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Abstract 
 
 

We introduce the novel argument that the general concept of statistical confidence applies both to an 
interval estimate of a parameter and to a hypothesis test. Measured degrees of statistical confidence are 
mathematical probabilities of accurate parameter identification established prior to drawing samples. Such 
probabilities serve as the foundation for a statistician’s expectation and conviction that a hypothesis test will 
correctly identify a true hypothesis, and more familiarly, that an interval estimate will properly identify a 
population parameter. The incidental and potentially misleading role of the P-value is discussed in the 
context of statistical confidence. 
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1. Introduction 
 

The term “statistical confidence” has been defined clearly with regard to confidence interval estimates of 
population parameters. Confidence is the mathematical probability, established prior to drawing samples, that an 
interval will capture a parameter. Sources of such probabilistic statistical confidence also provide the discernible odds 
that a hypothesis test will identify the true hypothesis, and this is a subtle and important distinction that seems to have 
been hiding in plain sight; we have yet to see this suggestion in the literatures of statistical education and practice.  
Our purpose here is to recommend the extension of “statistical confidence” to define the efficacy of both interval 
estimates and hypothesis tests, and thereby identify a fundamental basis for appreciating the usefulness of hypothesis 
tests, and for trusting a hypothesis decision once made. So long as hypothesis testing methods continue to be taught 
and used, students and practitioners of inference should learn when to trust the odds that an experiment will 
illuminate the truth, and to appreciate the formulation of research designs that embrace high statistical confidence as 
herein defined, those with high probabilities that true hypotheses will not be rejected. 

 

2. Statistical Confidence 
 

2.1 Confidence and Ordinary Interval Estimation 
 

 Rossman and Chance (2012) describe inference processes in a way that highlights concern for the magnitudes 
of population parameters: “The concept of statistical confidence relates to how close you expect a sample statistic to 
come to its corresponding population value… The concept of statistical significance concerns how unlikely an observed 
sample statistic is to have occurred, assuming some conjectured value for the population parameter” (p. 320). All of 
inference concerns population parameters and their correct identification, whether done with an interval estimate or a 
hypothesis test. As we see reviewed below, confidence is the probability that a parameter will be correctly identified, 
despite the fact that the result of any inference process is never known to be correct. Regardless of being able to know 
the truth, we can trust that the methods will provide correct results, when the odds of success are strong. 
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Carlin and Louis (2009), speaking of a conventional 95 percent interval, asserted that “…before any data are 
collected, the probability that the interval contains the [parameter] value is .95” (p. 7), and this statement captures the 
essence of confidence and confidence intervals. Such definitions of confidence, as a pre-sampling probability of 
accurate or successful parameter estimation, abound in the literature. For example, Moore, Notz & Fligner (2015) 
offered that “A confidence level C [such as .95]… gives the probability that the interval will capture the true 
parameter value in repeated samples. That is, the confidence level is the success rate for the method” (p. 353). Much 
earlier, Glass and Stanley (1970) stated, “When an interval estimate of a parameter is constructed so that is has a 
certain known probability of including the value of the parameter between its limits, the interval is called a confidence 
interval… the confidence coefficient is the probability that a randomly selected interval… will capture the 
parameter… It is understood that the probability statement refers to the sample space of all intervals that could be 
formed by computing one interval for each sample” (p. 260-61).Similarly, Gould and Ryan (2013) noted that “The 
confidence level tells us how often the estimation method is successful. Our method is to take a random sample and 
calculate the confidence interval… the confidence level measures the success rate of the method, not of any one 
particular interval” (p. 330). Lastly, Rossman et al. (2012) concur: “Thus the probability statement applies to what 
value an interval will take prior to the sample being collected (i.e., to the method), not whether or not a particular 
interval contains the fixed parameter value once it has been calculated. If you did have all the intervals from all 
possible samples… the probability that you will randomly select an interval that contains [the parameter] is .95” (p. 
342). Thus far we see confidence defined as a pre-sampling probability of success in accurately capturing a parameter 
value within the limits of a confidence interval. The method is viewed as becoming ever more reliable or accurate as 
the pre-sampling probability value increases, that is, as the pre-defined, pre-sampling confidence percentage is 
increased.  

 

2.2 Confidence and Hypothesis Testing 
 

Gene V. Glass and Julian C. Stanley are venerated names in statistical education and methodology. Their 
classic statistics text (Glass et al., 1970) includes a statement about hypothesis testing which unmistakably identifies a 
test as a sampling context that can be made rich in the odds that a correct decision will be made no matter which 
hypothesis is true: “From any sample it can never be concluded with certainty that H is true or false; the best one can do 
is to make a decision that has a high probability of being true” [emphasis added] (p. 281). The decision in question is a choice 
to reject or not reject the null hypothesis (H0). For the hypothesis decision to have a high probability of being true or 
correct there must be a high probability that H0 will not be rejected when it is true, and a correspondingly high 
probability that H0 will be rejected when it is false. We say that such probabilities define statistical confidence for a 
hypothesis test; the higher each of the probabilities, the more likely that the correct decision about H0 will be made. 
Prudent arrangements of sampling experiments are done by selecting samples of sufficient size so that null hypotheses 
that are false to predetermined degrees of magnitude will be rejected, say, 80 to 90 percent of the time or more often 
in practice. Such experiments that couple high probabilities that true H0 will not be rejected with high probabilities 
that false H0 will be rejected are said to harness high statistical confidence as their foundations. 

 

Probabilities established prior to the drawing of samples govern the rate of success with interval estimation. 
By comparison, adequately powered hypothesis tests are based in defining the magnitudes of competing parameters 
representing both a true H0 and a true alternative hypothesis (HA), and establishing desirably high probabilities that 
either of them will be correctly detected, that is, that the false hypothesis will be rejected. Such chances or 
probabilities of correct hypothesis support can be made, say, 95 percent or higher in the ideal. Following standards set 
by Cohen’s (1969, 1977, 1988, 1990, 1992) frequentist-oriented framework for hypothesis testing based in statistical 
power analysis, modern practice encourages the researcher to define HA in terms of an “effect size” or speculation 
about differences and relationships of varying magnitudes in contrast to the no difference or no relationship H0. 
Sample sizes are chosen which provide for high probabilities that H0 will be rejected, but only if the alternative HA is 
the true hypothesis. Establishing an effect size as a hypothesized difference between H0 and HA amounts to 
expressing expectations about differences and relationships that are predicted from theory, or are of substantive 
clinical or practical relevance (Cohen, 1969, 1990; Kirk 1996; Moore et al., 2015; Utts & Heckard, 2014), as compared 
with an expectation defined in H0. 
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Establishment of a standardized effect size in HA that competes with the value of a parameter in H0 clearly 
concerns parameter magnitudes, as we model all possible sampling outcomes in either of two adjacent and 
overlapping populations with parameters “known” by assertion. Particular probabilities that each parameter will be 
correctly identified, that is, that a particular true hypothesis will not be rejected, are established prior to the taking of 
samples, and these probabilities constitute the comprehensive statistical confidence basis, and potential effectiveness 
of the hypothesis test. The odds are 19 to one that a 95 percent confidence interval will capture a parameter, and the 
odds are 19 to one that the true parameter will be identified by hypothesis test (that the false hypothesis will be 
rejected) when  = .05 and statistical power equals 95 percent. Such is statistical confidence as here conceived. High 
values of statistical confidence provide for correct decisions more often than not, because they define sampling 
contexts that only rarely produce extreme instances of data which are misleading to the statistician, at least “on paper” 
as we plan a sampling experiment. As a consequence, we are free to subjectively trust or believe in an inference 
method that is designed to produce truthful outcomes more often than not, to trust the odds that attend such 
processes, and to trust our hypothesis decisions once made if, as Glass and Stanley contend, the endpoint of a 
hypothesis test will be making a decision that will have had a high probability of being true or correct before any data 
were drawn. 

 

2.3 Illustrating Confidence for a Hypothesis Test 
 

Table 1 provides a demonstration of high statistical confidence for a common hypothesis test concerning a 
population correlation when an effect of “medium” magnitude is to be detected if it exists, in contrast to H0. 
Sufficiently large samples maximize the likelihood that a false H0 will be rejected, thus that the true HA will not be 
rejected. With adequate sample size, thecomputed power to reject a false H0 in favor of a true HA is made equal to the 
probability that true H0 will be supported. The researcher can expect that the test will result in detection of the 
hypothesis that is true; he or she can be subjectively confident in the test results. Here the odds of correct parameter 
detection are 19 to one regardless of whether H0 or HA is true. 
 

Table 1: Confidence Basis for a Powerful Sampling Experiment, H0:  = 0.00, HA:  = 0.30, n = 115, Medium 
Effect 

____________________________________________________ 
                                                                  H0 is true            HA is true 
                                                Reject     = .05        β = .05 
                                    Do not Reject    1.0 -  = .95        1.0 - β = .95 
 

Note: To reject a true HA is to not reject a false H0. 
 

Employing samples of inadequate size results in unacceptably large chances that false H0 will not be rejected, 
that is, that true HA will be rejected unwittingly, as seen below in Table 2 and Figure 1. If sample data lead the 
researcher to support or not reject H0 in this situation, personal faith in the decision will be minimized because 
 

Table 2: Compromised confidence for a sampling experiment, H0:  = 0.00, HA:  = 0.30, n = 15, medium 
effect 

__________________________________________________ 
                                                                H0 is true            HA is true 
                                              Reject             = .05                β = .70 
                                  Do not Reject    1.0 -  = .95        1.0 - β = .30 
__________________________________________________ 
 

Note: H0 is not likely to be rejected regardless of its truth status 
 

Of the sheer chance that H0 will not be rejected no matter whether it is true or false. In this case, the 
mechanism of statistical confidence is high, and the correct hypothesis is not likely to be rejected, if and only if H0 is 
true. Odds of correct detection of HA are not more than about four in 10. Figure 1 presents output adapted from the 
popular G*powerprogram (Erdfelder, Faul, & Lang, 2009), and gives graphic expression to such compromised 
confidence. Seventy percent of the samples when HAis true fall within the region of the H0 model that mandates that 
H0 not be rejected. 
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Figure 1: H0:  = 0.00, HA:  = 0.30, n = 15, α = .05, β = .70 
 

 In this scenario, P-values will tend to be very large, larger than a conventionally stated α-level by far, 
regardless of whether H0 is true, rendering the size of the P-value useless as an indicator of weak, moderate, or strong 
evidence for H0. When power is not known and large P-values are to be taken as evidence in support of H0, the user 
will be uncertain about her or his decision, which can often be incorrect when the β probability overwhelms a 
sampling process and HA is the true hypothesis. Incomplete definition of decision probabilities leaves the user in 
doubt about retaining (not rejecting) H0. 
 

3. P-Values and Statistical Confidence 
 

3.1 Using P-values in Making Hypothesis Decisions 
 

Take caution when data mandate that you not reject a null hypothesis, while at the same time power is known 
to be minimal, or when power is unknown. However, it is reasonable to feel confident in a decision to support HA (to 
doubt and reject H0) based solely on a small P-value, regardless of whether power has been defined and statistical 
confidence is known to be high overall. We expect to support a true H0 given 19 to one odds in its favor when α = 
.05, and the finding of a small P-value taken as evidence to the contrary is “surprising,” as Starnes, Yates, & Moore 
(2011) relate: “A P-value tells us how surprising the observed outcome is. Very surprising outcomes (small P-values) 
are good evidence that the null hypothesis is not true” (p. 465). Mathematically speaking, P-values are not “evidence” 
for or against any hypothesis, yet suitably small P-values herald data, modeled as sampling errors when H0 is true, that 
sit at great distances away from the H0 parameter, making it very difficult to believe in H0; hypothesis tests modify our 
beliefs without providing proofs. We do caution that large P-values cannot be taken at face value as good evidence in 
favor of H0 unless one also knows the chance that H0 will not be rejected when it is false in comparison to an 
alternate true effect of relevant magnitude. Hypothesis testing aims to impact beliefs; and whether measured statistical 
confidence is known can occasionally impact the strength of our convictions. 

 

3.2 P-values are not Substitutes for Statistical Confidence 
 

Note well that the vaunted P-value is not in the probability set that defines Glass and Stanley’s ideal of a 
“high probability” for decision truth, which includes, and only includes 1.0 -  and 1.0 – β. Effective hypothesis 
testing relies on established pre-sampling statistical confidence, no component of which is defined by the post-
sampling P-value. We stress that the “high probability” in Glass and Stanley’s formulation is not found in the P-value 
nor in its complement, 1.0 - P.  Well-known and debunked P-value fallacies such as the Odds-Against-Chance and 
Reliability/Replicability fantasies (Carver, 1978; Kirk, 1996), were once pressed into service to provide an illusion of 
support for a decision to reject or not reject H0, but the only legitimate and comprehensive source of the odds that a 
true hypothesis will not be rejected is the full and generous definition of statistical confidence as identified in this 
paper. We deem that the terminal point of a hypothesis test is a statement of belief about differences or relationships 
given circumstantial evidence, without benefit of incontrovertible proof. Our trust in the positions we take about H0 
must be based on the generalized power of our study designs that enable us to believe that we will “get it right” in the 
end, even though we can never know the truth of any hypothesis. Establishment of comfortable levels of confidence 
prior to sampling, where a correct decision on a true H0 is almost always attended by 1.0 – α = .95, and probability 
that a true HA will be supported (that a false H0 will be rejected) is at least, say, 1.0 – β = .80 in practice, provides both 
mathematical and subjective expectations upon which to base trust in the efficacy of our research designs and in the 
value of eventual test results. 
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3.3 Post Script 
 

Our presentation could be taken as no more than a reminder that powered hypothesis tests provide a 
theoretical edge favoring the detection of a true hypothesis. Our deeper message is that we base our trust in the 
accuracy of confidence intervals by virtue of mathematically defined statistical confidence as shown herein, and we 
can similarly trust in the accuracy of hypothesis tests and our eventual hypothesis decisions for the very same reason, 
and as a more reliable and telling basis than using the post-sampling P-value as our sole index of certitude.  We 
suggest adding this concept to hypothesis testing instruction and education at all levels. 

 

4. Summary and Conclusions 
 

The classic ideals of Jacob Cohen, and of Glass and Stanley, reflect the more technically arcane early work of 
Jerzy Neyman and Egon Pearson (Neyman and Pearson 1928a, 1928b) in portraying a hypothesis test as an 
opportunity to probe for population values in a manner that will lead to a correct hypothesis decision most of the 
time, at least according to the mathematical models used for hypothetical populations and hypothesis tests. 
Hypothesis tests can be supported by high mathematical probabilities, established prior to the taking of samples, that 
true hypotheses will not be rejected. Such attention to power and establishment of ideal statistical confidence for a 
hypothesis test requires specification of a meaningful parameter value for HA, which places science directly into the 
hypothesis test, with HA stated so as to reflect the researcher’s original intent for conducting a study, which is often to 
detect differences and relationships of practical or theoretical import. Otherwise, the research goal may be to actually 
support a null condition (to not reject H0) as opposed to an alternative condition in a study that has been well-funded 
with power to reject H0 if it is false. One may predict and hope that a null hypothesis will not be rejected, investing 
personal trust or faith in the decision not to reject H0, and this can only be accomplished when H0 is not likely to be 
supported when false. Modern emphasis on power analysis with consequent generalized statistical confidence of 
calculable levels provides students and practitioners the opportunity to consider worthy effects to detect, and to vary 
sample sizes in setting the occasion for data to illuminate the hypothesis that is true, and to trust the odds that their 
hypothesis decisions will be correct.  
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