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Abstract 
 
 

The importance of smoothness indicator is well known in the numerical 
computation of hyperbolic conservation laws. The main aim is to compare and 
contrast Godunov flux with that of Lax-Friedrich's using smoothness indicator. We 
will only explore the case of smooth solutions. An example is offered to show how 
both fluxes behave under the TVD-RKDG scheme. 
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1. Introduction 
 

Numerical smoothness is by now known to play a very important role in the 
computation of numerical solution of hyperbolic conservation law. In this paper,as 
stated, we use smoothness indicator -see [6]- to investigate the difference between 
Godunov and Lax Friedrichs' flux on smooth solutions. Consider the one-
dimensional non-linear conservation laws: 
 

 
 

in a bounded interval Ω =  [ܽ;  ܾ], with the initial condition 0)ݑ; (ݔ   =
;ݐ)ݑ ,and the upwind boundary condition;(ݔ) ܫݑ   ܽ)  =  where in this example;(ݐ)௔ݑ 
we assume (ݑ)݂,(ݔ) ܫݑ, and the boundary condition to be smooth enough and 
consistent to guarantee that the entropy solution ݐ)ݑ; = ݔ is smooth near (ݔ   ܽfor 
all ݐ > 0. For simplicity we assume the case of west wind (݂’(ݑ)  > 0). 
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2. The Smoothness Indicator 
 

The spatial smoothness indicator contains the spatial derivatives of the com-
puted solution ݑ௡௖  within each cell, namely 

 

 
 

The values of these ܯ௡,௝
௟ deliver the information about the smoothness of 

௡௖ݑ -in the interior of each cell. The jumps of the derivatives across the cell bound(ݔ)
aries is given by: 
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Table 1: The Contents of the Numerical Smoothness Indicator figures 
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in ߗ = [0,10].We also use a uniform cell size h = 0:05 with p = 3 as the order 
of the Legendre polynomials and the third order Runge-Kutta scheme. Note, we have 
reproduced the result from [6] for the purpose of this comparaison. 

 
We will have sixteen pictures in each of the figure from 1 to 9 as shown in the 

table. Notice for simplicity, we drop the index j because each curve contains the 
values of ܯ௡,௝

௟ for ݆ =  0; . . . ;  199.The solution has been computed for ݐ ∈ [0,2] . 
The smoothness indicator will be shown at ݐ =  0.05, = ݐ  1.05 and ݐ =  2.0 for 
either of the fluxes. The figures will be denoted (G) for Godonov flux cases and (FL) 
for Lax-Friedrich's. 

 
Remark:We noticed that during the experiment, while Godunov's flux was 

conducted using  ߬ =  0.005for all the figures, the same time step size makes the 
scheme with Lax Friedrichs' flux very unstable. We have plotted in Figures (7)-(9) the 
cases where Lax-Friedrich's scheme were unstable for even a brief moment in the 
computation. We could clearly see that as the solution evolves, both the spatial and 
temporal smoothness indicator increased dramatically. The jumps are clearly getting 
higher and higher, and in Figure (7) we can see that the solution is just a few step 
away from being ruined. 

 
To obtain the excellent result shown in Figures (b), recall those represent the 

solution to Lax-Friedrich's flux, we have taken the time step size to be 50% smaller 
than that of Godunov's time step size. Actually, using Lax-Friedrich's flux seems to 
fair a little better when we consider the smoothness indicator on the third row (the 
jumps). However the cost of even such a small accuracy 
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Figure 1: (G) Smoothness indicators, ࣎ =  ૙.૙૙૞; ࢚ =  ૙.૙૞ 
 

 
 

Figure 2: (LF)The Components of the Smoothness Indicator, ࣎ =  ૙.૙૙૛૞; t 
=0.05 
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Figure 3: (G) The Components of the Smoothness Indicator,࣎ =  ૙.૙૙૞; t = 
1.05 

 

 
 
Figure 4: (LF)The components of the smoothness indicator, ࣎ =  ૙.૙૙૛૞; t 
=1.05 
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Figure 5: (G) The Components of the Smoothness Indicator, ࣎ =  ૙.૙૙૞; t = 2 
 

 
 

Figure 6: (LF)The Components of the Smoothness Indicator, ࣎ =  ૙.૙૙૛૞; t = 
2 
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Figure 7: Lax-Friedrich, Unstable, ࣎ =  ૙.૙૙૞; t = 0.05 
 

 
 

Figure 8: Lax-Friedrich, Unstable, ࣎ =  ૙.૙૙૞; t = 0.1 
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Figure 9: Lax-Friedrich, Unstable, ࣎ =  ૙.૙૙૞; t = 0.2 
 

is increase by taken smaller time steps. In the numerical evidence given, for 
Lax-Friedrichs' flux, we have taken C to be 1.45. 
 

As shown in the numerical evidence, and as expected from the literature in 
partial differential equations, we have shown that both Godunov and Lax-Friedrichs 
fluxes behave remarkably well in their approximation of smooth solution to 
hyperbolic problem . It is easy to see the boundedness of the smoothness indicator in 
Figures (1, 2, 3 and 4) when and where the solution is smooth. However, well before 
the development of a shock, the third and fourth order derivatives have grown 
significantly in a very narrow subdomain. Soon the benefit of the approximation of 
high order polynomials and high order Runge-Kutta scheme will be lost, as Figures 7, 
8 and 9 shows that a point of future shock is being expected soon. This numerical 
experiment can be extended to 2-D scalar conservation laws. The generalization of 
this experiment to 2-D should not have major difficulties. Moreover, this experiment 
could be extended to the case of a fully developped shock and contact discontinuity 
of various orders. 
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