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A Mathematical Model of a Chemical Reaction Mechanism for Self-healing Cement 
 

Joseph E. Bell1 & Dr. Tuwaner Lamar 
 

Abstract 
 
 

Cement structures play an integral role in modern day society but can suffer from many ailments. These 
ailments usually start as cracks in the cement. Research has been done to create a type of cement that will heal 
itself with the aid of Aspergillusnidulans fungi. The goal of this project is to use the data gathered from this 
research and create a mathematical model. Using concepts from physical chemistry and different equations 
this model will serve as a standard for this research. 
 

 

1. Introduction 
 

This is a project that utilizes chemistry and mathematics. The motivation of this project stems from a self 
healing cement experiment. We will first give a brief synopsis about the self healing cement experiment. Self-Healing 
Cement is a type of cement that heals without the aid of a maintenance team. In this experiment, the cement uses 
aspergillusnidulans fungi as a healing factor. The relative humidity of cement specimens was then plotted with respect 
to time. The mathematical part picks up from this point. Using the data points collected from a self healing cement 
experiment, we will create a mathematical model that will serve as a standard for a self healing cement project. 
 

2. Definitions 
 

There are a few definitions that need to be known before this project can be fully under-stood. The first is an 
elementary reaction. An elementary reaction shows how each molecule reacts to form the overall chemical reaction. 
This leads us to our next definition. A chemical reaction mechanism is the step by step sequence of elementary 
reactions by which overall chemical occurs. This is an important part of this project because we will convert these 
mechanisms into differential equations. The next definition is the rate law. The rate law is an equation that links the 
reaction rate with concentrations or pressures of reactants and constant parameters. The rate law is important because 
without it, we would not be able to create our model. For a generic chemical reaction aA + bBC, the rate law is r = 
k[A][B] where k is the rate constant and [A] , [B] are the concentrations of A and B in mol/L. 
 

3. Creating a Reaction Mechanism that Yields a Differential Equation 
 

In this section, we will see how a chemical reaction mechanism yields a differential equation. Consider the 
following set of elementary equations: 

 

퐴 
푘
⇌
푘

 퐵 

 

This equation is equivalent to the following two equations:퐴 푘→  퐵  and 퐵 푘→  퐴. We will use these two 
equations to get a set of differential equations. We would like to get a differential equation for each chemical in this 
equation. Let’s begin with 퐴. The chemical 퐴 is seen in each elementary equation so will have to use both.  
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Chemical 퐴 is being consumed at a rate of 푘  and 퐵 is being created at a rate of 푘 . This means 퐴 will have a 
negative rate while 퐵 will have a positive rate. So we now can create our first differential equation: 

 

푑[퐴]
푑푡

= −푘  [퐴] + 푘 [퐵] 
 

We must now construct our differential equation for 퐵. Looking at our elementary equations once again, we 
see that 퐵 is being consumed at a rate of 푘  and 퐴 is being created at a rate of 푘  . This means 퐵 will have a negative 
rate while 퐴 will have a positive rate. We can now create our second differential equation. 

 

푑[퐵]
푑푡

= 푘  [퐴] − 푘 [퐵] 
 

So, from our elementary equations we get the following system of equations: 
 

푑[퐴]
푑푡

= −푘  [퐴] + 푘 [퐵] 
푑[퐵]
푑푡

= 푘  [퐴] − 푘 [퐵] 
 

This will be the format for finding the differential equations for our chemical reaction mechanism. 
 

4. Examples 
 

In this section, we will give an example of how to find the differential equations from an actual chemical 
reaction. Consider the following chemical reaction mechanism: 

 

Complex Reaction: 2푁 푂  → 4푁푂 + 푂  

Elementary Step 1:푁 푂  

푘
⇌
푘

푁푂 + 푁푂  

Elementary Step 2: 푁푂 + 푁푂  
푘
→  푁푂 + 푁푂 + 푂  

Elementary Step 3:푁푂 + 푁푂 푘
→  2푁푂  

 

Using the same method discussed earlier, we get the following differential equations: 
 

푑[푁푂]
푑푡

= 푘 [푁푂 ][푁푂 ] −  푘 [푁푂][푁푂 ] 
푑[푁푂 ]
푑푡

= 푘 [푁 푂 ] − 푘 [푁푂 ][푁푂 ] + 2푘 [푁푂][푁푂 ] 
푑[푁푂 ]
푑푡

= 푘 [푁 푂 ] − (푘 + 푘 )[푁푂 ][푁푂 ] + 2푘 [푁푂][푁푂 ] 
푑[푂 ]
푑푡

= 푘 [푁푂 ][푁푂 ] 
 

We will now find an expression for [ ]with the help of the steady state approximation and some algebra. 
The chemical 푁푂  is not present in the final product of our complex reaction. This means it reacts so fast that we can 
set its derivative equal to zero. In other words, we have applied the steady state approximation to 푁푂 . 

 

Apply the Steady State Approximation to NO3: 
 

푑[푁푂 ]
푑푡

 푆푆퐴
≈  0 

[푁푂 ] 푆푆퐴
≈

푘 [푁 푂 ]
(푘 + 푘 )[푁푂 ] + 푘 [푁푂]

 

 



Bell & Lamar                                                                                                                                                                3 
 
 

 

Substituting  [ ]  into the equation we now have: 
 

푑[푁푂 ]
푑푡

 푆푆퐴
≈ 푘 [푁 푂 ]{1−

푘 [푁푂 ] − 2푘 [푁푂]
(푘 + 푘 )[푁푂 ] + 푘 [푁푂]} 

푑[푁푂 ]
푑푡

 푆푆퐴
≈ 푘 [푁 푂 ]{

푘 [푁푂 ] − 3푘 [푁푂]
(푘 + 푘 )[푁푂 ] + 푘 [푁푂]} 

 

If we look at our complex reaction again, we will see that the chemical 푁푂 is not present in the final solution. 
This means that we can apply the steady state approximation just as we did with 푁푂 . 
 

푑[푁푂]
푑푡

= 푘 [푁푂 ][푁푂 ] −  푘 [푁푂][푁푂 ] 푆푆퐴
≈  0 

[푁푂] 푆푆퐴
≈

푘
푘

[푁푂 ] 

so 
[ ]  푆푆퐴

≈ 푘 [푁 푂 ]{ [ ] [ ]
( )[ ] }+ 

 

this implies that our solution is: 
푑[푁푂 ]
푑푡

 푆푆퐴
≈

4푘 푘
푘 + 2푘

[푁 푂 ] 
 

5. My Chemical Reaction 
 

This brings us to the chemical reaction that is at the focus of this project. This mechanism has many 
chemicals, so keep in mind the methods discussed on how to find differential equations from chemical reaction 
mechanisms. 

 

퐶푎 푆푖푂 + 퐶푎 푆푖푂 + 퐶푎 퐴푙 푂 + 2(퐶푎 퐴푙퐹푒푂 ) + 푛퐻 푂 → 
퐶푎 퐴푙 (푆푂 ) (푂퐻) .. 26퐻2푂).퐻 푂 + 퐻 퐶푎푂 푆푖 + 3퐶푎(푂퐻)  

 

Elementary Step 1:퐶푎 퐴푙 푂 + 푆푂  →  퐶푎 퐴푙 (푆푂 ) (푂퐻) .. 26퐻 푂 
Elementary Step 2:(퐶푎 푆푖푂 ) + (퐻 푂)  →  퐻 퐶푎푂 푆푖 + 퐶푎 (푂퐻)  
Elementary Step 3:퐶푎 퐴푙 퐹푒 푂 + (퐻 푂)  → 퐹푒(푂퐻) + 퐶푎(퐹푒푂 )  
 

Now that we have our elementary steps, we can create a differential equation for each element. We will take 
each elementary step individually and create the differential equations. 
 

Elementary Reaction 1: 
 

퐶푎 퐴푙 푂 + 푆푂  →  퐶푎 퐴푙 (푆푂 ) (푂퐻) .. 26퐻 푂 
 

Using the same method discussed earlier we get the following differential equations: 
 

푑[퐶푎 퐴푙 푂 ]
푑푡

= −푘 [퐶푎 퐴푙 (푆푂 ) (푂퐻) .. 26퐻 푂] 
푑[푆푂 ]
푑푡

= −푘 [퐶푎 퐴푙 (푆푂 ) (푂퐻) .. 26퐻 푂] 
푑[퐶푎 퐴푙 (푆푂 ) (푂퐻) .. 26퐻2푂)]

푑푡
= 푘 [퐶푎 퐴푙 푂 ][푆푂 ] 

 

Elementary Reaction 2: 
 

(퐶푎 푆푖푂 ) + (퐻 푂)  →  퐻 퐶푎푂 푆푖 + 퐶푎 (푂퐻)  
 

Using the same method discussed earlier we get the following differential equations: 
 

푑[(퐶푎 푆푖푂 ) ]
푑푡

= −푘 [퐻 퐶푎푂 푆푖][퐶푎 (푂퐻) ] 
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푑[(퐻 푂) ]
푑푡

= −푘 [퐻 퐶푎푂 푆푖][퐶푎 (푂퐻) ] 
푑[퐻 퐶푎푂 푆푖]

푑푡
= 푘 [(퐶푎 푆푖푂 ) ][(퐻 푂) ] 

푑[퐶푎 (푂퐻) ]
푑푡

= 푘 [(퐶푎 푆푖푂 ) ][(퐻 푂) ] 
 

Elementary Reaction 3: 
 

퐶푎 퐴푙 퐹푒 푂 + (퐻 푂)  → 퐹푒(푂퐻) + 퐶푎(퐹푒푂 )  
 

Using the same method discussed earlier we get the following differential equations: 
 

푑[퐶푎 퐴푙 퐹푒 푂 ]
푑푡

= −푘 [퐹푒(푂퐻) ][퐶푎(퐹푒푂 ) ] 
푑[(퐻 푂)  ]

푑푡
= −푘 [퐹푒(푂퐻) ][퐶푎(퐹푒푂 ) ] 

푑[퐹푒(푂퐻) ]
푑푡

= 푘 [퐶푎 퐴푙 퐹푒 푂 ][(퐻 푂)  ] 
푑[퐶푎(퐹푒푂 ) ]

푑푡
= 푘 [퐶푎 퐴푙 퐹푒 푂 ][(퐻 푂)  ] 

 

So now, our system of differential equations is as follows: 
 

푑[퐶푎 퐴푙 푂 ]
푑푡

= −푘 [퐶푎 퐴푙 (푆푂 ) (푂퐻) .. 26퐻 푂)] 
푑[푆푂 ]
푑푡

= −푘 [퐶푎 퐴푙 (푆푂 ) (푂퐻) .. 26퐻 푂)] 
푑[퐶푎 퐴푙 (푆푂 ) (푂퐻) .. 26퐻 푂]

푑푡
= 푘 [퐶푎 퐴푙 푂 ][푆푂 ] 

 
푑[(퐶푎 푆푖푂 ) ]

푑푡
= −푘 [퐻 퐶푎푂 푆푖][퐶푎 (푂퐻) ] 

푑[(퐻 푂) ]
푑푡

= −푘 [퐻 퐶푎푂 푆푖][퐶푎 (푂퐻) ] 
푑[퐻 퐶푎푂 푆푖]

푑푡
= 푘 [(퐶푎 푆푖푂 ) ][(퐻 푂) ] 

푑[퐶푎 (푂퐻) ]
푑푡

= 푘 [(퐶푎 푆푖푂 ) ][(퐻 푂) ] 
푑[퐶푎 퐴푙 퐹푒 푂 ]

푑푡
= −푘 [퐹푒(푂퐻) ][퐶푎(퐹푒푂 ) ] 

푑[(퐻 푂)  ]
푑푡

= −푘 [퐹푒(푂퐻) ][퐶푎(퐹푒푂 ) ] 
푑[퐹푒(푂퐻) ]

푑푡
= 푘 [퐶푎 퐴푙 퐹푒 푂 ][(퐻 푂)  ] 

푑[퐶푎(퐹푒푂 ) ]
푑푡

= 푘 [퐶푎 퐴푙 퐹푒 푂 ][(퐻 푂)  ] 
 

Now that we have our system of differential equations, we would like to solve it. Before we can solve this, we 
must prove that there exist a unique solution for a system of equations. 
 

6. Theorem and Proof of the Existence of a Unique solution 
 

We will now state and prove the existence theorem. Consider the system of differential equations with 
unknown functions푦 ,푦 , … ,푦  
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푦 ′ (푥) = 퐹 (푥,푦 (푥),푦 (푥), … ,푦 (푥)) 
푦 ′ (푥) = 퐹 (푥,푦 (푥),푦 (푥), … ,푦 (푥)) 

⋮ 
푦 ′ (푥) = 퐹 (푥,푦 (푥),푦 (푥), … ,푦 (푥)) 

Theorem 
 

Suppose that F is continuous and has continuous bounded partial derivatives. Then there  is a unique set of 
functions (푦 (푥),푦 (푥), … ,푦 (푥)) defined in [푥 − 푎, 푥 + 푎] for all  

 

푥 ∈ [푥 − 푎, 푥 + 푎] 
 

Proof 
 

Suppose that F is continuous and has continuous bounded partial derivatives. 
 

Define Region 
 

푅 = { 푥,푦 ,푦 , … ,푦 : 푥 − 푎 ≤ 푥 ≤ 푥 + 푎,−∞ < 푦 < ∞,−∞ < 푦 < ∞…−∞ < 푦 < ∞} 
Let Ф , (푥) = 푦 ,  ; Ф , (푥) = 푦 , …Ф , (푥) = 푦 ,  
Then Ф , = 푦 , + ∫ 퐹 푡,Ф , (푡),Ф , (푡) 푑푡 

Ф , = 푦 , + 퐹 푡,Ф , (푡),Ф , (푡) 푑푡 

⋮ 

Ф , = 푦 , + 퐹 푡,Ф , (푡),Ф , (푡) 푑푡 
 

Because we can integrate, we can find a unique solution to this set of differential equations within this 
region. This is a general proof of the existence of a unique solution. We will now model our system based off of the 
proof. Beginning with our first differential equation, we will continue until all the equations are done: 
 

Equation 1 
 

푑[퐶푎 퐴푙 푂 ]
푑푡

= −푘 [퐶푎 퐴푙 푆푂 ) (푂퐻) .. 26퐻 푂] 

푦 ′ (푥) =
푑[퐶푎 퐴푙 푂 ]

푑푡
 

퐹 = −푘 [퐶푎 퐴푙 푆푂 ) (푂퐻) .. 26퐻 푂] 
푦 = 퐶푎 퐴푙 푆푂 ) (푂퐻) .. 26퐻 푂 
 

Equation 2 
 

푑[푆푂 ]
푑푡

= −푘 [퐶푎 퐴푙 (푆푂 ) (푂퐻) .. 26퐻 푂)] 

푦 ′ (푥) =
푑[푆푂 ]
푑푡

 
 
퐹 = −푘 [퐶푎 퐴푙 푆푂 ) (푂퐻) .. 26퐻 푂] 
푦 = 퐶푎 퐴푙 푆푂 ) (푂퐻) .. 26퐻 푂 
 

Equation 3 
 

푑[퐶푎 퐴푙 (푆푂 ) (푂퐻) .. 26퐻 푂]
푑푡

= 푘 [퐶푎 퐴푙 푂 ][푆푂 ] 

푦 ′ (푥) =
푑[퐶푎 퐴푙 (푆푂 ) (푂퐻) .. 26퐻 푂]

푑푡
 

퐹 = 푘 [퐶푎 퐴푙 푂 ][푆푂 ] 
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푦 = [퐶푎 퐴푙 푂 ] 
푦 = [푆푂 ] 
 
Equation 4 
 

푑[(퐶푎 푆푖푂 ) ]
푑푡

= −푘 [퐻 퐶푎푂 푆푖][퐶푎 (푂퐻) ] 

푦 ′ (푥) =
푑[(퐶푎 푆푖푂 ) ]

푑푡
 

퐹 = −푘 [퐻 퐶푎푂 푆푖][퐶푎 (푂퐻) ] 
푦 = [퐻 퐶푎푂 푆푖] 
푦 = [퐶푎 (푂퐻) ] 
 

Equation 5 
 

푑[(퐻 푂) ]
푑푡

= −푘 [퐻 퐶푎푂 푆푖][퐶푎 (푂퐻) ] 

푦 ′ (푥) =
푑[(퐻 푂) ]

푑푡
 

퐹 = −푘 [퐻 퐶푎푂 푆푖][퐶푎 (푂퐻) ] 
푦 = [퐻 퐶푎푂 푆푖] 
푦 = [퐶푎 (푂퐻) ] 
 

Equation 6 
 

푑[퐻 퐶푎푂 푆푖]
푑푡

= 푘 [(퐶푎 푆푖푂 ) ][(퐻 푂) ] 

푦 ′ (푥) =
푑[퐻 퐶푎푂 푆푖]

푑푡
 

퐹 = 푘 [(퐶푎 푆푖푂 ) ][(퐻 푂) ] 
푦 = (퐶푎 푆푖푂 )  
푦 = (퐻 푂)  
 

Equation 7 
 

푑[퐶푎 (푂퐻) ]
푑푡

= 푘 [(퐶푎 푆푖푂 ) ][(퐻 푂) ] 

푦 ′ (푥) =
푑[퐶푎 (푂퐻) ]

푑푡
 

퐹 = 푘 [(퐶푎 푆푖푂 ) ][(퐻 푂) ] 
푦 = (퐶푎 푆푖푂 )  
푦 = (퐻 푂)  
 

Equation 8 
 

푑[퐶푎 퐴푙 퐹푒 푂 ]
푑푡

= −푘 [퐹푒(푂퐻) ][퐶푎(퐹푒푂 ) ] 

푦 ′ (푥) =
푑[퐶푎 퐴푙 퐹푒 푂 ]

푑푡
 

퐹 = −푘 [퐹푒(푂퐻) ][퐶푎(퐹푒푂 ) ] 
푦 = 퐹푒(푂퐻)  
푦 = 퐶푎(퐹푒푂 )  
 

Equation 9 
 

푑[(퐻 푂)  ]
푑푡

= −푘 [퐹푒(푂퐻) ][퐶푎(퐹푒푂 ) ] 
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푦 ′ (푥) =
푑[(퐻 푂)  ]

푑푡
 

퐹 = −푘 [퐹푒(푂퐻) ][퐶푎(퐹푒푂 ) ] 
푦 = 퐹푒(푂퐻)  
푦 = 퐶푎(퐹푒푂 )  
Equation 10 
 

푑[퐹푒(푂퐻) ]
푑푡

= 푘 [퐶푎 퐴푙 퐹푒 푂 ][(퐻 푂)  ] 

푦 ′ (푥) =
푑[퐹푒(푂퐻) ]

푑푡
 

퐹 = 푘 [퐶푎 퐴푙 퐹푒 푂 ][(퐻 푂)  ] 
푦 = 퐶푎 퐴푙 퐹푒 푂  
푦 = (퐻 푂)   
 

Equation 11 
 

푑[퐶푎(퐹푒푂 ) ]
푑푡

= 푘 [퐶푎 퐴푙 퐹푒 푂 ][(퐻 푂)  ] 

푦 ′ (푥) =
푑[퐶푎(퐹푒푂 ) ]

푑푡
 

퐹 = 푘 [퐶푎 퐴푙 퐹푒 푂 ][(퐻 푂)  ] 
푦 = 퐶푎 퐴푙 퐹푒 푂  
푦 = (퐻 푂)   
 

So, our system of differential equations is as such: 
 

푦 ′ (푥) = 퐹 (푦 ) 
푦 ′ (푥) = 퐹 (푦 ) 
푦 ′ (푥) = 퐹 (푦 ,푦 ) 
푦 ′ (푥) = 퐹 (푦 ,푦 ) 
푦 ′ (푥) = 퐹 (푦 ,푦 ) 
푦 ′ (푥) = 퐹 (푦 ,푦 ) 
푦 ′ (푥) = 퐹 (푦 ,푦 ) 
푦 ′ (푥) = 퐹 (푦 ,푦 ) 
푦 ′ (푥) = 퐹 (푦 ,푦 ) 
푦 ′ (푥) = 퐹 (푦 ,푦 ) 
푦 ′ (푥) = 퐹 (푦 ,푦 ) 
 

As shown in the above equations, we can fit our system of differential equations into the format of the 
proof. So how does this proof let us know that our system of differential equations has a unique solution? Let’s look 
at the two criteria for the theorem. Firstly, our equations must be continuous. All of our equations are polynomials. 
Polynomials are continuous so all our equations are continuous. The second states that all the partial derivatives 
must be continuous and bounded. We will now take the partial derivatives of our system and check whether this is 
true.  
 

7. Partial Derivatives 
 

As stated in the previous section, we must take the partial derivatives of each equation. They are as follows: 
 

휕퐹
휕[퐶푎 퐴푙 (푆푂 ) (푂퐻) .. 26퐻 푂]

= −푘  
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휕퐹
휕[퐶푎 퐴푙 푂 ]

= 푘 [푆푂 ] 

휕퐹
휕[푆푂 ]

= 푘 [퐶푎 퐴푙 푂 ] 

휕퐹
휕[퐻 퐶푎푂 푆푖]

= −푘 [퐶푎 (푂퐻) ] 

휕퐹
휕[퐶푎 (푂퐻) ] = −푘 [퐻 퐶푎푂 푆푖] 

휕퐹
휕[(퐶푎 푆푖푂 ) ] = 푘 [퐻 푂] 

휕퐹
휕[퐻 푂] = 푘 [(퐶푎 푆푖푂 ) ] 

휕퐹
휕[퐹푒(푂퐻) ] = −푘 [퐶푎(퐹푒푂 ) ] 

휕퐹
휕[퐶푎 퐴푙 퐹푒 푂 ] = 푘 [(퐻 푂)  ] 

휕퐹
휕[(퐻 푂)  ]

= 푘 [퐶푎 퐴푙 퐹푒 푂 ] 
 

So now we have our partial derivatives. Each partial derivative is a polynomial so we know it is continuous. 
We define these partial derivatives on a finite region which means they are bounded by that region. With the criteria 
of the theorem met, we now know that there exists a unique solution for our system of equations. 
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