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Abstract 
 
 

We present several general  integral inequalities for convex and concave mappings. 
Some new inequalities of  the Simpson’s type and the Hermite-Hadamard’s type are 
obtained. Finally, some applications to special means of real numbers are also given.  
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1.  Introduction 
 

Let f : I RR be a convex function on the interval I of real numbers and 

a,bI with ab. The inequality  
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is known as Hermite-Hadamard’s inequality for convex functions. Both inequalities 
hold in the reversed direction if f is concave. (Dragomir) 1 
 

In Mitrinović, [6, pp 64], the inverse of Hölder’s inequality is given by the 
following theorem: 
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 In  Latif,  Pečarić  &  Peric, [5], Favard’s inequality is given by the following 
theorem: 
 

Theorem B: Let f be a concave nonnegative function on ],[ ba . If 1q , 
then  
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If 10  q , the reverse inequality holds. 

 
In the literature, the following definition is well known: 

 
Let   Rbaf ,:  and Rp . The p-norm of the function f on  ba,  is 

defined by 
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and  baLp ,  is the set of all functions   Rbaf ,:  such that pf .  
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 For several recent results concerning Hermite-Hadamard inequality and 
double integral inequalities, we refer the reader to Kirmaci [3-4].  
 

In this paper, we derive several general integral identities for convex and 
concave mappings. Some new  Simpson’s type , midpoint type  and trapezoid type 
inequalities are written. Further, some applications for special means of real numbers 
are provided. 
  
2. Main Results 

 
Firstly, we start by the following lemma: 
 

Lemma: Let RRIf :  be twice differentiable mapping on 0I  such that 

 baLf ,"  and 10   , where Iba ,  with ba  . Then we have the equality 
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Proof:  By integration by parts twice, we obtain 
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By adding these equalities side by side and by multiplying both sides by 

)(2/1 ab  , we obtain equality (2). 
 

Remark : Taking 
2

ab 
  in (2), we obtain the identity 
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which may be found in Dragomir, Cerone  & Sofo( [1, pp. 38] and [2]). 

 
Therefore, we can state the following results:  

 
Theorem 1: Let RRIf :  be twice differentiable mapping on 0I such 

that  baLf ," , where Iba ,  with ba  .  If  the mapping 
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is convex on  ba, , then we have the inequality, for 10    
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Proof: Applying the first inequality of Hermite-Hadamard for the mapping   
we write 
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Applying the Bullen’s inequality for the mapping  , we have 
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Adding all these inequalities and from (2), we obtain inequality (3). Thus the 
proof   is completed. 
 

Theorem 2: Let RRIf :  be twice differentiable mapping on  oI .  If 

 baLf ,"  and 푓" is a positive mapping for all   oIbax  , and the mapping )(x

is convex on  ba, ,  then we have the inequality, for 10    
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where )6,...,1(, ii are given by (7)-(12) respectively. 
 

Proof: By  Chebychev integral inequality  for asynchronous mappings, we 
have the following inequalities: 
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By integration by parts, we have the following equalities: 
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Substituting equalities (7),(8),(9) in inequality (5), we have 
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Substituting equalities (10),(11),(12) in inequality (6), we have 
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Adding (13) and (14), we obtain  
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By (15) and using left hand side of double inequality (3), we deduce double 

inequality (4). 
 
This concludes the proof. 
  

Theorem 3: Let RRIf :  be twice differentiable mapping on 0I .  Let  

|푓"| be q-Lebesque integrable on [푎,푏], where Iba ,  with ba  . Let on [푎, ), 

mappings qxg )(1  and qxf )("  and on [ ,푏], mappings qxg )(2  and qxf )("  be 
monotone in the same sense and integrable. If  the mapping )(x is concave 
nonnegative on  ba, , then we have the inequality, for 1q  and 10    
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Proof: Applying the second inequality of Hermite-Hadamard for the concave 

nonnegative mapping  , we write 
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Adding these inequalities and from (2), we obtain  
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Also, applying the Favard’s inequality for the mapping  , we obtain for 1q , 
 

q

ba

a

q
q

ba

a

dxx
ab

qdxx
ab

/1
2/12

))(2(
2

)1()(2









  

 
And 



Uğur S. Kirmaci                                                                                                                  115 
  
 

 

q
b

ba

q
qb

ba

dxx
ab

qdxx
ab

/1

2

/1

2

))(2(
2

)1()(2

 





  

 
Adding these inequalities and from (2), we obtain  
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By Chebyshev’s inequality, we deduce  
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Using the change of the variable 
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Substituting equalities (19),(20) and inequality (21) in inequality (18), we have 
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From (17) and (22), we deduce inequality (16). This concludes the proof. 
                

Theorem 4: Let RRIf :  be twice differentiable mapping on 0I .  Let 

|푓"| be q-Lebesque integrable on [푎,푏], where Iba ,  with ba  .  Let on [푎, ), 

mappings qxg )(1  and qxf )("  and on [ ,푏],  mappings qxg )(2  and qxf )("  be 
monotone in the opposite sense and integrable. If  the mapping )(x is concave 
nonnegative on  ba, , then we have the inequality, for 10  q  and 10    
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Proof: Applying the first inequality of Hermite-Hadamard for the concave 
nonnegative mapping  , we obtain inequalities 
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Since on [푎, ),  mappings qg1  and qf "  and on [ ,푏], mappings qg2  and
qf "  are monotone in the opposite sense and integrable, we may apply Chebyshev’s 

inequality. Hence, we write 
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From (24) and (25), we get inequality (23). This concludes the proof. 
 
3. Applications to Quadrature Formulas 
 
 From  the double inequalities in Section 2, we obtain the following new 
inequalities of the midpoint type, trapezoid type and  Simpson’s type:  
 
Proposition 1: With the assumptions Theorem 1,  
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Proposition 2: With the assumptions Theorem 2, 
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Proposition 4: With the assumptions Theorem 4, for 10  q  
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4. Applications To Special Means 
 

we shall consider the means for arbitrary real numbers ,,. We  take 
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Proof: The assertion follows from Theorem 1 applied for 3

6
1)( xxf  . 

Proposition 6: Let  ba 0 . Then we have the inequality   
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Proposition 7: Let  ba 0 . Then we have the inequality, for 1q    
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Proof: The assertion follows from Proposition 3-ii  applied for 2)( xxf  . 
 
Proposition 8: Let  ba 0 . Then we have the inequality, for 10  q  
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Proof: The assertion follows from Proposition 4-i  applied for 2)( xxf  . 
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