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Abstract 
 
 

The concept of orbital gravitation for the systems of differential equations (SDE) with fixed structure and 
without impulses is introduced. The problems for non-autonomous nonlinear SDE with variable structure 
and impulses are the main object of investigation. Sufficient conditions for Hausdorff orbital stability of the 
solutions of such systems are found. The main requirement is any component of the systems to be orbital 
gravitating. 
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1. Introduction 
 

There are many continuous dynamic processes which are subjected to the "short-term" discrete external 
influences. As a result of these effects, they have a "break character" of development. Their dynamics are described 
(modeled) by the piecewise continuous functions. In general, these modeling functions are the solutions of impulsive 
differential equations (with fixed or variable impulsive moments). The approximation of such solutions by means of 
the smooth functions (such as algebraic polynomials, trigonometrical polynomials, etc.) on the uniform distance is not 
effective. The "significant differences" between discontinuous solutions and the smooth functions from the 
approximating class (in the terms of uniform distance) are the reason for this conclusion. These differences are 
"irreparably large" in sufficiently small surroundings of the breakpoints. In such cases it might use a considerably 
“weaker” metrics, such as the metrics based on a different integrated distances.  

 

In some cases, taking into account the research objectives, the integral metrics is not adequate and therefore 
useless. On the other hand, the approximation of piecewise continuous solutions of the impulsive SDE using some 
classes of approximating piecewise smooth functions again in the terms of uniform distance is satisfactory only when 
the moments of impulses (breakpoints of the solutions) are fixed in advance. If we remove some "parts" of the 
solutions, we can approximate uniformly the solutions of impulsive equations with variable moments of impulsive 
effects. Usually, these parts are defined in the symmetrical surroundings of the impulsive moments. It is clear that 
such approximations are also not meaningful. Abovementioned problems could be overcome by using the Hausdorff 
distance between the trajectories of the studied solutions and the approximating functions. Research in this work are 
motivated by the notes made above. During the last years, a number of scientific papers are devoted to the qualitative 
theory of differential equations without impulses which use the Hausdorff metric see Ahmad and Sivasundaram 
(2006, 2008), Dishliev et al. (2011), Dishliev and Dishlieva (2011) and Dishlieva et al. (2014). Here, this metric is 
fundamental in the study of the solutions properties of non-autonomous systems of differential equations with 
variable structure and impulses. The qualitative research of SDE with variable impulsive effects is basic subject in a 
number of publications, we will mention: Akhmet (2005), Bainov and Dishliev (1989, 1997), Benchohra and Ouahab 
(2003) and Benchohra et al. (2004, 2005).  
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The interest towards these equations is determined by their many applications see Akhmet et al. (2006), 
Dishliev et al. (2011), Bainov et al. (1989, 1997), Gao et al. (2006, 2007), Nenov (1999), Nie and Peng et al. (2009) and 
Nie and Teng et al. (2009). In this paper, we study one specific class of non-linear non-autonomous SDE with 
variable structure and impulses. The change of the right hand sides of system and the impulsive effects are realized 
simultaneously at the moments in which the trajectory of corresponding initial value problem meets the consecutive 
"switching” set.  
 

These sets are situated in the phase space of SDE. Our investigations are performed in the particular case for which 
the following assumptions are valid: 

 

- the sets:  ; 1, 2,...if i   of the right hand sides of SDE,  ; 1,2,...i i   of the switching sets and 

 ; 1, 2,...iI i   of the impulsive functions consisting of a finite number of different elements: 
 

   �   , ; 1,2,... , ; 1, 2,...,i jf t x i f t x j k   , 

  � ; 1, 2,... ; 1, 2,...,i ji j k     , 

   �   ; 1,2,... ; 1,2,...,i jI x i I x j k   ; 
 

- the switching sets coincide with the parts of predefined hyperplanes. 
 

For the problem described above, the following terms are introduced: 
 

- orbital gravitation; 
- orbital Hausdorff stability on the initial condition. 
 

These terms could be related for SDE without impulses and with a fixed structure. For instance, we will say 
that such a system is orbital gravitating with constant   if the Hausdorff distance between its two arbitrary 
trajectories is   times less than the Euclidean distance between them.m Let the right hand side of the system with 
variable structure and impulses consistently coincides with the functions 1 2, ,...f f . Assume that the solutions of each 

of the corresponding system without impulses  , , 1, 2,...i
dx f t x i
dt

  , are orbital gravitating. Under this basic 

assumption, the sufficient conditions are found under which the solutions of the basic (studied) system with variable 
structure and impulses are orbital Hausdorff stable on the initial condition. 
 

2. Preliminary Remarks 
 

Further, we will use the following notations. Let the points  1 2, ,..., na a a a ,  1 2, ,..., n nb b b b R . Their 

scalar product is 1 1 2 2, ... n na b a b a b a b    . The Euclidean distance between these points is denoted by 
 

       2 2 21 1 2 2, ... n na b a b a b a b a b          . 
 

Let the nonempty sets , nA B R . Then the Euclidean and Hausdorff distance between them is denoted by 
 

     , inf inf , , ,E A B a b a A b B     

and 

     , max sup inf , , ,H A B a b a A b B    ,    sup inf , , ,a b b B a A   . 
 

If at least one of the sets A  or B  is empty, then for convenience we shall assume that 
 

 , 0E A B    and   , 0H A B  . 
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We will denote the contour and closure of the set A  with A  and A , respectively. 
 
The following theorem will be used. 
 

Theorem 1 (Dishlieva et. al. (2014)). Assume that the sets 1 2 1 2, ,..., , , ,....,k kA A A B B B nR  are bounded.  
 

Then 
 

 1 2 1 2... , ...H k kA A A B B B           1 1 2 2max , , , ,..., ,H H H k kA B A B A B   . 
 

We will define the concept of orbital gravitating SDE. Consider the initial value problem 
 

   0 0, ,dx f t x x t x
dt

  , 
 

where: function : nf R D R   ; set D  is a domain of nR ; the point  0 0, nt x R D  . The solution of 

this initial value problem will be denoted by  0 0; ,X t t x  and the corresponding trajectory of the solution will be 

 0 ,t  , i.e.     0 0 0 0, ; , ,t X t t x t t      . 
 

The solution and trajectory of the perturbed initial value problem    * *
0 0, ,dx f t x x t x

dt
  , 

 

where the point  * *
0 0, nt x R D  , we will be denoted by  * * *

0 0; ,X t t x  and * *
0 ,t  , respectively. 

  

We introduce the definitional equations for the Euclidean, Hausdorff and uniform distance, between the 
trajectories of the above mentioned problems, respectively: 

 

       * *
0 0, , ,E t t           * * * * *

0 0 0 0 0 0inf inf ; , , ; , , , ;X t t x X t t x t t t t        

   * *
0 0, , ,H t t            * * * * *

0 0 0 0 0 0max sup inf ; , , ; , , , ,X t t x X t t x t t t t        

             * * * * *
0 0 0 0 0 0sup inf ; , , ; , , ,X t t x X t t x t t t t       ; 

        *
0 0, , ,R t t          * *

0 0 0 0 0sup ; , , ; , ,X t t x X t t x t t    . 

It is natural to assume that *
0 0t t  for the uniform distance. 

 

Definition 1. We will say that the system considered is orbital gravitating in the domain D  with a constant 1  , if: 
 

  * *
0 0 0 0, ,t t D x x D           * * * *

0 0 0 0, , , . , , ,H Et t t t               

       * * * * * *
0 0 0 0 0 0max sup inf ; , , ; , , , ,E X t t x X t t x t t t t    

         * * * * * *
0 0 0 0 0 0sup inf ; , , ; , , ,E X t t x X t t x t t t t    

      * * * * * *
0 0 0 0 0 0.inf inf ; , ; , , , .E X t t x X t t x t t t t     

 

The main object of investigation is the following initial value problem 
 

   , , ,i i i
dx f t x a x t
dt

  ;      (1) 

        0 , , , 1, 2,...;i i ix t x t I x t a x t i        (2) 
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 0 0 ,x t x          (3) 
 

where: the dimensionality is n N ; set D  is a nonempty domain in nR ; the functions : n
if R D R   ; 

the vectors  1 2, ,..., , 1n n
i i i i ia a a a R a   ; the constants i R  ; the functions : n

i iI R  , where 

 ; ,i i ix D a x     ; the initial point  0 0,t x R D  . 
 

The sets , 1, 2,...i i  , are called switching sets. They are parts of the hyperplanes, situated in D . The 

functions , 1, 2,...iI i  , are named impulsive functions. Assume that  :i iId I D    is fulfilled, where Id  is an 

identity in nR . The moments in which the trajectory of initial value problem above meets consistently the switching 
sets 1 2, ,...   are denoted by 1 2, ,...t t . The inequalities 0 1 2 ...t t t    are fulfilled. 

 

The solution  0 0; ,x t t x  of the problem studied is a piecewise continuous function. We have: 
 

1.1. For 0 1t t t  , the solution of problem (1), (2), (3) coincides with the solution of problem (without impulses) 
(1), (3) for 1i  . The next inequality is valid 

 1 0 0 1, ; ,a x t t x  ; 
 

1.2. At the moment 1t , the following equalities are fulfilled: 

   1 0 0 1 0 0 1; , 0; ,x t t x x t t x x     and  1 1 0 0 1 1 1, ; , ,a x t t x a x   ; 
 

1.3. At the moment 1 0t  , we have 

      1 0 0 1 0 0 1 1 0 00; , ; , ; ,x t t x x t t x I x t t x       1 1 0 0; ,Id I x t t x    1 1 1Id I x x   ; 
 

2.1. For 1 2t t t  , the solution of problem (1), (2), (3) coincides with the solution of system (1) for 2i   with the 

initial condition  1 10x t x  . The next inequality is valid 

 2 0 0 2, ; ,a x t t x  ; 
 

2.2. At the moment 2t , the following equalities are satisfied: 

   2 0 0 2 0 0 2; , 0; ,x t t x x t t x x     and  2 2 0 0 2 2 2, ; , ,a x t t x a x   ; 
 

2.3. Furthermore, 
      2 0 0 2 0 0 2 2 0 00; , ; , ; ,x t t x x t t x I x t t x       2 2 0 0; ,Id I x t t x     2 2 2Id I x x   , etc. 

 

Along the problem (1), (2), (3), we consider the corresponding perturbed problem (1), (2) with the initial 
condition 

 * *
0 0x t x ,   (4) 

where the initial point  * *
0 0,t x R D  . The solution of perturbed problem (1), (2), (4) will be denoted by 

 * * *
0 0; ,x t t x  and the moments at which the trajectory of this initial value problem meets the switching sets 

1 2, ,...   by * *
1 2, ,...t t  respectively. The inequalities * * *

0 1 2 ...t t t    are valid.  
 

Also, we will use the following notations: 
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   0 0 0 0; , 0; ,i i ix x t t x x t t x   , 

   * * * * * * * * *
0 0 0 0; , 0; ,i i ix x t t x x t t x   , 

    0 0 0 0; , ; ,i i i ix x t t x I x t t x       0 00; ,i i iId I x x t t x    , 

    * * * * * * * * *
0 0 0 0; , ; ,i i i ix x t t x I x t t x        * * * * *

0 00; ,i i iId I x x t t x    , 1, 2,...i  . 
 

The trajectories of problems (1), (2), (3) and (1), (2), (4) are denoted respectively by: 

    0 0 0 0, ; , ,t x t t x t t        and     * * * * * *
0 0 0 0, ; , ,t x t t x t t       . 

 

For each 1, 2,...i  , the solutions and trajectories of the problems without impulses (1), (3) and (1), (4) are denoted 

respectively by    0 0 0; , , ,i iX t t x t   and   * * * * *
0 0 0; , , ,i iX t t x t  . 

 

The notations for the parts of trajectories      * * * *
0 0 0 0, , , , , , ,i it t t t          , which are defined for 

0 ' ''t     are: 
 

       * *', '' , ', '' , ', '' , ', ''i i           . 
 

Definition 2. We will say that the solution of problem (1), (2), (3) is an orbital Hausdorff stable on the initial condition 
(initial point) if: 

 

       0 0 0 00 , , , 0 :t x R D t x            

  * * * *
0 0 0 0 0 0, ,t R t t x D x x            * *

0 0, , ,H t t       . 
 

The main objective in the paper is to find the sufficient conditions for the Hausdorff orbital stability on the 
initial condition of the solution of problem (1), (2), (3). We assume that the successive changes in the structure (right 
hand side of the system); the impulsive functions and the switching sets are restricted to a finite number of options. 
Consider that there are k  eligible options. More precisely, we suppose that the following condition is valid: 

 

H0. There exist: right hand sides of the system � : n
jf R D R   ; the vectors � �, 1n

j ja R a  ; the constants � j R  ; the 

switching sets � � � ; ,j j jx D a x      and the impulsive functions � �: n
j jI R  , 1, 2,...,j k , such that 

 

    1,2,... 1,2,..., :ii j k     

  �    , , , ,
ii jf t x f t x t x R D   ;  �

ii ja a ;  �
ii j  ;  �

ii j  ;    �   �,
i ii j jI x I x x  . 

 

Further, we assume that for each 1, 2,...,j k , the following conditions are fulfilled: 
 

H1. The functions � , n
jf C R D R    and � , n

j xf Lip R D R    . 

H2. There exist positive constants 1
jC  such that  

   �   1, ,j jt x R D f t x C     . 

H3. For every point  0 0,t x R D  , the initial value problem without impulses �  , ,j
dx f t x
dt

   0 0x t x  possesses the 

unique solutions which are defined for 0t t . 
 

H4. The switching sets � j  are bonded and following inclusions are valid �  �\ \j j D D   . 
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H5. There exist constants 2 2, 0 1j jC C  , and function , , ,C D R         0x   for � jx  , such that  

  �  � �   �    2, , , ,j j j j jt x R a f t x C f t x x      . 
 

H6. There exist positive constants 3
jC  such that the next inequalities are valid 

� �  �   3, , 1, 2,...,E i j j jId I C i k      . 
 

H7. There exist positive constants 4
jC  such that 

�  �   �     4', " ' ' , '' '' . ' , ''j E j j j Ex x x I x x I x C x x       . 
 

Remark 1. Using condition H0, we deduce that the conditions H1 - H7 are satisfied if we replace 
� � � �, , , , 1, 2,...,j j j jf a I j k  , respectively by , , , , 1, 2,...i i i if a I i  . 

 

In the next theorem, the sufficient conditions for the absence of condensation at the switching moments are 
found, i.e. the conditions under which lim ii

t


  . 
 

Theorem 2. Assume that: 
 

1. The conditions H0, H1, H2, H3 and H6 hold. 
2. The trajectory of problem (1), (2), (3) meets infinitely many switching sets 1 2, ,...   at the switching moments 1 2, ,...t t , 

respectively. 
 

Then lim ii
t


  . 

 

Proof. We evaluate below the difference  2 1t t , i.e. the difference between the second and first switching 

moment of basic problem (1), (2), (3). According to the conditions H6 and H0 and since  2 2 0 0 2; ,x x t t x   and 

   1 1 1x Id I    , we find that 
 

      � �  �  1 2 1 1

3 ,j E j j jC Id I            2 1 1 2 1 2 1, , ,E E EId I x x x           

2 1x x        2

1
2 0 0 1 0 0 2 1 1; , 0; , ; ,

t

t
x t t x x t t x f x t x d      �   2

2
1

1 1; ,
t

jt
f x t x d    

 
2

1
2 1 .jC t t   

 

Therefore, 1

2

3

12 1
j

j

Ct t C  . Similarly, using that the switching moments are innumerable, we obtain the estimates 

1

3

11 , 1, 2,...i

i

j
i i

j

C
t t iC



    . 

 

From the above, it follows that 
 

 1 1lim limi ii i
t t t t

 
         1 1 1 1 2 1lim ...i i i ii

t t t t t t t  
         

1 2 1

1 2

3 3 3

1 1 1 1lim ...i i

i i

j j j

i
j j j

C C C
t

C C C
 




 
      

 

 
   

3

1 1

min ; 1, 2,...,
lim 1

max ; 1, 2,...,
j

i
j

C j k
t i

C j k 


    


. 
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The Theorem is proved. 
 
Using Theorem 2, we deduce that the solution of the problem (1), (2), (3) is continuable up to infinity 

independently of the choice of initial point 0x  of the set 1\D  . 
 

Theorem 3. Assume that the conditions H0, H1, H2, H3 and H6 are satisfied. 
 

Then for each point    0 0 1, \t x R D   , the solution of problem (1), (2), (3) exists and is unique for 0t t . 
 

In particular, from the proposition above, we obtain that     0 0 0, ,t x R D t D      . 
 

The case when the trajectory of problem (1), (2), (3) does not intersect the first switching set is studied in the 
next theorem. In this case, the basic system degenerates into a system with a fixed structure and without impulses. 
 

Theorem 4. Assume that: 
 

1. The conditions H0, H1, H3, H4 are fulfilled for 1j j . 

2. The system   �  
11 , ,j

dx dxf t x f t x
dt dt

    is orbital gravitating in domain D  with constant 
1

1j  . 

3. The trajectory  0 ,t   does not intersect the switching set �
11 j  . 

 

Then for every initial point  0 0 0 1, ,t x R D x   , the solution of problem (1), (2), (3) (in the case, the solution of 

basic initial value problem coincides with the solution of problem (1), (3) for 1i  ) is an orbital Hausdorff stable on the initial condition. 
 

Proof. Let   be an arbitrary positive constant. 
 

Since the trajectory  0 ,t   does not cross the switching set 1 , then  0 ,t   1 0 ,t   . Assume that 

  0 1, , 0E t     . According to condition H4 we have that the set 1  is compact. As  0 ,t   is a closed set, 

we conclude that  0 1,t    , whence we find that  0 ,t    1 1\   . Taking into account the 

inclusion 1 1\ \D D   , we deduce that  0 ,t    \D D  . In other words, the trajectory of problem 
(1), (3) meets the contour of domain D , i.e. the solution of problem without impulses is not continuable after a 
certain moment. Therefore, the condition H3 is not satisfied. Thus, we derive the validity of inequality 

  0 1, , 0E t     . Suppose that 
 

  0 1, ,E t r     ,      (5) 
 

where r  is a positive constant. Let  
1

1 min ,
j

r 


 . Given that system (1) is orbital gravitating for 1i   in 

domain D  with the coefficient 
1

1j  , we conclude that for any initial point *
0x D , for which *

0 0x x   , it is 
fulfilled 
 

       1

* * * *
1 0 1 0 1 0 1 0, , , . , , ,H j Et t t t                (6) 

 

 
1 1

* *
0 0 0 0. , .j E jx x x x      

1
. min ,j r    . 

 

Taking into consideration equality (5) and evaluation (6), we find 
 

        * * * *
1 0 1 1 0 1 0 1 0 1, , , , , , ,H H Ht t t t                 0r r    . 
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Therefore, the trajectory * *
1 0 ,t   of perturbed problem without impulses (1), (4) (for 1i  ) does not meet 

switching set 1 , which means that  * * * *
0 1 0, ,t t       . In other words, the perturbed solution is not subjected 

to the impulsive effects (as, incidentally, the solution of basic problem). Using this conclusion and evaluation (6), we 
obtain that  

 

 * *
0 0 0, Ex D x x            * * * *

0 0 1 0 1 0, , , , , ,H Ht t t t               , 

i.e. the solution of problem (1), (2), (3) is an orbital Hausdorff stable on the initial point. 
 

The Theorem is proved. 
 

3. Basic Result 
 

Theorem 5. Assume that: 
 

1. The conditions H0 - H7 are satisfied. 

2. The systems �  ,j
dx f t x
dt

  are orbital gravitating in domain D  with the constants 1j  , 1, 2,...,j k , respectively. 

3. The trajectory  0 ,t   intersects the switching set �
11 j  . 

4. The following inequalities are valid 
 

2
4

2
, 1,2,...,

1
j

j
j j

C
C j k

C
 


. 

 

Then for every initial point  0 0 0 1, , ,t x R D x    the solution of basic problem (1), (2), (3) is orbital Hausdorff 
stable on the initial value condition. 

 

Proof. Using Theorem 4, we assume that the trajectory  0 ,t   intersects consecutively (repeatedly, 

including infinitely many times) the switching sets 1 2, ,...  . 
 

The proof of this theorem is separated into several parts: 
 

Part 1. We will show that if the difference *
0 0t t  between the initial moments *

0t  and 0t  on the one hand 

and the Euclidean distance  *
0 0,E x x *

0 0x x   between the initial points *
0x  and 0x  on the other hand are 

"sufficiently small", then the trajectory * *
0 ,t    of perturbed problem (1), (2), (4) also intersects the switching set 

�
11 j  . According to condition H3, the solutions  1 0 0; ,X t t x  and  * *

1 0 0; ,X t t x  of the problems without 

impulses (1), (3) and (1), (4) (for 1i  ) are defined for every 0t t  and *
0t t , respectively. These solutions are not 

subjected to the impulsive effects (regardless of the presence or absence of the meetings with the switching set 1 ). 
 

By condition H5, it follows that for each point   �
1

, jt x R  , the scalar product � �  
1 1
, ,j ja f t x  has a 

permanent sign. Further, we suppose that � �     �
1 1 1
, , 0, ,j j ja f t x t x R   . 

 

There are similar considerations in the other case. Using condition H5 and the additional clarification made 
above, we obtain that 
 

  � �   �  
1 1 11

2
1 1, , , , ,j j j ja f t x a f t x C f t x      �

11

2 0, ,j jC x t x R     . 
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Assume that , 0 1   , is an arbitrary constant which value will be specified further. From the inequality above, 
we deduce that 
 

� �   �     �  
1 1 1 11 1

2 2, , , 1 ,j j j j j ja f t x C f t x C f t x         �
11

21 0, ,j jC x t x R       . 
 

Using again condition H5, we derive that 
 

     
1 1 1

5 50 :j j jC const x x C       . 
 

Then 
 

� �   �       �
1 1 1 11 1 1

2 2 5, , , 1 0, ,j j j j j j ja f t x C f t x C C t x R       . 
 

Since: 
 

- left hand side of the latter inequality is continuous function; 
- this function is greater than a positive constant over the switching set �

1j
 ; 

- switching set �
1j

  is bounded, it follows that there exists a positive constant      such that for every 
constant , 0d d   , the following relations are satisfied: 

- the initial point    0 1 1 1 1, , ,x B d x D d a x d         ; 

- the next inequalities are valid  

   
1

2
1 1 1, , ,ja f t x C f t x   and       

1

6
1 1, , , , ,jf t x C t x R B d      (7) 

 

where 
1

6
jC  is a sufficiently small positive constant. Set  1,B d  consists of all the points belonging to 

phase space D , which are situated between the hyperplanes: 
 

 1 1 1; ,n
d x R a x d       and   1 1 1; ,n

d x R a x d     . 
 

Let 1 0t   be the moment of the first meeting between the trajectory  0 ,t   and switching set 1 . 

Consider a function    1 1 0 0 1 0, ; , ,A t a X t t x t t   . It is fulfilled  
 

     1 1 1 1 0 0 1 1 1 0 0 1, ; , , ; ,A t a X t t x a x t t x     1 1 1, 0a x    . (8) 
 

This means that point    1 1 0 0 1 1; , ,X t t x B d   . On the other hand, since the point 

   0 1 0 0 0 1; , ,x X t t x B d   , it follows that there exists a point 0 1,d dt t t t   , such that 

 1 0 0 1; ,d dX t t x D   .  
 

Using first estimate of (7), we obtain that for every point 1t t , with property  d A t d   , i.e. for which 

   1 0 0 1; , ,X t t x B d  , the next inequality takes place 

    1 1 0 0 1, ; ,d dA t a X t t x
dt dt

                                            (9) 
 

     
1

2
1 1 1 0 0 1 1 0 0, ; , ; ,ja f X t t x C f X t t x 

1 1

2 5 0j jC C const   .   
 

From (8) and (9), it follows that there exists a point 1dt t  , such that  dA t d  , i.e.  1 0 0 1; ,d dX t t x D    
(fig. 1). 
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Fig. 1 

 
The following notations are used in the figure: 
 

       1 1 0 0 1 1 0 0; , , ; , ,d d d dX t X t t x X t X t t x      

       * * * * * * * * * * * *
1 1 0 0 1 1 0 0; , , ; ,d d d dX t X t t x X t X t t x     . 

 

We conclude that: 
 

    , 0 1 0 :             0 1, 0 \ ,d d x D B d        

 1, , 0 :d d d dt t R t t t          1 0 0 1; ,d dX t t x    and   

 1 0 0 1; ,d dX t t x  . 
 

Since 1 1a  , then it is fulfilled    1 1 1 1, , 0E d E dd          . According to condition 2 of this 

theorem, system (1) (for 1i  ) is an orbital gravitating in domain D  with the coefficient 
1

1j  . Let 

 min ,d r  and 
1j

d  . Using the inequality  
1

* *
0 0 0 0,

j

dx x x x    and that point 

 1 0 0 1; ,d dX t t x  , it follows that 
 

     * * * *
1 0 1 1 0 1 0 0, , , , ; ,E d E dt t X t t x             (10) 

    * *
1 0 1 0 0sup , , ; , , 0E t X t t x t           * * * * *

1 0 0 1 0 0sup inf ; , , ; , , 0 , 0E X t t x X t t x t t    

   * *
1 0 1 0, , ,H t t         1

* *
1 0 1 0, , ,j E t t        

1 1

1

*
0 0, .j E j

j

dx x d  


   . 

 

Similarly, it is obtained 
 

 * *
1 0 1, ,E dt d     .      (11) 

 
From the inequalities (10) and (11), it follows that there exist the points *

dt  and *
dt , * * *

0 d dt t t   , such that the 
next estimates are valid: 
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  * * * *
1 0 0 1; , ,E dX t t x d      and   * * * *

1 0 0 1; , ,E dX t t x d    . (12) 
 

Consider a function    * * * *
1 1 0 0 1, ; , , 0A t a X t t x t   . Assume that *

dX   and *
dX   are orthogonal projections 

of the points  * * * *
1 0 0; ,dX t t x  and  * * * *

1 0 0; ,dX t t x , respectively on the hyperplane 1 . By (12), it follows that:  
 

  * * * * *
1 0 0; ,d dX X t t x    and   * * * * *

1 0 0; ,d dX t t x X   are one-way vectors. Consider the case when vector 1a  has 

the same direction. The other case is considered similarly. Moreover, under the assumptions made at the beginning of 
Part 1 of this proof, i.e. if the inequality below is valid 
 

� �     �
1 1 1
, , 0, ,j j ja f t x t x R       1 1 1, , 0, ,a f t x t x R    , 

it can be shown that the vectors:  
 

     * * * * * * * * * *
1 1 0 0 1 0 0, ; , , ; ,d d d da X X t t x X t t x X    

 
have one and the same direction. Then the next 

inequalities are valid: 
 

   * * * * * *
1 1 0 0 1, ; ,d dA t a X t t x     * * * * * *

1 1 1 0 0 1, , ;d d da X a X t t x X        

 * * * * *
1 1 0 0, ; td da X X t x     * * * * *

1 0 0; t 0d dX X t x     ; 

   * * * * * *
1 1 0 0 1, ; ,d dA t a X t t x     * * * * * *

1 1 1 0 0 1, , ;d d da X a X t t x X        

 * * * * *
1 1 0 0, ; td da X t x X    * * * * *

1 0 0; t 0d dX t x X    . 
 

From the continuity of function *A  and both inequalities above, it follows that there exists a point 
* * * *
1 1, 0 d dt t t t    , such that 

 

     * * * * * * * * * *
1 1 1 1 0 0 1 1 1 0 0 10 , ; , 0 ;A t a X t t x X t t x      , 

 

i.e. trajectory * *
1 0 ,t   (respectively trajectory * *

0 ,t    of perturbed problem (1),  

(2), (4)) crosses the switching set 1 . 
 

Part 2. We will evaluate the Euclidean distance between the trajectory * *
1 0 ,t   and the point 1x . For this 

purpose, we introduce new function   * *
0 0: , ,T t t   , defined in such way: For any  0 ,t t  , the 

corresponding function value *T  *T t  satisfies the restrictions: 
 

        * * * * * *
1 0 0 1 0 0 1 0 1 0 0; , , ; , , , ; ,E EX T t x X t t x t X t t x      

and 

       * * * * *
1 0 1 0 0 1 0 1 0 0, , ; , , , ; ,E Et T X t t x t X t t x        

         * * * * * * * *
1 0 0 1 0 0 1 0 0 1 0 0; , , ; , ; , , ; , ,E EX T t x X t t x X t t x X t t x     * * *0 t T T t   . 

In other words, for every point 0t t , its corresponding moment * *
0T t  is the first in which the distance 

between both points  * * * *
1 0 0; ,X T t x  and  1 0 0; ,X t t x  is equal to the Euclidean distance between the trajectory 

* *
1 0 ,t   and the point  1 0 0; ,X t t x  (fig. 2). 
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Fig. 2 
 

As the system (1) (for 1i  ) is gravitating, then for any 0t t , we have 

     * * * *
1 0 0 1 0 0; , ; ,E X T t t x X t t x    * *

1 0 1 0 0, , ; ,E t X t t x     

     * * * * *
1 0 0 1 0 0inf ; , , ; , , 0E X t t x X t t x t     

      * * * * *
1 0 0 1 0 0sup inf ; , , ; , , 0 , 0E X t t x X t t x t t          * *

1 0 1 0, , ,H t t       

   1

* *
1 0 1 0. , , ,j E t t        

1 1

* *
0 0 0 0. , .j E jx x k x x   

1
.j d     . 

From the last inequality, we find that 

     * * * * * *
1 0 1 1 1 0 0 1, , ; t , ,E Et x X T t x x      * * * *

1 1 0 0 1; t ,X T t x x d   . 
 

Part 3. We will find the estimate above of the distance  

      * * * * *
1 1 1 0 0 1 0 0, ; , , ; ,E Ex x x t t x x t t x  . 

 

Let point *
pX  be an orthogonal projection of point   * * * *

1 1 0 0; ,X T t t x  on the switching hyperplane 1  (fig. 3). 

 
 

Fig. 3 
 

The following notations are used in the figure:  
 

       * * * * * *
1 1 1 1 0 0 1 1 1 1 0 0; , , ; , ,X t X t t x X t X t t x       * * * * * *

1 1 1 0 0; ,X T X T t t x . It is fulfilled 

     * * * * * * * * *
1 1 0 0 1 1 1 0 0; , ; ,pX X T t t x x X T t t x      * * * *

1 1 0 0 1; , ,E X T t t x x d  . 

We have  
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* * * * *
1 1 1 0 0 1

* * * * *
1 1 1 0 0

; , ,

; ,

x X T t t x a

x X T t t x





   

   

*
1

*
1

*
1

*
1

* * *
1 1 0 0 1

* * *
1 1 0 0

; , ,

; ,

t

T t

t

T t

f X t x d a

f X t x d

 

 




 

   

   

*
1

*
1

*
1

*
1

* * *
1 1 0 0 1

* * *
1 1 0 0

; , ,

; ,

t

T t

t

T t

f X t x a d

f X t x d

 

 





   

   

*
1

* 1
1

* 1
1

*
1

2 * * *
1 1 0 0

2

* * *
1 1 0 0

; t ,

; ,

t

jT t

jt

T t

C f X x d
C

f X t x d

  


 
 



, 

from where we find 

  * * * * *
1 1 1 0 0; ,x X T t t x   

1

* * * * * * *
1 1 1 0 0 12

1 ; , ,
. p p

j

x X X X T t t x a
C

     

   
1

* * * * * * *
1 1 1 1 0 0 12

1 , ; , ,
. p p

j

x X a X X T t t x a
C

      
1

* * * * *
1 1 0 02

1 ; ,
. p

j

X X T t t x
C

 
1

2

1
. jC

 . 

 

By the last inequality, we conclude  
 

  
1

* * * * * * *
1 1 1 1 0 0 2; ,

.p
j

dx X x X T t t x
C

    . 

Then 

 * * * * *
1 1 1 1 1 1,E p px x x x x X X x                       (13) 

  * * * * * *
1 1 1 0 0 1; ,px X X T t t x x   

1 1

2 2

11
. .j j

d d d
C C 

 
     

 
.    

 

Part 4. We will find the estimate above of the distance between the points *
1x   and 1x . The operator 

  � 11 jId I Id I    is a shrinking (see condition H7). Using condition H7 and inequality (13) we obtain the 

estimate 
 

 *
1 1,E x x             * * * * * * * *

1 0 0 1 1 0 0 1 0 0 1 1 0 0; , ; , , ; , ; ,E x t t x I x t t x x t t x I x t t x           (14) 

    1

4 * * * *
1 0 0 1 0 0. ; , , ; ,j EC x t t x x t t x  

1 1

1

4 * 4
1 1 2

1. , . . 1
.j j

j

C x x d C
C




 
    

 
.   

 

By condition 4 of Theorem 5, the inequalities 
 

 
1 1

1 1 1

4

2 4
0 1

1
j j

j j j

C

C C




 


 

 
are valid. As   is an arbitrary constant satisfying the inequality 0 1  , without loss of generality we assume 

 
1 1

1 1 1

4

2 4
1

1
j j

j j j

C

C C





 


, from where we find that 

 
1

1

1 1

2
4

21
j

j
j j

C
C

C



 



. From (14), using the last inequality, we find 

the estimate  
1

*
1 1,E

j

dx x 
   . 
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Part 5. Since d  is an arbitrary constant satisfying the inequalities  0 min , ,d r   , we assume in 

additional that 
1

3
jd C . Then by condition H6, it follows that for point 1x , it is valid 

 

    1 1 1 1 1 1, ,E Ex x I x         1 1 1,E Id I     

� �  �  1 1 1
,E j j jId I   

1

3
jC d  . 

 

The last inequality means that the point 
 

   1 1 1 1 1, , ,x B d x D d a x d          . 
 

 Part 6. Let dt  be a moment at which the following equalities are valid: 

   1 0 1 1 0 0, ; ,d dt X t t x       and   1 0 1, d dt t    . 
 

(see Part 1). Clear that 10 dt t  . From Part 2, it follows that for every 0t t , it is fulfilled 
 

     * * * *
1 0 0 1 0 0; , , ; ,E X T t t x X t t x d  . 

 

Since the inequality   1 0 0 1; , ,E X t t x d    is valid for 0 dt t t  , then we deduce that 
 

   * * * *
1 0 0 1; , ,E X T t t x          * * * *

1 0 0 1 0 0 1 0 0 1; , , ; , ; , ,E EX T t t x X t t x X t t x     0d d     

* *
1 0 1,t      * *

1T t t  , 0 dt t t  . 
 

Part 7. Using the results obtained in Part 6, we derive 

            * * * * * * *
0 0 0 0 0 0sup inf ; , , ; , , ,E d dx t t x x t t x t t T t t t t       

        * * * * * * *
1 0 0 1 0 0 0 0sup inf ; , , ; , , ,E d dX t t x X t t x t t T t t t t        

     * * *
1 0 1 0 0 0sup , , ; , ,E d dt T t X t t x t t t       

    * *
1 0 1 0 0 0sup , , ; , ,E dt X t t x t t t         * *

1 0 1 0, , ,H dt t t      

   * *
1 0 1 0, , ,H t t         1

* *
1 0 1 0. , , ,j E t t       1 1

*
0 0j jx x d        . 

 

Part 8. Here, we will evaluate above the difference 1 dt t . Let point pX  be orthogonal projection of 

 1 0 0; ,dX t t x  on the switching hyperplane 1 . It is satisfied 
 

 1 0 0; ,p dX X t t x d  . 
 

We have 

 
 

1 1 0 0 1

1 1 0 0

; , ,

; ,
d

d

x X t t x a

x X t t x








  

  

1

1

1 1 0 0 1

1 1 0 0

; , ,

; ,

d

d

t

t

t

t

f X t x d a

f X t x d
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1

1

1 1 0 0

1 1 0 0

; , ,

; ,
d

d

t

t

t

t

f X t x a d

f X t x d

 

 










  

  

1

1

11

2
1 1 0 0

2

1 1 0 0

; ,

; ,
d

d

t

jt
jt

t

C f X t x d
C

f X t x d

  


 





 



, 

 

From where, we find 
 

   
1

1 1 0 0 1 1 0 0 12

1; , ; , ,
.d p p d

j

x X t t x x X X X t t x a
C       

  
1

1 1 1 0 0 12

1 , ; , ,
. p p d

j

x X a X X t t x a
C      

1 1

1 0 02 2

1 ; ,
. .p d

j j

dX X t t x
C C    . 

 

Function 1f  does not change its sign under    1, ,t x R B d    according to the second estimate of (7), we 
obtain 
 

              
1

1
d

t

d t
t t d


     1

1

1 1 0 06

1 ; ,
d

t

t
j

f X t x d
C

 


    1

1

1 1 0 06

1 ; ,
d

t

t
j

f X t x d
C

 


   

   
1

1 1 0 0 1 0 06

1 ; , ; ,d
j

X t t x X t t x
C    

1

1 1 0 06

1 ; ,d
j

x X t t x
C  

1 1

2 6
j j

d
C C

 . 

 

Part 9. Using the inequality from the previous part, we will evaluate the Euclidean distance 
 

     * * * *
1 1 1 0 0, , ; ,E d dt t X T t t x    

      * * * *
1 0 0 1 0 0 1

`
inf ; , , ; , ,E d dX t t x X T t t x t t t      

           * * * *
1 0 0 1 1 0 0 1 0 0 1inf ; , ; , , ; , ,

d

t

E d d dt
X t t x f X t x d X T t t x t t t  


       

          * * * *
1 0 0 1 1 0 0 1 0 0 1inf ; , ; , ; , ,

d

t

d d dt
X t t x f X t x d X T t t x t t t 


        

          * * * *
1 0 0 1 0 0 1 1 0 0 1; , ; , inf ; , ,

d

t

d d dt
X t t x X T t t x f X t x d t t t 


        

           * * * *
1 0 0 1 0 0 1 1 0 0 1; , , ; , inf ; , ,

d

t

E d d dt
X t t x X T t t x f X t x d t t t  


       

1 11 1

1 11 1

2 6 11

2 6 2 6

j j jj

j j j j

C C CC d
d d

C C C C



 


   . 

  

Part 10. We have 
 

      * * * * * * *
1 0 0 1 0 0 0 1 0 1sup inf ; , ; , , ,E X t t x X t t x t t t t t t       (15) 

        * * * * * * * *
1 0 0 1 0 0 0 1 0 1sup inf ; , ; , , ,E dX t t x X t t x t t T t t t t t        

         * * * * * * *
1 0 0 1 0 0 1 0max sup inf ; , , ; , , , ,E d dX t t x X t t x t t T t t t t        

        * * * * * *
1 0 0 1 0 0 1sup inf ; , , ; , , ,E d dX t t x X t t x t T t t t t      
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       * * * *
1 0 0 1 0 0 1max , sup ; , , ; , ,E d dd X T t t x X t t x t t t      

1 11

1 1

2 6 1

2 6

j j j

j j

C C C
d

C C






 . 

 

Analogously to the proof above, we conclude that 
 

      * * * * * * *
1 0 0 1 0 0 0 1 0 1sup inf ;t , , ;t , , ,E X t x X t x t t t t t t     1 11

1 1

2 6 1

2 6

j j j

j j

C C C
d

C C






 . (16) 

 

Finally, from (15) and (16), it follows that 
 

     * * * * * *
0 1 0 1 1 0 1 1 0 1, , , , , ,H Ht t t t t t t t             

       * * * * * * *
1 0 0 1 0 0 0 1 0 1max sup inf ; , , ; , , , ,E X t t x X t t x t t t t t t      

      * * * * * * *
1 0 0 1 0 0 0 1 0 1sup inf ; , , ; , , ,E X t t x X t t x t t t t t t      

1 11

1 1

2 6 1

2 6

j j j

j j

C C C
d

C C






 . 

 

Part 11. From the previous parts of the proof, we derive the conclusion 
 

 0const    
 

4

2 4
, 1; 1, 2,...,

1
j j

j j j

C
const j k

C C


 


 
     
  

 

  0    :  

 
2 6

3
2 6 1, 0 min , , ; 1, 2,...,j j

j
j j j

C C
d const d C j k

C C C
 




              
 

, 0 ; 1, 2,...,
j

dconst j k  
      
 

  * * * *
0 0 0 0 0 0, ,t R t t x D x x           

11.1.  
1

*
1 1,E

j

dx x 
    (Part 4); 

11.2.  1 ,x B d   (Part 5); 

11.3. lim ii
t


   (Theorem 2); 

11.4.   * * *
0 1 0 1, , ,H t t t t        (Part 10). 

 

Part 12. Options are as follows: 
 

12.1. The solution of the studied problem is subjected to a change of its structure and (of course) an 
impulsive effect taking place at the moment 1t  of the meeting between trajectory  0 ,t   and switching set 1 . 
From 11.1 and 11.2, analogously to Theorem 4, it follows that 
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        * * * *
1 1 1 1, , , 0, , 0,H Ht t t t               * *

2 1 2 10, , 0,H t t         . 
 

In this case, the proof follows from the last inequality and 11.4. Using Theorem 1, we obtain 
 

   * *
0 0, , ,H t t           * * * * *

0 1 1 0 1 1, , , , , ,H t t t t t t            

        * * * * *
0 1 0 1 1 1max , , , , , , , ,H Ht t t t t t           . 

 

12.2. The solution of the considered problem is subjected to the finite number (e.g. - p ) impulsive effects, 
accompanied by a change of the right hand side of the system. These changes take place at the switching moments 

1 2, ,..., pt t t , in which trajectory  0 ,t   meets the switching sets 1 2, ,..., p   , respectively. Similarly to 11.1, 11.2 
and 11.4, we find: 

 

 * ,
i

E i i
j

dx x 
   ;   ,i ix B d   ;      

   * * *
1 1, , , , 1,2,...,H i i i it t t t i p       .     (17) 

 

Analogously to case 12.1 and using Theorem 4, we receive the inequality 
 

   * *, , ,H i it t       . 
 

In this case, the proof follows by (17), last inequality and Theorem 1. 
 

12.3. Trajectory  0 ,t   meets infinitely many times the switching sets 1 2, ,...  . Using induction, we 
obtain the following estimates: 

 

   * * *
1 1, , , , 1,2,...H i i i it t t t i       . 

 

Further, using Theorem 1, we find 
 

   * * *
0 01, 2,... , , ,H p pp t t t t               * * *

1 1max , , , ; 1, 2,...,H i i i it t t t i p      . 
 

Taking into account the fact that lim pp
t


   (see Theorem 2), we deduce that 

 

     * * * * *
0 0, , , lim , , ,H i i H p pp

t t t t t t      


           . 
 

The Theorem is proved. 
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