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On New Integral Inequalities with Applications

Ugur S. Kirmaci'

Abstract

We present several general integral inequalities for convex and concave mappings.
Some new inequalities of the Simpson’s type and the Hermite-Hadamard’s type are
obtained. Finally, some applications to special means of real numbers are also given.
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1. Introduction

Let f: lc R—R be a convex function on the interval | of real numbers and
a,bel with a<b. The inequality

f(aT”’j < bif F(dx < @+ T0) (a); f(b)

a

is known as Hermite-Hadamard’s inequality for convex functions. Both inequalities
hold in the reversed direction if f is concave. (Dragomir) [1]

In Mitrinovié, [6, pp 64], the inverse of Holder’s inequality is given by the
following theorem:
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Theorem A: Let functions x — f(x)? and x — g(x)? where %4‘%:1 and

p>1 be positive and integrable on [a,b] and let on [a,b],
O<m < f(X)<M; <400, 0<m, < g(X) <M, <+o. Then

(if(x)pdxj p(ig(x)quj qscpj{f(x)g(x)dx

Mlng — mlpmg

- . - .
(meMZ(MlMS l_mlmg 1))1/p(qmlM1(M2Mlp l_mZmlp 1))1/q

WhereCp =

In Latif, Pecari¢ & Peric, [5], Favard’s inequality is given by the following
theorem:

Theorem B: Let f be a concave nonnegative function on [a,b]. If gq>1,
then

22 (1" oot
—— | —— | f(X)dx | > f(x)*dx
q+1(b—a£ ) j b—a! )

If 0<q<1, the reverse inequality holds.

In the literature, the following definition is well known:

Let f:[a,b]>R and peR*. The p-norm of the function f on [a,b] is
defined by

b 1/p
”f” _ (I|f(X)|de] , O0< p <o
p a
sup| f ()|, p=oo

and L°[a,b] is the set of all functions f :[a,b] - R such that |[f] <.
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For several recent results concerning Hermite-Hadamard inequality and
double integral inequalities, we refer the reader to Kirmaci [3-4].

In this paper, we derive several general integral identities for convex and
concave mappings. Some new Simpson’s type , midpoint type and trapezoid type
inequalities are written. Further, some applications for special means of real numbers
are provided.

2. Main Results

Firstly, we start by the following lemma:

Lemma: Let f:1 c R— R be twice differentiable mapping on 1° such that
f"e L[a,b] and 0< 1 <1, where a,be | with a<b. Then we have the equality

a+b

1 a+b a+b
2(b—a) !( —a)(——x Ajf (x)dx+aj+'b(b x)(x—T—Ajf "(X)dx | =
Can (A D)g(ath) (1 A \T@+1®)_ 1}
_A(X’l)_(b—a%jf( 2 j+(2 b—aj 2 b_alf(x)dx @)

Proof: By integration by parts twice, we obtain

_ f( _a)(a—”’_x ljf '(X)dx =

a+b

(22 5o

and

J'(b x)(x—aTer—ljf "(x)dx =

aib
2
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b-a.. (a+b b-a).(a+b) (b-a p
== lf( . j{m > jf( . j+( . —ljf(b)—ZaJ;bf(x)dx

By adding these equalities side by side and by multiplying both sides by
1/2(b—a), we obtain equality (2).

Remark : Taking A = _b—Ta in (2), we obtain the identity

f(a) + f (b)

b
] (x — a)(b - 2)f"(X)dx = (b — a)( )= [ r@ax

which may be found in Dragomir, Cerone & Sofo( [1, pp. 38] and [2]).

Therefore, we can state the following results:

Theorem 1: Let f:1 c R— R be twice differentiable mapping on 1°such
that f"< L[a,b], where a,be | with a<b. If the mapping

—a)(a—er—x A]f "(X) ,XE[a,aTerj

o(x) =
(b- x)(x—aT”’—zjf '(X) ,XE[""T”’ b}

is convex on [a,b], then we have the inequality, for 0< 4 <1

t)_—a(m—lj{f"(sa+bj+ f"(a+3bﬂ£A(x,l)£
16 \ 4 4 4

. b—a(m_lj{f,,(%m}r f,,(a+3bﬂ_b—aﬂ,,(a+bj Q)
32 4 4 4 16 2
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Proof: Applying the first inequality of Hermite-Hadamard for the mapping ¢
we write

2 3 3a+b b-a(b-a 3a+b
_— X)dx > = -1 f"
b—a!:(p() ‘44) 4(4 j(4j

Applying the Bullen’s inequality for the mapping ¢ , we have

a+h [ a+b
2 % 1 (zarb) " 2 )| boafbea ). 3+b) boa_.(a+b
< j PX)dx<= «{ j+ _ ( _ /ij..( j Af,.( j
b-a 2 4 2 g8 | 4 4 3 >
and ) )
i a+bj i
b ({ +¢(b) o )
ij'go(x)dxgl w{a+33j+ 2 _b a(b a_ljf,,(a+3bj b aﬂ,,(aerj
b-az, 2\ 4 2 8 \ 4 4 ) 8 2

2

Adding all these inequalities and from (2), we obtain inequality (3). Thus the
proof is completed.

Theorem 2: Let f :1 < R — R be twice differentiable mappingon 1°. If
f'e L[a,b] and f" is a positive mapping for all x e [a,b]c I °and the mapping ¢(x)
is convex on [a,b], then we have the inequality, for 0< 4 <1
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b—a(b—a_lj f,,(3a+bj+f,,(a+3bj < A(X 1) < 1 0, | 0
16 | 4 4 4 2b-a) a;  ag

(4)

where «;, (i =1,...,6) are given by (7)-(12) respectively.

Proof: By Chebychev integral inequality for asynchronous mappings, we
have the following inequalities:

%b . j x-a)f' (x)dxj (—x—/mjf '(X)dx
=2 I X— a)(—x—ljf '(X)dx< T 2 (5)
’ ff"(x)dx
jl(b X)f()dx [ (x—aer—l)f '(X)dx
i ki ©)

T b— x)(x—aer—l)f '(X)dx<
a) 2 2b—a)

jlf"(x)dx

By integration by parts, we have the following equalities:

ath

j(x a) " (x)dx = (bzajf'(a%bj—f(a;bj f(a) =a, (7)

a+b

Ha—”’—x /ij '(X)dx = (A - ( ;aj)f'(a)—lf'(a;b)+f(a;bj—f(a)=062 (8)

a+b

f £ (x)dx = f'("%bj— f'@)=a, ©)

a

j)'(b—x)f"(x)dx=—( jf(‘”b) (a;bj+f(b)=a4 (10)

dib
2
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Hx—‘%b—zjf "(X)dx —(( j ' (b)+ A (a—+b) f(a;bj fb)=c; (11)

aib
2

j Fr (x)dx_f(b)—f(a;bj o (12)

a+b

2

Substituting equalities (7),(8),(9) in inequality (5), we have

<1 %% (13)
2(b-a)l a,
Substituting equalities (10),(11),(12) in inequality (6), we have
1 a,a
I', < 29 14
27 2(b- a)( j (14

Adding (13) and (14), we obtain

1 oo, o0
AX,AD)=1"+1"< 172 475 15
(62) =+, Z(b_a)( + %] (15)

By (15) and using left hand side of double inequality (3), we deduce double
inequality (4).

This concludes the proof.

Theorem 3: Let f:1 « R — R be twice differentiable mapping on 1°. Let

[F"| be g-Lebesque integrable on [a, b], where a,be | witha<b. Let on [a, a+b)

mappings g, (x)? and f"(x)* and on [T’b]' mappings g,(x)? and f"(x)? be
monotone in the same sense and integrable. If the mapping(x)is concave
nonnegative on [a, b], then we have the inequality, for g>1and 0< A1 <1
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(q + 1)1/q 21/q

(1 ) {B(q+1q+1 1}1)} ||f"||qu(x,/1)s

32(b - a)q

gb_a(m—lj{f"(3a+bj+f"(a+3bﬂ (16)
16 4 4 4

where f"(x)*=(f"(x))? and

gl(x):(x—axaT”—x—z),gz(x) (b- x)(x—"%b—ﬂ)

Proof: Applying the second inequality of Hermite-Hadamard for the concave
nonnegative mapping ¢ , we write

o

a+

2 2 3a+b b-afb-a 3a+b
_ X)dx < = —-Af"
b—a£¢() (’)(4j 4(4 j(4j
And

b

2 J- P < (a+3bj:b—a(b—a_ljf,,(a#ﬂb.j

b-a,’ 4 4\ 4 4

Aain
2

Adding these inequalities and from (2), we obtain
b-a 3a+b a+3b
< A f" f 17
2(b—>f(’)() 16(4 j{(4j+(4ﬂ )

Also, applying the Favard’s inequality for the mapping ¢ , we obtain for q >1,

2 3 (q+)" 2 B y
= £¢(x)dx> (= j (x)7dx)""

And
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+1) 1/
(= a[;o(x)‘*dx) “

7 2

bi i (dx> D

Adding these inequalities and from (2), we obtain

2(b | j o(xX)dx >

Y22 (] a2 x ) a0 (| -0 (x- 2222 (070

a+h

~ 8(b—a)

2

By Chebyshev’s inequality, we deduce

a+b at+h

+ (jb (b—x)9(x —a—;b 2)Tdx)" (jb( £(x)7dx)"' (18)

Using the change of the variable x = (1—t)a+t(a—J2rbj and from dx = (b%ajdt,

we write

a+b

a+b b—a a+h, \(a+b a+h, .Y
! (x—a) (T_ - j dx ( > jb[((l—t)aﬂ( . )—aj( 5 —(-Ha-tE)- /mj
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1/(1-2,)

-(552] Jra-t-aye =52 @ear ra-yre

b—a 2p+l 2pit 1
:(Tj Q-4)""B(p+1, I0+1,1_}1) (19)
where, A = A t, = L (1-2)dt, B(p,q,x)= Jx.tp‘l(l—t)q‘ldt
1 (b_a)/z’ 1_}.1) 1 ) ) 0 ]
(p.q>0).

Similarly, using the change of the variable x = (1-t)b + t(a%b) and from

dx = (aT_bjdt . we have

p o, a+b )\ . (b-a)f a+b,) a+b, a+b
(b—X) (X—T— j dX—(Tjj(b—(l—t)b—t(T)j ((1—t)b+t(T)—T—lj dt

0

{%""j J.tp(l—t—},l)pdt :(b‘Taj Q-4 )""B(p+Lp+1,

0

1
=) @

b b
Let a, = ﬂ f(x)["dx,b, = J.|f"(x)|q dx. Here 0<1/q <1, for g>1. Using the fact

that,

Zn:(ak +b,)° szn:ai +Zn:bks
k=1 k=1 k=1

for 0<s <1, we obtain,
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11, _(j I (x)|qu)1’q<(j'|f ()| XM+ j £ ) = £ +[f]., (D)

Substituting equalities (19),(20) and inequality (21) in inequality (18), we have

Z(b_ | j p(x)dx

M(l ) q{B(q+1q+1 1/1 )} (LW IN Ny
32(b—a)° 1

M(l 3,1)2+{B(q+1q+1 1%)} 111, (22)
32(b-a)*

From (17) and (22), we deduce inequality (16). This concludes the proof.

Theorem 4: Let f:1 c R — R be twice differentiable mapping on 1°. Let
[F"| be g-Lebesque integrable on [a, b], where a,be | with a<b. Leton [a, azi),
mappings g, (x)? and f"(x)* and on [azi,b], mappings g,(x)? and f"(x)? be
monotone in the opposite sense and integrable. If the mapping ¢(x)is concave
nonnegative on [a, b], then we have the inequality, for 0<g<1 and 0<A <1

1

qal/q 2=
32(b 61)q
where ||f"||q'a,||f"||q'b are given by (21), g,(x),g,(x) are as in Theorem 3 and

F00* = (£"(x)".

T
W ewaaagy] (i, @

Proof: Applying the first inequality of Hermite-Hadamard for the concave
nonnegative mapping ¢ , we obtain inequalities
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o co(a)+<0[a+bj

2 J—
bi.[(”(x)dxz 2 ) b alf,,[a+bj
_a a

2 4 2
And
a+b
b)
2 (D[ 2 jHD( b-a . (a+b

P > — "

— a_[go(x)dx 5 Z /lf[ : j

2

Adding these inequalities and from (2), we obtain

p b-a..[a+b
262 j;go(x)dxz— . /mf( : j (24)

Also, applying the Favard’s inequality for the mapping ¢ , we obtain for 0 <q <1,

2 B (q+1)“‘* 2 7 y
T j e j o(x)*dx)"
And

2 ¢ (q+1)"° p y
poa Jods= T = o Jotoran™

2 2

Adding these inequalities and from equality (2), we obtain

2(b1— ; [o0)dx <

a+b

g+ 2™ (.[( a)q(a+b

G £10 N\ AT p q a+b 0 £ ord andlg
= 8b_a)" X=A)" £()7dx" +( [ (0-x) (=22 (0"

b
2
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Since on [a, > ) mappings g, and f" and on [ﬂ b], mappings g, and

f"% are monotone in the opposite sense and integrable, we may apply Chebyshev’s
inequality. Hence, we write

asb asb

(q +1)1/q 21/q 21/q

2(b J-(P( ) 8(b a)l/q (b a)l/q (J- (X—a)q(a_;b—x—ﬂ,)qu)UQ( J-f"(X)qu)llq‘l'
(] ox0x - 8Dy RECE G

Using equalities (19) and (20), we obtain

1/q 21/q

j¢( o @2
32(b—a)"

ﬂ TENEIEIR

(25)

2( 1-4) q{B(q+1q+1
From (24) and (25), we get inequality (23). This concludes the proof.
3. Applications to Quadrature Formulas

From the double inequalities in Section 2, we obtain the following new
inequalities of the midpoint type, trapezoid type and Simpson’s type:

Proposition 1: With the assumptions Theorem 1,

(). If 1= _b—Ta, we have trapezoid inequality

3(b-a)? f,,(3a+bj+f,,(a+3bj <[f(a)+f(b)}_ 1 Tf(x)dK
64 4 4 B 2 b-asy B

SB(b—a)z{f,,(BaerjJrf,,(a+3bﬂ+(b—a)2 f,,(a+bj
128 4 4 32 2




120 American Review of Mathematics and Statistics, Vol. 2(2), December 2014

(i). If A = b_Ta, we have midpoint inequality

_(b—wz{p(3a+b)+r(a+3€ﬂﬁf(gigj‘_l_ifWX“S
64 4 4 2/ brag

_(b—a)z{f,,(3a+bj+ f,,(a+3bﬂ_(b—a)2 f,,(a+bj
128 4 4 32 2

(iii). If A = bjTa, we have simpson inequality

Og[f(a)drf(b)}rgf(a_mj_iif(x)dxg_(b—a)z f,,(a+bj
6 3 2 ) b-aj 64 2

Proposition 2: With the assumptions Theorem 2,

(). If 1= bjTa, we have simpson inequality

o< MO, 2 (0] 3 e 2 (s )
6 3 b-a o,

2 2(b-a) o
where, o, = (b jf()—u———f(iiE) (339)—f(ay
o, = (b ajf (b) + (a;b)+f(a;bj—f(b) and o, a,,a,, agare given

by (7,9,10,12) respectlvely.

(i). If A = b_Ta, we have midpoint inequality

_(b-a)? {f,,(3a+bj+ f"(a+3bﬂﬁ f(a_mj_ij{f(x)dxﬁ
64 4 4 2 ) b-ag
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< 1 G, | A
2(b-a)| o, o

b-a_,a+b a+b

where,a, = —— f'(——)+ f| —— |- f (a),

@ =22 r@L0) ( . j (@

o _b-a f'(a+b)+ f(a;b)_ £ (b)

2 2
and oy, 05, a,, 04 are given by (7,9,10,12) respectively.
Proposition 3: With the assumptions Theorem 3, for g >1

(). If 1= _b—Ta, we have trapezoid inequality

f(@+fp) 1
2 b-a

1
(q +1)1/q(b _ a‘)2—1/q 49 1 1/q y
5 B(A+14+12) [, <

. 3(b—a)2{f,,(3a+bj+ f,,(a+3bﬂ
64 4 4

(i). If A = bjTa, we have simpson inequality

j). f(x)dx <

1/ 2-1/
@+ 0= g1 +12)19) 1, <

128
S[M}rgf(a_mj_ij'f(x)dxgo
6 3 2 ) b-a’

Proposition 4: With the assumptions Theorem 4, for 0 <q <1

(). If 1= bjTa, we have simpson inequality
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ey f"(a+bjg[f(a)+f(b)}+gf(a_mj_ij'f(x)dxg
32 2 6 3 2 b_aa

@) b2y

B(q+10q +1,2)]1/q(|| f""q,a +| f"”q,b)

128
(i). If 1= _b—Ta, we have trapezoid inequality
_a)2 b
(b-a) f,,(a+bjS f(@a+fb) 1 If(x)dxg
16 2 2 b-as

1
@+ (b—a)*"4
B 8

1 1/q
[B(q +1q +1’§)} (L A

4. Applications To Special Means

we shall consider the means for arbitrary real numbers o, 3,0#p3. We take

Ao,p) = « ; p , o,peR, (arithmetic mean)
n+1 n+1 L/n
L,(c,B) {(nﬂ—kl)(ﬁ} , NeZ\{-1,0}, a,feR, a# B, (generalized log-mean)

For the results in Sections 2-3, we give some applications to special means of
real numbers.

Proposition 5: Let 0=a <b. Then we have the inequality, for0< A1 <1

b;a(b;a_}b){p{_3a+b’_a+3bﬂS

4 4

1, 2 1, 14 3 p3) |4 L
s—g[(m+E)A (a.b)+( - - ")Alatb )}ELS(a,b)s
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Sb—a(b—a_l) A(_3a+b,_a+3bj —b_a/IA(—a,—b)
16 4 4 4 16

Proof: The assertion follows from Theorem 1 applied for f (x) = —%xs.

Proposition 6: Let 0=a <b. Then we have the inequality

3b— 2 b 1 5(b — a)? b

Proof: The assertion follows from Proposition 1-i applied for f(x) = —%xs.

Proposition 7: Let 0 <a <b. Then we have the inequality, forq >1

1/q Y
@02 [(q 41,9412 <2 AG D)+ 2 A2 @D) - Li(ab) <0

Proof: The assertion follows from Proposition 3-ii applied for f(x) = x>.

Proposition 8: Let 0 <a <b. Then we have the inequality, for 0 <q <1

_(b- af
16
. +1)"e (b -a)’
B 32(2)"

A(a B Az(ab) L2(a,b) <

[B(q+1,q+12)]"

Proof: The assertion follows from Proposition 4-i applied for f (x) = x>.
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