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Abstract 
 
 

The purpose of this research is to model a phytoplankton population localized to a particular geographical 
longitude, latitude and depth and try to draw conclusions about its evolution. After a random period of time 
  the origination particle, phytoplankton cell, provides generation or dies. We propose model, describing 
the dynamics of population through multitype branching stochastic processes of Bellman-Harris. Concrete 
results for the expectation and asymptotic behaviour of the mean number of cells are obtained.  
 

 

1. Introduction 
 

Phytoplankton is composed of microscopic, photosynthetic species, mostly unicellular, that live in the aquatic 
environment. Movement in the water is mostly through transport by currents, but some phytoplankton species move 
using flagella. Data on the amount of chlorophyll-a may be obtained not only by the sampling, but by means of 
satellite. The correlation coefficient between phytoplankton and contained in it chlorophyll-a is known [1,2]. 
Chlorophyll-a concentrations can be a measure of phytoplankton concentrations. Therefore we can consider as a 
single particle in our processes, not the whole cell phytoplankton, but only the contained in the cell quantity of 
chlorophyll-a. The following graphics reflects the measured concentration of chlorophyll-a, according to samples 
taken from about 50 stations along the Bulgarian Black Sea coast during the summer of '94, '97, from 2002 to 2006, 
2009 and 2011.  
 

It gives a rough guide for the distribution of the concentration of chlorophyll-a: 
 

 
The phytoplankton community grows in volume or reduces. The growth rate of phytoplankton cell depends 

on growth rate of the mother, but also of the size of birth.   
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The growth rate depends on some random environmental factors such as the flow of sunlight, therefore for 
clouds, flying or swimming in the upper water layers objects that overshadow, etc. The cells which reproduce by cell 
division split into two daughter cells, but as a rule the two daughters are not identical. The considered phytoplankton 
population contains many species. For each phytoplankton species there is not just one cell, but large finite number of 
cells. The time to reproduction of cells is different for different types of phytoplankton, and this time differs within 
each species too. It depends on the environmental temperature, salinity, nutrition, light etc. The maximum rate of cell 
division can double up for each 10$°$C increase in temperature [8] There are seasonal change in species composition 
[8]. The blue-green algae Anabaena has an estimated generation time of 24 hours [3]. Phytoplankton is one of the 
most ancient inhabitants of our planet, playing the key role at the base of the ocean and marine food chains. In 
addition the phytoplankton also controls the global carbon cycle which has a significant impact on the climate 
regulation. Last but not least phytoplankton is a key factor in ecology.  
 

2.  Model Description 
 

Under growth rate is meant the rate of increase in size per unit time. According to the above we assume that 
growth rate of the particles is a random variable. The offspring's growth rate deviation from that of the mother at the 
time of any division is also a random variable. Let us designated the shift by  . From now on, let us focus only on 
one of the six hundred different species of phytoplankton on the Bulgarian Black Sea Coast. Let us consider the 
summer months for more concreteness. It is assumed the additional structure of growth rate motion on the line. We 
interpret the growth rate as a random variable, which move on the line. Consider a parent particle at the point 0x , 

assuming a growth rate  0r 0x  . After a random time it dies or splits into 2 particles , which growth rates then 

move to the random points 20021001 , xrrxrr  . We will take a normal distributed shift of the growth rate. 
For each cell phytoplankton there are met the next conditions [7]. 
 

Conditions 1 
 

1. The growth rate (gr.r.) is exponential distributed and consists of two parts: a latent factor handed down by the 
mother, and an individual contribution. 

2. The particle splits into two daughter particles of precisely equal volumes. (Fluctuations from the mean for each 
particle phytoplankton can be ignored) 

3. The shift of growth rate is normal distributed. 
 

The number of offspring is exactly two, both are born at the same time, but they can belong to different 
types. We define the random variables  ,,  over the probability space ( , F, P). For the fixed above type of 

phytoplankton let us assume that  gr.r. )(Exp and the shift of the gr.r.  ),0( 2 N . The cells can divide or 
die. Here we mean death for disappearance of the cell from the population by means other than division. Bisection of 
cells occurs approximately when they double. 

 

From the birth to the splitting every cell goes through several specific stages. It implements concrete activities 
that require a concrete time. Therefore we assume normally distributed lifetime of the cell. In addition we define the 
random variables hiii ,...2,1,,  over the probability space ( , F, P).  For practical purposes it is sufficient to 
determine the interval for  of the three sigma rule according to each type of phytoplankton. For definiteness we 
will consider )3,0(   : . The cell is our particle and we designate it by H. The interval   is divided into h 
number of subintervals of equal length for positive, integer h. We model the multi-type age-dependent branching 
process tW with h different types of particles hHH ,...,1 depending on in which subinterval falls the growth rate.  
 

The particles of iH  evolve with lifetimes ),( 2*
iii N   , i=1,…,h, i.e. : 
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ijp  is the probability that a daughter of iH  is a  jH . Let us be conditions that each jH , j=1,…,h has fixed growth 

rate 
h

j
j 2

3)12(:  
 . Thus j  falls right in the middle of the j-th interval  j , j=1,…,h. 

 
),...,(:)( 21 hZZZtZ   is the number of particles of the different types at the moment t. On the end of the life, each 

particle splits, according to the probability law ijp  into two new particles from some of the fixed h types or dies 
without offspring. Namely, 
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Where jiijc  : and ijp  is the probability that a daughter of iH  is a  jH . 

Expected generation jH  , derived from parent iH  at the moment t is ))((: tZEm i
jij  < . The i-th generating 

function if  will determine the distribution of the number of offspring of various types to be produced by a type i 
particle. The reproductive behaviour of the particles is governed by an h-dimensional generating function f(s). 
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Where ),...( 1 hi jjp  is the probability that a type i parent produces 1j  particles of type 1,…, hj  of type h. 

))(),...,(()( 1 jpjpjp h  

))(),...,(()( 1 sfsfsf h  





hRj

j ssjpsf ,)()( unit cube and hR is the set of all points of h-dimensional  

Euclidean space with integer coordinates. 
 

Let )0,...0,1,0,...0(iе , with the 1 in the i-th  component, 
 

(3)  
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One can show that [10] : 
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3. Expectation and Asymptotic behavior of the Mean Number of cells 
 

3.1  Expectation 
 

Let  ijij eZtZEtm  0/)()(   and  ijmtU )(  be the matrix of means at time t, and let M be the particle 

production mean matrix associated with f(s). Let for any matrix C ),...,1,,max(: hjicC ij  .  If M , then 

)(tU  is bounded on finite intervals, and U(t) satisfies the matrix equation [9]: 
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(5)    
t
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Where D[x] is the diagonal matrix with ix  in the i-th place, and d[G(y)] is the diagonal matrix with dG(y) in the i-th 
entry. 
 

According [9] U(t) is the unique solution bounded on finite intervals. 
 

))(),...,(())(),...,(()(:)( 11 tEZtEZtZtZEtEZtА hh   

i.e. ))(),...,(()( 1 tAtAtА h   for )()( tEZtА ii  , i=1,…,h. 
 

By differentiating this equation it can be shown that the mean vector of the process, satisfies the linear equation  
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The solutions of the integral equation (6) (equation of the renewal) is: 
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3.2 Asymptotic behavior of the Mean Number of Cells 
 

It is known for one-type Bellman-Harris process )(^ tZ , with )(^:)(^ tEZtA  , ,1)1(^':^  fm   the relevant 
distribution function )(^ tG -continuous and  ^  -the corresponding Malthusian parameter: 
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From the last equation for our multi-type Bellman-Harris process we get following, 
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If we define 
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From above and for   ut :   we get, 
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From the last equation we get, 
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And finally: 
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Here  )(  erf  means the error function, 
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Under both designations above for Gaussian error-integral we have: 
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