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Abstract 
 
 

In this paper, we deal with the existence of a positive solution for 2ndand 3rdorder 
boundary value problem by first defining their respective Green’s function. 
TheGreen’s function isused to derive the Green’s  function for the 2nth and 3nth 
order boundary value problem, respectively, wheren is a positive integer. The Green’s 
function is also used to derive conditions for positive solution of the 2nth and 3nth 
ordereigen value differentialequation, respectively. 
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1 . Introduction 
 

This paper focuses on determining eigen values λ, for which there exist 
positive solutions, with respect to a cone, of the nonlinear eigen value dynamice 
quation 

 
푦 ′′ + 휆푓(푡, 푦) = 0,      푡 ∈ [푡 , 푡 ], 

 
Subject to the two-point boundary conditions 
 

훼 푦(푡 ) + 훼 푦 ′(푡 ) = 0, 
훼 푦(푡 ) + 훼 푦 ′(푡 ) = 0. 
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Also,we consider the 3rd-order eigen value problem 
 

푦 ′′′ = 휆푓(푡,푦),      푡 ∈ [푡 , 푡 ] 
 
subject to the three-point boundary conditions 
 

푦(푡 ) = 훽
푦(푡 ) = 훽
푦(푡 ) = 훽

 

 
Boundary value problems for higher order differential equations play a role in 

both theory and applications. The existence of positive solutions for two-point 
eigenvalue problems has been studied by many researchers by using the Guo-
Krasnosel'skii fixed point theorem. We refer readers to Davis, J.M. Henderson, J, 
Prasad, K.R. &Yin, W. (2000), Eloe, P.W. &Henderson, J (1998), Erbe L.H.&Wang 
H.(1994), Karna, Basant& Lawrence, Bonita (2007)  for some recent results. 
However, few papers can befound in the literature for third order three-point 
boundary value problems (BVPs) (Prasad, K.R. and Rao, Kameswara (1991)). Some 
papers like Anderson, D.R. & Davis, J.M. (2002) deal with existence of positive 
solutions when the nonlinear term f  is nonnegative. In this paper, we deal with the 

existence of a positive solution for the 2nd  and3rd  order BVPs by first defining their 
respective Green's function. These Green's function are used to derive the Green's 
function for the 2 thn  and3 thn  order BVP, respectively. The Green's function is also 
used to derive the condition for which a positive solution of the 2 thn  order 
eigenvalue differential equation can be derived. 

 
The rest of this paper is organized as follows: 
 

In Section 2, we compute Green's function for a two-point boundary value 
problem on �  and also find conditions under which a positive solution will exist for 
the two-point problem. In Section 3, we derive Green's functions for even order 
BVPs and also compute the bounds for the Green's function. These bounds are used 
to proof the existence of positive solution(s) for 2 thn  order BVPs. In Section 4, we 
find the conditions in which positive solution(s) will exist for the three-point 
boundary value problem. 
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2. Second Order Boundary Value Problem on �   
 

In this section, we consider the second order boundary value eigenvalue 
problem on � . 

 
2.1  Solution of the Second Order Differential Equation   
 
Consider the second order eigenvalue BVP  
 

   1 2     ''( ) ( , ( )) 0         , [ , ]y t f t y t t t t     (1) 
 

11 1 12 1( ) ' ( ) 0y t y t  

21 2 22 2( ) ( ) 0.y t y t   
(2) 

 
where 1 2: [ , ]f t t   � � is continuous, and 훼 ,훼 ,훼 ,훼  are real constant. 
We will assume the following condition:  
 

푨ퟏ: 1 2: [ , ]f t t   � � is continuous. 
 

We define the nonnegative numbers 0
0 , ,f f f  and f   by 

 

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧

1 2
0 [ , ]0

( , )lim min
t t ty

f t yf
y 



1 2

0

[ , ]0

( , )lim max
t t ty

f t yf
y 



1 2[ , ]

( , )lim min
y t t t

f t yf
y  



1 2[ , ]

( , )lim max
y t t t

f t yf
y



 


(3) 

 
and assume that they all exist in the extended reals. 
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Now we are going to find the solution of the second order problem. We shall show 
that the solution 푦(푡) is of the form  

2

1

( ) ( , ) ( )
t

t
y t G t s g s ds   

 
where퐺(푡, 푠)will be defined later. 
 
Writing ''( ) ( , ( ))y t g t y t   where ( , ( )) ( , ( ))g t y t f t y t  and solving the differential 
equation (1) using Laplace transform, we have 
 

( ''( )) ( ( )).L y t L g t   
 
 This implies  

2 ( ( )) (0) '(0) ( ( ))s L y t sy y L g t    .  
Hence, 

2 2
1 1 1( ( )) (0) '(0) ( ( )).L y t y y L g t
s s s

    

 
Taking the inverse Laplace of both sides, we have 
 

1

( ) (0) '(0)  ( ) ( ) ,
t

t
y t y ty t s g s ds     

1

'( ) '(0) ( ) 
t

t
y t y g s ds    

 
Using the boundary conditions and solving for 푦(0) and 푦 ′(0),  we have 
 

    

⎩
⎪
⎨

⎪
⎧ 1(0) Ay

D




11(0) ' Ay
D




(4) 

 
where 
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⎩
⎪
⎨

⎪
⎧ 1 2( ) , 1,2i i i i it t i      

2

1
2 21( ) ( )

t

t
A s g s ds  

11 2 21 1.D     

(5) 

So, 

푦(푡) = 2

1 1
2 21 11 1

1 ( )( ) ( ) ( ) ( )
t t

t t
s t g s ds t s g s ds

D
         

Therefore, 

    
2

1

( ) ( , ) ( ) ,
t

t
y t G t s g s ds   

where 

  퐺(푡, 푠) =

⎩
⎪
⎨

⎪
⎧

1 11 21 2 1 2
1 ( )( )s t if t s t t
D

        ;

2 21 11 1 1 2
1 ( )( )s t if t t s t
D

        .
(6) 

 
Throughout this section, we will require the following conditions: 
 
푨 : 11 210, 0;    

푨ퟑ: 1 1 2 2
1 1

( ), where i i
i

i i

tm t t m m  
 

     , 푖 = 1, 2. 

 

Note: 1
1

11

t


 implies that  1 11 1 0.t    Thus, 12 0.   Also, 2
2

21

t


 implies

2 21 1 0t   . Thus 22 0  . 
 
 Now, we establish some preliminary results that will be used later. 
 

2.2 Properties of the function G(t, s) 
 

We give some Lemma on theabove function 퐺(푡, 푠). 
 
Lemma 1. 1 2 1 2( , ) 0 ( , ) [ , ] [ , ].G t s for t s t t t t    
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Proof. 

For 1 2t s t t   , using conditions 푨ퟏ and 푨ퟐ, we have 1 2

11 21

s t 
 

    so that 

11 2 21 1 0D       and 21 2 1 11
1( , ) ( )( ) 0.G t s t s
D

        

 

Also, for 1 2,t t s t    we have 1 2

11 21

t s 
 

    so that   ,   0.G t s  Therefore, 

1 2 1 2( , ) 0 ( , ) [ , ] [ , ].G t s for t s t t t t    
 
 
Lemma 2.The function ( , )G t s  satisfies the homogeneous differential equation 0 ''y  and the 
boundary conditions (2) for fixed s. 
Proof. 
 
Since ( , )G t s is a polynomial of degree one, then it satisfies  

2

1 2 1 22 ( , ) 0 ( , ) [ , ] [ , ].G t s t s t t t t
t


   


 

For 1 2 11 2 21
1, ( , ) ( )t t s t G t s s

t D
  

    


sothat 

11 1 12 1( , ) ( , ) 0.G t s G t s
t

  
 


Also for 1 2 21 1 11

1, ( , ) ( )t s t t G t s s
t D

  
    


so 

that 21 2 22 2( , ) ( , ) 0.G t s G t s
t

  
 


 

 
 
Lemma 3.For any fixed 1 2[ , ]s t t , the function ( , )G t s  is continuous for every 1 2[ , ]t t t . 
Proof. 
 
Clearly, ( , )G t s is continuous everywhere on 1 2 1 2[ , ] [ , ]t t t t since it is continuous at the 
point  .t s Hence, the proof is complete. 
 



Otunuga, Karna & Lawrence                                                                                                61 
 
 

 

Lemma 4. ( , ) '( , )G t s G t s
t





has a jump discontinuity with a jump of factor -1 at the 

point  .t s  
Proof. 

Here, we show that the limit of ( , )G t s
t



as t approaches s from above differ from its 

limit as t approaches s from below by 1 . 
 

' ( , ) ' ( , ) lim ' ( , ) lim ' ( , )
t s t s

G s s G s s G t s G t s
 

 

 
    

  = 21 1 21 11 11 2 11 21
1 ( )s s
D

           

  = 21 1 11 2
1 ( ) 1.
D

       

 
Lemma 5.Define 

 

1 2

1 2

[ , ]

( , ) ( , )min min , ,
( , ) ( , )s t t

G t s G t s
G s s G s s




  
   

  
(7) 

 
then0 1  . 
 
Proof. 
 
The proof follows from simple algebra and simplification. 
 
Theorem 1.Assume that conditions 1 3A A hold. Then, ( , ) ( , ) ( , ),G s s G t s G s s   where 

 

1 2

1 2

[ , ]

( , ) ( , )0 min min , 1.
( , ) ( , )s t t

G t s G t s
G s s G s s




  
    

  
(8) 

 
Proof. 
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Case (i): For 21
1 2 1 11, ( , ) ( ) 0,t s t t G t s s

D
        which implies that ( , )G t s is 

a decreasing function of t so that ( , ) ( , ).G t s G s s  

Also for 2
2

( , ) ( , ),
( , ) ( , )

G t s G t st t
G s s G s s

   which implies ( , ) ( , ).G s s G t s   

 

Case (ii): For 1 2 11 2 21
1, ' ( , ) ( ) 0.t t s t G t s s
D
        This implies that ( , )G t s

is an increasing function of t. Hence, ( , ) ( , ).G t s G s s  
 

Also, for 1,t t 1( , ) ( , )
( , ) ( , )

G t s G t s
G s s G s s

  and so we have ( , ) ( , ).G s s G t s   

Therefore, 1 2( , ) ( , ) ( , ) , .G s s G t s G s s for t t s t      
 
From Lemma2, 3 and 4, it follows that the function ( , )G t s  is the Green's function 
for the equation 
 

     1 2( ) 0, [ , ]y t t t t    
with boundary conditions 

11 1 12 1( ) ' ( ) 0y t y t  

21 2 22 2( ) ( ) 0.y t y t   
(9) 

 
2.3 Existence of Positive Solutions 
 

In this Section, we find the range of   for which there exist a positive 
solution for (1) satisfying (2). 
 
Definition 1.Let X  be a Banach space. A non empty closed convex set   is called a 
cone of X, if it satisfies the following conditions: 
 
(i) 1 2 ,u v u v       and 1 2, 0   . 
(ii) u  and u    implies 0.u   
 
Let ( )y t  be the solution of the BVP (1) satisfying (2) given by 
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 2

1

( ) ( , ) ( , ( )) .
t

t
y t G t s f s y s ds                                              (10) 

 
Define 

1 2{ | [ , ]},X u u C t t   
 
where 1 2[ , ]C t t  is the set of all continuous function on 1 2[ , ]t t  with norm 
 

1 2[ , ]
|| || max | ( ) |

t t t
u u t




. 
 
Then, ( ,|| . ||)X  is a Banach space. Define a set   by 
 

1 2{ : ( ) 0  on [ , ]u X u t t t      (11) 
 
and  
 

1 2[ , ]
min ( ) || ||}

t t t
u t u




 
 
where  is defined in (7). 
 
It follows that the set  defined in (11) is a cone in X . 
 
Define the operator :T X   by 
  

2

1
1 2( )( ) ( , ) ( , ( )) , for all [ , ].

t

t
Ty t G t s f s y s ds t t t                                 (12) 

 
If y  is a fixed point of T , then y satisfies (10) hence y  is a positive 

solution of the BVP (1)-(2). 
 
We seek a fixed point of the operator T  in the cone  . 
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The operatorT  defined in (12) preserves the cone , that is, :T   . 
Furthermore, the operatorT  defined in (12) is completely continuous. 
To establish the eigenvalue intervals where a fixed point exists in (1), we will employ 
the following Fixed Point Theorem due to Guo and Krasnosel'skii. 
 
Theorem 2.(Guo-Krasnosel'skii Fixed Point Theorem)Let X  be a Banach space, 

X   be a cone, and suppose that 1 2,   are open subsets of X  with 1 20   and 

1 2   . Suppose further that 2 1: ( \ )T       is completely continuous operator such 
that either 

 
(i) 1|| || || ||,Tu u u    and 2|| || || ||, ,Tu u u    or  

(ii) 1|| || || ||,Tu u u    and 2|| || || ||, ,Tu u u     
 
holds. Then T has a fixed point in 2 1( \ )    . 
We are going to present our first existence result. 
 
Theorem 3.Assume that conditions ( 1A ) - ( 3A ) are satisfied. Then, for each   satisfying 

2 2

1 1

2 0

1 1

( , ) ( , )
t t

t t
G s s ds f G s s ds f


 

 
   
       

,                          (13) 

there exist at least one positive solution of the BVP (1)- (2) in  , where f  and 0f  are as define 
in Section 2.1. 
Proof. 
 
Let   be given as in (13). Now, let 0   be chosen such that 

2 2

1 1

2 0

1 1

( , ) ( ) ( , ) ( )
t t

t t
G s s ds f G s s ds f


  

 
           

. 

 
Let T  be the cone preserving, completely continuous operator defined in (12). By 
definition of 0f , there exists 1 0H   such that 

1 2

0
1[ , ]

( , )max ( ), for 0 .
t t t

f t y f y H
y
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It follows that 0( , ) ( )f t y f y  , for  10 y H  . Choose 1y  with 1 1|| ||y H . 
Then, we have from the boundedness of ( , )G t s  and the nature of  , that 
    

2

1
1 1( )( ) ( , ) ( , ( ))

t

t
Ty t G t s f s y s ds   

2

1
1( , ) ( , ( ))

t

t
G s s f s y s ds   

2

1
1( , )( ) ( )

t o

t
G s s f y s ds    

2

1
1( , )( ) || ||

t o

t
G s s f y ds    

1|| || .y  
 
Consequently, 1 1|| || || ||Ty y . So, if we define 
 

1 1{ :|| || },u X u H     
 
then, 
 

1|| || || ||, for .Ty y y       (14) 
 

By definition of f , there exists 2 0H   such that 

1 2
2[ , ]

( , )min ( ), for .
t t t

f t y f y H
y


    

 
It follows that 
 

2( , ) ( ) , for .f t y f y y H    
 
 
Let 
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2 1 2
1max{2 , },H H H


  

 
and let 

2 2{ :|| || }.u X u H     
 
Now, choose 2 2y    with 2 2|| || ,y H  so that

1 2
2 2 2[ , ]

min ( ) || || .
t t t

y t y H


  Then, 

2

1
2 2( )( ) ( , ) ( , ( ))

t

t
Ty t G t s f s y s ds   

2

1
2( , ) ( , ( ))

t

t
G s s f s y s ds    

2

1
2( , )( ) ( )

t

t
G s s f y s ds    

2

1

2
2( , )( ) || ||

t

t
G s s f y ds     

2|| || .y  
Thus, 
 

2|| || || ||, for yTy y     (15) 
 
Applying Theorem 2(i), from (14) and (15), we have that T  has a fixed point 

2 1( ) ( \ )y t     . This fixed point is the positive solution of the BVP (1)-(2) for 
the given  . 
 
Another existence result applying Theorem 2(ii) is as follow: 
 
Theorem 4:Assume that conditions ( 1A ) - ( 3A ) are satisfied. Then, for each   
satisfying 

 

2 2

1 1

2
0

1 1

( , ) ( , )
t t

t t
G s s ds f G s s ds f


 

 
   
       

 (16) 

 
there exist at least one positive solution of the BVP (1) - (2) in  . 
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The proof follows by imitating the statement of the proof in Theorem 3. 
 
2.4 Example 
 
Let's consider the example 

(1 200 )'' 0, [0,1]
1

y yy t
y

 
  


 

with boundary conditions
(0) '(0) 0y y 

2 (1) 3 '(1) 0y y 
 

 
The Green's function is given by 
 

1 ( 1 )( 5 2 ) if 0 ;
7( , )
1 (5 2 )(1 ) if 0 .
7

s t s t
G t s

s t t s

       
    


 

 

We found 1
2

  , 200f   and 0 1.f  Employing (13), there is a positive solution 

for all   in the range 3 6, .
125 5
 
 
   

 
3 . Green's Function and Bounds for the 2 thn  Order Boundary Value 

Differential Equation 
 

Our interest in this section is finding positive solutions to all differential 
equation of the form 

 

( )2( 1) ( , ( ))
n

ny f t y t                                                    (17)  
for even n , with boundary conditions 
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(2 ) (2 1)
11 1 12 1

(2 ) (2 1)
21 2 22 2

( ) ( ) 0

( ) ( ) 0, 0,1,2, 1.
2

k k

k k

y t y t
ny t y t k

 

 





  



    

                       (18) 

 
Before we can do this, we need to be able to generate the Green's function of the 
homogeneous boundary value problem which we do in the following subsection. 
 
3.1 Green's Function for the 2 ( )thn  Order DE 
 
In this section, we will derive Green's function for 2 thn  order homogeneous 
differential equation (17) satisfying (18). 
 
Theorem 5.Suppose that 2 ( , )G t s  is the Green's function satisfying 
 

''( ) 0y t   
 
with boundary conditions 

11 1 12 1( ) '( ) 0y t y t  

21 2 22 2( ) '( ) 0y t y t  
 

Then , 
 

2

1
2 2( , ) ( , ) ( , ) , {2 2 : }

t

n nt
G t s G t w G w s dw n k k    �          (19) 

 
is the Green's function for 

2( 1) ( ) 0, {2 2 : },
n

ny t n k k    � (20) 
with boundary conditions  (18). 
 
Proof. 
 
We shall show the proof by induction. First, we prove the case for 4n  .  
Suppose 2 ( , )G t s  is the Green's function satisfying ''( ) 0y t  , then 

2

1
2''( ) ( ) ( , ) ( )

t

t
y t g y t G t s g s ds      
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so that 

''''( ) )' ' ''(y t g y g   . 
Hence, 

2

1
2''( ) ( , ) ( ) ( ).

t

t
y t G t s g s ds H t     

Thus 

 
 
 

2

1

2 2

1 1

2 2

1 1

2 2

1 1

2

1

2

2 2

2 2

2 2

4

( ) ( , ) ( )

( , ) ( , ) ( )

( , ) ( , ) ( )

( , ) ( , ) ( )

( , ) ( )

t

t

t t

t t

t t

t t

t t

t t

t

t

y t G t w H w dw

G t w G w s g s ds dw

G t w G w s g s ds dw

G t w G w s dw g s ds

G t s g s ds













 

 

 



 

 
where 

2

1
4 2 2( , ) ( , ) ( , ) .

t

t
G t s G t w G w s dw   

 

From definition of 2

1
2 4 2 2( , ), ( , ) ( , ) ( , )

t

t
G t s G t s G t w G w s dw  , ''y  satisfies the 

boundary conditions (2). 
Likewise, 4 ( , )G t s  satisfies boundary conditions (2) so that ( )y t  satisfies the BC 
 

11 1 12 1( ) '( ) 0y t y t    

21 2 22 2( ) ( ) 0'yy t t    

11 1 12 1''( ) '''( ) 0y t y t    

21 2 22 2( ) '''( ) 0' .'y t y t    
 
So, 4 ( , )G t s  is the Green's function for the equation 
 

''''( ) 0,y t   
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satisfying the BCs 

11 1 12 1( ) '( ) 0y t y t    

21 2 22 2( ) ( ) 0'yy t t    

11 1 12 1''( ) '''( ) 0y t y t    

21 2 22 2( ) '''( ) 0' .'y t y t    
 
Assume the case for 2 2n k   is true. Without loss of generality, assume k  is odd. 
For 2 4n k  , 2 (2 4)( 1)k ky g    implies 1 (2 2)( 1) ( '')k ky g    . This implies 
 

2

1
2 2 1''( ) ( , ) ( ) ( ).

t

kt
y t G t s g s ds H t     

 
Thus, 

    

2

1

2 2

1 1

2 2

1 1

2

1

2 1

2 2 2

2 2 2

2 4

( ) ( , ) ( )

( , ) ( , ) ( )

( , ) ( , ) ( )

( , ) ( )

t

t

t t

kt t

t t

kt t

t

kt

y t G t w H w dw

G t w G w s g s ds dw

G t w G w s dw g s ds

G t s g s ds









    
    





 

 



 

 

where 2

1
2 4 2 2 2( , ) ( , ) ( , )

t

k kt
G t s G t w G w s dw   . This ends the proof. 

 
3.2 Bounds for the Green's Function 
 
Here, we find bound for the Green's function for the 2 thn  order problem. 
 
Theorem 6.Assuming conditions ( 1A )-( 3A ). Define  

 2

1

1
2

2 2( , ) ( , ) .) ( ,
n

t

n t
s s G s s G x x dxC



  (21) 

Then 
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2 ( , ) ( , ) ( , )  for n {2 ; }n n n

n

s s G t s C sC s k k    �  
 
Proof. 
 
We shall show the proof by induction. For the case 4n  , from previous theorem, 

2 2 2 1 2 1 2( , ) ( , ) ( , ) ( , ) [ , ] [ , ].G s s G t s G s s t s t t t t       
 
So, 

2

1

2

1

4 2 2

2 2 4

( , ) ( , ) ( , )

( , ) ( , ) ( , ).

t

t

t

t

G t s G t x G x s dx

G x x G s s dx C s s



 




 

Also 

   

2

1

2

1

4 2 2

2
2 2

2
4

( , ) ( , ) ( , )

( , ) ( , )

( , ).

t

t

t

t

G t s G t x G x s dx

G x x G s s dx

s sC













  

Hence, 
2

4 4 4( , ) ( , ) ( , ).s s G t CC s s s    
 
Suppose the case n k  is true, that is 
 

2 ( , ) ( , ) ( , ).k k k

k

s s G t s CC s s   (22) 
 
For the case 2n k  , 
 

2

1

2

1

2 2

2 2

( , ) ( , ) ( , )

( , ) ( , ) ( , ).

t

k kt

t

k kt

G t s G t x G x s dx

G x x C s s dx C s s







 




 

 
Likewise, 
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2

1

2

1

2

1

2 2

/2
2

2 2
2 2

2 2

( , ) ( , ) ( , )

( , ) ( , )

( , ) ( , ) ( , )

t

k kt

t k
kt

k kt

k kt

G t s G t x G x s dx

G x x C s s dx

G x x C s s dx s sC

 

 



 







 






 

The following theorem gives us the eigenvalue interval for which there exists positive 
solution(s) for even order problems. 
 
Theorem 7.For {2 ; }n k k � , assuming that conditions ( 1A )-( 3A ) is satisfied, then for each 
  satisfying 
 

2 2

1 1

0

1 1 ,
( , ) ( , )

t tn
n nt t

s s ds f s s dC s fC


 

 
   
       

(23) 

 
there exist at least one positive solution of the BVP 
 

2( 1) ( ) ( , ( )).
n

ny t f t y t  (24) 
with boundary conditions 

(2 ) (2 1)
11 1 12 1

(2 ) (2 1)
21 2 22 2

( ) ( ) 0

( ) ( ) 0, 0,1, 2, 1.
2

k k

k k

y t y t
ny t y t k

 

 





 

    
 

Proof. 
 

 The proof follows by using Theorem 2and changing   to be 2
n

  in (13) and (16).  
 
3.3  Example 
 
Using (19), we can easily generate the Green's function for the case where 

4,6,8,10n  , and so on. Below is one of such computed Green's function. 
For the case where 4n   



Otunuga, Karna & Lawrence                                                                                                73 
 
 

 

 
G4(t,s)= 

⎩
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎧   2 2

1 11 2 21 1 2 21 11 2 21
2

( )( )( ) 3 2 ( ) (3 ( ) 2 ( ))

6

s s t t s t s t s st t
D

                    


3 3
1 11 1 11 2 21 2 21 2

2
21

( )( )(( ) ( ) )
3

s t t t
D

       


     


3 3
2 21 2 21 1 11 1 11 1

2
11

( )( )(( ) ( ) )
3

s t s t
D

       


     
 if 1 2t s t t   ;

2 2
2 21 1 11 1 2 21 11 2 21

2

( )( )( )( 3 ( 2 ( )) ( 3 ( ) 2 ( )))
6

s s t t s t s t s st t
D

                     

3 3
1 11 1 11 2 21 2 21 2

2
21

( )( )(( ) ( ) )
3

s t s t
D

       


     


3 3
2 21 2 21 1 11 1 11 1

2
11

( )( )(( ) ( ) )
3

s t t t if
D

       


     
 1 2t t s t   .

 

 
is the Green's function satisfying 

(4) 0y   
with boundary conditions 
 

⎩
⎪
⎨

⎪
⎧ 11 1 12 1( ) '( ) 0y t y t  

21 2 22 2( ) '( ) 0y t y t  

11 1 12 1''( ) '''( ) 0y t y t  

21 2 22 2( ) '''( ) 0' .'y t y t  

(25) 

 
For a specific case, consider the equation 
 

(4) (1 200 )( ) , [0,1],
1

y yy t t
y
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with boundary conditions

⎩
⎪
⎨

⎪
⎧ (0) '(0) 0y y 

2 (1) 3 '(1) 0y y 

''(0) '''(0) 0y y 

2 ''(1) 3 '''(1) 0y y 

 

the Green's function is 
 
G4(t,s)=

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧    3 31 18 (1 ) (5 2 )(5 2 ) (1 )(1 ) 125 ( 5 2 )

147 294
s s t s t t         

 2 2
1 2

1 (1 )(5 2 )( ) 15( ) 4( ) 3( 10 2( )) ;
294

s t s t s t s st t s t if t s t t               

3 31 1(5 2 )(8 (1 ) )(5 2 ) (1 )(125 ( 5 2 ) )(1 )
147 294

s t t s s t         

 2 21 (5 2 )(1 )( ) 15( ) 4( ) 3(10 2( ))
294

s t s t s t s st t s t             if 1 2t t s t  

 

 

We found that 1
2

  , 200f  , and 0 1.f  Employing (13), we get the eigenvalue 

interval 72
30625

36
1225

  for which there exists a positive solution. 

 
4 . Third-Order Boundary Value Problem on �  with Green's Function and 

Bound 
 
 For this section, we are going to consider the third order eigenvalue problem 

on .�  We are going to consider nonhomogeneous boundary conditions. In this 
section, we assume ( , ( ))f t y t  to be as defined in Section 2. 
 

4.1 Solving the Third Order Equation 
 
Consider the boundary value problem 
 

1 3'''( ) ( , ( )), [ , ]y t f t y t t t t                               (26) 
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with boundary conditions 
 

⎩
⎪
⎨

⎪
⎧ 1 1( )y t 

2 2'( )y t 

3 3''( )y t 

(27) 

 
Defining ( ) ( , ( ))g t f t y t , taking the Laplace transform of (26) and following the 
procedure used in finding the solution of (1)-(2), we have the solution of (26)-(27) as 
follows; 
 

  

 
3

1

2

1 1

2 2
1 1 2 2 2 1 3

2 2
2 2 1

2
2 1

1( ) ( ) ( ) ( )
2

1 (( ) ( ) ) ( )
2

1( )( ) ( ) ( ) ( ) .
2

t

t

t t

t t

y t t t t t t t

t t t t g s ds

t s t t g s ds t s g s ds

        

   

    



 

 

 
Define 
 

2 2
1 1 2 2 2 1 3

1( ) ( ) (( ) ( ) ) ,
2

z t t t t t t t         (28) 

 
we have 
 

 3

1

2

1 1

2 2
2 2 1

2
2 1

1( ) ( ) ( ) ( ) ( )
2

1( )( ) ( ) ( ) ( ) ,
2

t

t

t t

t t

y t z t t t t t g s ds

t s t t g s ds t s g s ds

    

    



 
 

 
where ( )z t  is the solution of the homogeneous boundary value differential equation 
 

'''( ) 0,y t   
 
with boundary conditions (27).  Also, 
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퐺(푡, 푠) =

⎩
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎧ 2

1 1 2 3
1 ( ) if ;
2

s t t s t t t    

2 2
1 1 2 3

1 ( ) ( ) if ;
2

s t s t t t s t t        

2 2
2 1 2 1 2 3

1 ( ) ( ) if ;
2

t t t t t t t s t        

2 2 2
2 1 2 1 2 3

1 ( ) ( ) ( ) if ;
2

t t t t t s t t s t t          

2 2
2 1 2 1 2 3

1 ( ) ( ) if ;
2

t t t t t t t s t        

2
1 1 2 3

1 ( ) if .
2

s t t s t t t    

(29) 

 
is the Green's function for the equation 

'''( ) 0,y t  (30) 
with boundary conditions 

⎩
⎪
⎨

⎪
⎧ 1( ) 0y t 

2'( ) 0y t 

3''( ) 0.y t 

(31) 

 
For the rest of this Section, we define 3( , ) ( , )G t s G t s . From (28), ( )z t   has zeroes 

't and ''t , where 
 

⎩
⎪⎪
⎨

⎪⎪
⎧ 3 2 2

3

( )' ,t b At 


 


(32) 

 
 
 

3 2 2

3

( )'' , andt b At 


 


2
3 1 2 2 1 3[ ( ) ] 2 .A t t      
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We assume the following conditions on 1 2 3, ,t t t  and 1 2 3, ,    throughout this 
Section: 
 

1 3
1 2 3: , ''

2
t tt t t

 B  

 

2 1 3 2 1 3 2 2 3 3: 0, 0, ( ) ( )t t t t         B . 
 

Note: 1B  is derived from the fact that 3( , )G t s  must be nonnegative on the 

interval 1 2 3t t t s t    .We choose 3 ''t t  so that 1 3( , ) ( ', '')t t t t . 2B is derived 

such that 2
1 2 3

3

t t t


   , where 2
2

3

t 


  is the maximum point of ( )z t . Also, we 

make 3 0   because we want ( )z t  to be concave down and 1 0   since we want a 
positive solution for ( )y t . 
 
4.2 Bounds for the Green's Function 
 
In this section, we find the bounds for the Green's function (29). 
 
Theorem 8.Given that condition ( 1B ) holds, ( , ) 0G t s   for (t,s) 1 3 1 3( , ] ( , ].t t t t   
 
Proof. 
 
For 1 2 3t s t t t     , ( , ) 0G t s   since 1s t .  

For 1 2 3t t s t t     , since 1t t s  , we have 1 0s t s t     and so 

2 2
1

1( , ) ( ) ( ) 0
2

G t s s t s t       . Also, if t s , then 2
1

1( , ) ( ) 0
2

G t s s t   . 

Hence, ( , ) 0G t s  . 
For 1 2 3t t t s t    , since 1 2t t t  , we have 2 1 1t t t t    and so 

2 2
2 1 2

1( , ) ( ) ( ) 0
2

G t s t t t t       . Also, if 2t t , 2
2 1

1( , ) ( ) 0
2

G t s t t   . 

Therefore ( , ) 0G t s  . 
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For 1 2 3t t s t t    , since 1 3
2 ,

2
t tt 

  we have 2 1 3 2 2t t t t t t     .  

So, 2 2 2
2 1 2

1( , ) ( ) ( ) ( ) 0
2

G t s t t t t t s         . 

For 1 2 3t t t s t    , ( , ) 0G t s    since 1 3
2 2

t tt 
 . 

Lastly, for 1 2 3t s t t t     , ( , ) 0G t s   since 1s t . 
 

In the next theorem, we find the bounds for the Green's function (29). This 
bound is later used to find the range of   values for which (26) -(27) has a positive 
solution. 
 
Theorem 9.For a fixed s, 
 

2
1

1( , ) ( )
2

G t s s t  for all (t,s) 1 3 1 3( , ] ( , ].t t t t   

2 2
2 1 3 2

1( , ) (( ) ( ) )
2

G t s t t t t    for all (t,s) 2 3 2 3[ , ] [ , ].t t t t   

 
Proof. 
 
For 1 2 3t t s t t    , '( , ) 0G t s s t   which implies that ( , )G t s  is an increasing  
function of t . So, ( , ) ( , )G t s G s s for t s .  
 
For 1 2 3t t t s t    , 2'( , ) 0G t s t t   . Hence, ( , )G t s  is a non-decreasing 
function of t  and 
 

2 2
2 2 1 1

1 1( , ) ( , ) ( ) ( )
2 2

G t s G t s t t s t     for 2t t s  .   

 
Likewise, for 1 2 3t t s t t    , 2'( , ) 0G t s t s   , so ( , )G t s  is a non-increasing 

function of t and 2 2 2 2
2 1 2 2 1 1

1 1 1( , ) ( , ) ( ) ( ) ( ) ( )
2 2 2

G t s G s s t t s t t t s t           . 

For 1 2 3t t t s t    ,  3t t  and 2 2
2 3 2( ) ( )t t t t     . Hence 
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   2 2 2 2
2 1 2 2 1 3 2

1 1( , ) ( ) ( ) ( ) ( )
2 2

G t s t t t t t t t t        . 

 
 Lastly,for 1 2 3t t s t t     ,  
 

   

 

2 2 2 2 2
2 1 2 2 1 2

2 2
2 1 3 2

1 1( , ) ( ) ( ) ( ) ( ) ( )
2 2
1 ( ) ( )
2

G t s t t t t t s t t t t

t t t t

         

   
 

 

4.3 Existence of Positive Solution. 
 
In this subsection, we find the range of   for which (26)-(27) has positive 
solution.Let ( )y t  be the solution of the BVP (26)-(27), given by 
 

3

1

( ) ( ) ( , ) ( , ( ))
t

t
y t z t G t s f s y s ds         (33) 

 
Defining 
 

( ) ( ) ( ),v t y t z t   
 
(33) can be re-written as 
 

3

1

( ) ( , ) ( , ( )) ,
t

t
v t G t s f s v s ds                                             (34) 

 

which is the solution of the homogeneous boundary value differential equation 
 

1 3'''( ) ( , ( )), [ , ],v t f t v t t t t                                              (35) 
 

with boundary conditions 

⎩
⎪
⎨

⎪
⎧ 1( ) 0v t 

2'( ) 0v t 

3''( ) 0.v t 

(36) 
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Also ( , )G t s  is the Green's function for the differential equation 
 

1 3'''( ) 0, [ , ]v t t t t   
with boundary conditions (36). 
 
Define a set X by 

1 3{ | [ , ]}X u u C t t   
 
with norm 

1 3[ , ]
|| || max | ( ) |,

t t t
u u t


  

 
Then ( ,|| . ||)X  is a Banach space. 
 
Let 
 

2

2 2 2 2 2
2 1 3 2 3 2 1 3 2

2 2 2
2 1 2 2 1

( ) ( ) ( ) ( ) ( )min min , .
( ) ( ) ( )t s t

t t t t t s t t t tm
t t t s t t 

                    
(37) 

 
We first show that 0 1m  .  
 
Since for 1 2 3t t s t t    , we have 2'( , ) 0G t s t s   . Hence ( , )G t s  is a decreasing 

function of t and 3 2( , ) ( , )G t s G t s .  
 
Also, for 1 2 3t t t s t    , we have 2'( , ) 0G t s t t   , so ( , )G t s  is a decreasing 

function of t and 3 2( , ) ( , )G t s G t s . 
 
Define a set   by 
 

{ : ( ) 0u X u t    on 1 2[ , ]t t  and 
2 3[ , ]

min ( ) || ||}.
t t t

u t m u


  

 
It follows that  is a cone.Using condition ( 2B ), 
 

( ) 0z t  for ( ', ''),t t t  
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where 't  and ''t  are as define in (32). 
 
From the fact that ( ') 0z t  and 1 1( ) 0z t   , we conclude that 1't t  since z(t) is 

concave down. Also, since 3 ''t t then 1 3( , ) ( ', '')t t t t .So, we conclude that 
 

( ) 0z t  for 1 3[ , ].t t t  
 
Define the operator T : X   by 
 

3

1
1 3( )( ) ( , ) ( , ( )) , [ , ]

t

t
Tv t G t s f s v s ds t t t                                  (38) 

 
It follows thatT preserves  .If v   is a fixed point of T, then v  satisfies ((35) and 
hence v  is a positive solution of the BVP (35)-(36). We seek a fixed point of the 
operator ,T , in the cone  .  
 
Now, we find the range of   that gives a positive solution for (34) 
 
Theorem 10.Assume that conditions ( 1B ),( 2B ) is satisfied. Then, for each   satisfying 
 

3 3

2 1

2 2 2 0
2 1 3 2 1

1 1
1 1(( ) ( ) ) ( )
2 2

t t

t t
m t t t t ds f s t ds f




 
             

,            (39) 

 

there exist at least one positive solution of the BVP (35)-(36)) in   where m is 
defined in (37). 
 

Proof. 
 

 Let   be given as in (39). Now, let 0   be chosen such that 
 

33

12

02 2
2 1 3 2

1 1
1 ( , ) ( )(( ) ( ) ) ( )
2

tt

tt
G s s ds fm t t t t ds f




 
             


. 
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Let T  be the cone preserving, completely continuous operator defined in (38). By 
definition of 0f , there exist 1 0H   such that 

 

1 3

0
1[ , ]

( , )max ( ), for 0 .
t t t

f t v f v H
v




     

 
It follows that, 0( , ) ( )f t v f v  , for  10 v H  . So choosing 1v  with 

1 1|| ||v H . Then, we have from the boundedness of ( , )G t s  that 
 

3

1

3

1

3

1

3

1

1 1

2
1 1

2 0
1 1

2 0
1 1

1

( )( ) ( , ) ( , ( ))

1( ) ( , ( ))
2
1( ) ( ) ( )
2
1( ) ( ) || ||
2

|| || .

t

t

t

t

t

t

t

t

Tv t G t s f s v s ds

s t f s v s ds

s t f v s ds

s t f v ds

v





 

 



 

  

  











 

 
Consequently, || || || ||Tv v . So, if we define 
 

1 1{ :|| || },u X u H     
 
Then 
 

1|| || || ||, for .Tv v v    (40) 
 

By definition of f , there exists an 2 0H   such that 

 

1 3[ , ]

( , )min ( ),
t t t

f t v f
v


  for 2.v H  

 
It follows that ( , ) ( ) ,f t v f v  for 2v H . 
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Let    2 1 2
1max{2 , },H H H
m

  

and    2 2{ :|| || }.u X u H     
 
Now choose 2 2v    with 2 2|| || ,v H  so that

1 2
2 2 2[ , ]

min ( ) || || .
t t t

v t m v H


   

Consider, 
   

 

3

1

3

2

3

2

3

2

2 2

2 2
2 1 3 2 2

2 2
2 1 3 2 2

2 2
2 1 3 2 2

2

( )( ) ( , ) ( , ( ))

1(( ) ( ) ) ( , ( ))
2
1(( ) ( ) )( ) ( )
2

1(( ) ( ) )( ) || ||
2

|| || .

t

t

t

t

t

t

t

t

T v t G t s f s v s ds

t t t t f s v s ds

t t t t f v s ds

m t t t t f v ds

v





 

 







   

    

    











 

 
Thus, 
 

2|| || || ||, forTv v v        (41) 
 
Applying Theorem 2 to (40) and (41) yields a fixed point for 2 1( ) ( \ )Tv t     . 

This fixed point is the positive solution of the BVP (35)-(36) for the given  . 
 
Next, we prove other range for  for which a positive solution exists. 
 
Theorem 11.Assume that conditions ( 1B )-( 2B ) is satisfied. Then, for each   satisfying 
 
 

3 3

2 1

2 2 2
2 1 3 2 0 1

1 1
1 1(( ) ( ) ) ( )
2 2

t t

t t
m t t t t ds f s t ds f




 
             

 (42) 

there exist at least one positive solution of the BVP (35)-(36) in  . 
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Proof. 
 
The proof is similar to the proof given in Theorem 10. 
 
4.4 Green's Function and Bound for the 3 ( )thn  Order BVP 

 
Our interest in this Section is to find positive solutions to all differential equations of 
the form 
 

( ) ( , ( )) 0ny f t y t  (43) 
 
subject to some boundary conditions 

(3 )
1 1

(3 1)
2 2

(3 2)
3 3

( )
( )

( ) , 0,1,2, , 1.
3

k

k

k

y t
y t

ny t k











 




    


(44) 

 
We generate the Green's function of the homogeneous boundary value problem (43)-
(44) 
 
Theorem 12.Suppose that 3 ( , )G t s  is the Green's function of (30)-(31). Then , 
 

3

1
3 3( , ) ( , ) ( , ) , {3 3 : }

t

n nt
G t s G t w G w s dw n k k    � (45) 

is the Green's function for 
 

( ) 0, {3 3 : },ny t n k k   � (46) 
 
with boundary conditions 

  

(3 )
1

(3 1)
2

(3 2)
3

( ) 0
( ) 0

( ) 0, 0,1,2, , 1.
3

k

k

k

y t
y t

ny t k






 




    


(47) 
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Proof. 
 
The proof is similar to the proof given in Theorem 5. 
 
4.5 Bounds for the Green's Function 
 
In this section, we find the bounds for Green's function, ( , )nG t s , {3 ; }n k k � . 
 
Theorem 13.Assuming conditions 1B  and 2B ,then for {3 ; },n k k �  
 

   3 1 2 2 33
3 1 2 1 3 2 2 3 2 3

1 ( ) ( ) ( , ) for all ( , ) [ , ] [ , ].
2

n
nn

nt t t t t G t s t s t t t tt          
 

 

3 3 2
3 1 1 1 3 1 3

1( , ) 3 ( ) ( ) for all ( , ) [ , ] [ , ].
6

n

n
nG t s t t s t t s t t t t      

 
 

Proof. 
 
We shall show the proof by induction. From Theorem 9, 
 

2
3 1 1 3 1 3

1( , ) ( ) for all ( , ) [ , ] [ , ], and
2

G t s s t t s t t t t     

2 2
3 2 1 3 2 2 3 2 3

1( , ) (( ) ( ) ) for all ( , ) [ , ] [ , ].
2

G t s t t t t t s t t t t       

 
Assuming the case for n k  is true, that is, 
 

 
1

3 2 23 1 3
2 1 3 2 2 3 2 3( ) ( ) ( , ) for all ( , ) [ , ] [ , ].

2

k
k

k
t t t t t t G t s t s t t t t

        
 

 

3 3 2
3 1 1 1 3 1 3

1( , ) 3 ( ) ( ) for all ( , ) [ , ] [ , ]
6

k

k
kG t s t t s t t s t t t t      

 
, 

 
For 3n k  , 
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3

1

3

1

3 3

32 3 2
1 3 1 1

3
3 2

3 1 1

( , ) ( , ) ( , )

3 1( ) ( ) ( )
2 6

13 ( ) ( ) .
6

t

k kt

k
t k

t

k

k

G t s G t w G w s dw

w t t t s t dw

t t s t









     
 

    
 



  

Also, 

   

 

3

1

3

1

3 3

1
32 2 2 23 1 3

2 1 3 2 2 1 3 2

33 2 23 1 3
2 1 3 2

( , ) ( , ) ( , )

1 ( ) ( ) ( ) ( )
2 2

( ) ( ) .
2

t

k kt

k
kt

t

k
k

G t s G t w G w s dw

t tt t t t t t t t dw

t t t t t t









        
 

     
 



  

 
By defining the two functions 
 

3
3 3 3 2

3 1 1

332 2 3
2 1 3 2 3 1

1 1( , ) ( ) ( ) ,
3 2

1( , ) (( ) ( ) ) ( )
2

n n

n
n

n
n

n

F s s t t s t

E s s t t t t t t







        
   

      
 

 

 
and using (39) and (42), we can state the following theorems. 
 
 
Theorem 14.Assume that conditions ( 1B ),( 2B ) are satisfied. Then, for each   satisfying 

 

3 3

2 1

0

1 1 ,
( , ) ( , )

t t

n nt t
m E s s ds f F s s ds f




 
   
       

 

there exist at least one positive solution of the BVP (46)-(47) in   . 
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Proof. 
 
The proof is similar to that of Theorem 10. 
 
Theorem 15.Assume that conditions ( 1B ),( 2B ) are satisfied. Then, for each  satisfying 

 

3 3

2 1
0

1 1

( , ) ( , )
t t

n nt t
m E s s ds f F s s ds f




 
   
       

 

 
there exist at least one positive solution of the BVP (46)-(47) in   . 
 
Proof. 
 
The proof is similar to that of Theorem 11. 
 
4.6 Example 
 
Consider the third order boundary value problem 
 

7'''( ) (200 199.5 ) 0, [0,1],yy t y e t      
 
with boundary conditions 
 

(1) 1
(2.6) 0
(4) 1.

y
y
y


  
   

 

 
The Green's function is given by 
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퐺(푡, 푠) =

⎩
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎧ 21 ( 1) 1 2.6 4;

2
 s if s t    

1 ( 1 2 )( 1 ) 1 2.6 4;
2

s t t if t s        

1 (4.2 )( 1) if 1 2.6 4;
2

t t t s     

21 ( 4.2 5.2 2 ) 1 2.6 4;
2

s t st if s t       

1 (4.2 )( 1. ) 1 2.6 4;
2

t t if t s      

21 ( 1) 1 2.6 4
2

s if s t    

 

 
For this particular example, 
 

21( ) 1 (2.56 ( 2.6) ),
2

z t t    0 10.132743, 200,
2

m f f   . 

 
Using (39), positive solution exists for all   in the interval (0.0897,0.2222). 
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