 11.1, 11.2

and 11.4, we find:

pE(X:+inJr)<%j_ ;% 2 B(®,,d);

pu (77 (608 ]y (tut]) <& =12, p. (17)
Analogously to case 12.1 and using Theorem 4, we receive the inequality

pu (7't ). 7 [to)) <.

In this case, the proof follows by (17), last inequality and Theorem 1.

12.3. Trajectory }/[to,oo) meets infinitely many times the switching sets @,,®,,.... Using induction, we
obtain the following estimates:

Pu (y*(til,t:]y(tifl,ti])<8, 1=12,...

Further, using Theorem 1, we find
(Vp =1, 2) = Py (;/*[t;,t;]y[to,tp}) < max{pH (;/*(t:ﬁl,t:]y(tifl,ti]); i=12,.., p} <g.

Taking into account the fact that lim t, =oo (see Theorem 2), we deduce that

p—x

Pu (y*[ti*,oo),;/[ti,oo))= lim p, (y*[t;,t;]y[to,tp})ég.

p—x

The Theorem is proved.
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