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A Dimensionless Mathematical Model 
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Abstract 
 
 

This mathematical model reduces to a set of parametric coupled non-linear 
differential equations. The major difficulty stems from the fact that sixteen external 
parameters appear in various places in the equation. As of today, only numerical 
methods have been developed to investigate this problem. A new approach that is 
analytical and not numerical is proposed to show other options for solutions. This 
approach is called “Dimensionless Analysis” and it is based on the remark that when 
one of sixteen parameters is going to infinity, the general solution, involving the 
remaining fifteen parameters can be expressed in terms of a simple elementary 
function. 
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Introduction 
 

As states and nations battle over the ocean’s fishing grounds with harvest 
efforts increasing and many wild stocks in decline [1], more subtle but significant 
influences on fish populations have been largely ignored in policy consideration [2]. 
Some of these factors include: habitat quality, changing food web structure (both 
stochastic and anthropogenic influences) [3], and deadly organisms such as Pfiesteria 
pisicda and other Pfiesteria-like dinoflagellates. These toxic Pfiesteria-like 
dinoflagellates have been implicated as causative agents of major fish kills in estuarties 
and coastal waters of the mid-Atlantic and southeastern United States transformation 
among an array of flagellated, amoeboid, and encysted stages in the complex life cycle 
of the representative species [4]. As a result, many of these factors, over time, could 
deplete the population of some fishery species.  
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In recent years, interest has continued in using bio-economic modeling to gain 
insight into scientific management of the exploitation of renewable resources like 
fisheries and forestries [5], in order to reduce the risk of depleting any species. 
 

This mathematical model is mainly used as an analytical tool while computer 
software, like Mathematica, is used to cross-check the predictions given by the 
analytical tool. This analytical tool, gives a global view that computer calculations 
cannot give. The equations depend on sixteen parameters and all the parameters must 
be fixed in order to get a computer solution. A different and new point of view 
consists of letting all of the parameters be free and getting a panoramic view of all 
possible solutions. It is possible to achieve this goal by using “Dimensional Analysis”. 
 

From the expository point of view, using the fact that when one of the sixteen 
parameters is going to infinity, the system of differential equations becomes exactly 
integrable due to the existence of two invariant Lie groups. This allows a deep and 
simple understanding of the system. Restoring the breaking symmetry parameter, a 
standard perturbation theory in first order still provides interesting insight. 
 
The Mathematical Model 
 
 The general catch-rate function  usually encountered in fishery models is  
 
 ,                                     (1) 
 
where  is the biomass of the population at time ,  is the fishing effort at 
time , and  is the “catchability” coefficient and is needed to transform  
(measured in nominal terms, such as number of vessels or number of fishermen) into 
a fishing mortality rate. This form of the catch-rate function is based on the constant 
“catch-per-unit-effort hypothesis” [6], and it seems to be unrealistic by these 
following assumptions: 
 

1. Fish are searched for randomly; 
2. Every fish in the population is equally likely to be harvested; 
3. For a fixed population size, the catch-rate increases linearly as the effort 

increases; and 
4. For a fixed level of effort, the catch-rate increases [6]. 
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Admitting these assumptions by altering (1), to obtain the Torain Catch-Rate 
Function 

,                                                 (2) 

 
where constants , , , and , are all positive and where  is the combined 

population of other species harvested at time . In equation (2),  as 

 for a fixed population size, 
 
h→ q

l + bY
⎛
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⎞
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E  as  for a fixed level 

of effort, and  as  for the population of other species harvested. The 
parameter “ ” is equivalent to the ratio of the population level to the catch-rate at 
higher levels of effort, while the parameter “ ” is equivalent to the ration of the effort 
level to the catch-rate when the biomass kevel is very high. The parameter “ ” is 
equivalent to the ratio of the other species’ harvest level to the catch-rate which is 
nonexistent as the biomass and the other species harvest level increases. 
 
 It also assumes that a regulatory agency exercises control over the fishery by 
imposing a tax of   units of money per unit biomass of landed fish and a 
negative value of  implies a subsidy to the fisherman [6]. When a fish species 
undergoes severe depletion and is on the verge of extinction, imposition of a very 
high tax may be a reasonable regulatory mechanism to save the fishery from collapse 
[6]. The model assumes that the economic system has a feedback whereby the level of 
fishing effort expands or contracts depending on whether the “perceived rent” (net 
revenue to the fisherman) is positive or negative [6].  
 

Clark carried out this type of investigation with a single species for fish with a 
logistic growth of biomass and with the traditional catch-rate function 

[6]. Constructing a fishery species model whose harvest and biomass 
growth are governed by the Torain Dynamical System 
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E
•

= λE
q p −T( )X

aE + lX + bYX
− c

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
,                                         (4) 

 

where , , and  is the life potential of the fish species,  k  is the 

carrying capacity of the fish species,  is the constant price per unit biomass of the 
landed fish,  c  is the constant fishing cost per unit effort,  is the stiffness parameter,  
and all the parameters are assumed to be positive. Also,  (a dimensionless constant) 
gives the speed with which the effort reacts to the changes in the perceived rent flow 
[6]. 
 
The units for the different variables are: 
 

 , the fishing effort at time , are measured in millions of dollars. 
  
 , the biomass at time , are measured in millions of pounds. 
 

 , , and  have dimensions of time and are measured in weeks. 
 
 , is measured in dollars/pound. 
  

, is measured in dollars/pound/week [7]. 
 
Starting with the two dynamical system of equations (3), (4) and setting 
 

, , , , , and .                  (5)                            

 
Thus, rewriting (3) and (4) to obtain                

                                               (6) 
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The parameter ε  appears in  and nowhere else. As long 

as, 
  
sup
0≤t

X << γ
ε

, one could neglect the  and get an integrable system. Evaluating 

the value of at the steady state where  and letting  and   

denote the steady state values (equilibrium point) of  and  respectively, to obtain 
the Torain Equilibrium Point 
 

                                                        (8) 

and  

.                                    (9) 

 
Considering the case  and introduce simultaneously a crucial dimensionless 
quantity , where  is the ratio of the standard steady biomass value in  units and 

 has dimension of the inverse of time and is directly related to the unit of time 
being exactly its inverse. Therefore, rewriting (8) and (9) as 
 

                                                         (10) 

 
and 

                                                   (11) 

 

and letting , where  is clearly dimensionles, , and equations (10) and 

(11) requires a certain number of constraints: 
 

1. Both  have to positive. 
 

2. In order for a first order perturbation approximation to be valid, it is 
necessary that . 
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Numerical Simulations 
 
The parameters values for the model (10) and (11) for the numerical simulatins are as 
follows [6]: 
 

, , , , ,  

, and ; 

 yields 
 

                                                   (12) 

 
and  yields 
 

.                                                   (13) 
 
Thus,  will always be positive provided . Having  and  
implies 
 

 10−3 ≤ ξ ≤ 0.2;                                                   (14) 
 
therefore, all requirements are satisfied. Studying the stability of the steady state, when

 10−3 ≤ ξ ≤ 0.2,  implies that the linearized system near the steady state is 
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                                                   (15) 
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,  , , and  
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In the special case when ,   −Tr  A =σ 1−ξ( ) + γ  ξ  2 and   Det  A = γ  σ  ξ  1−ξ( ) .  
 

When , because σ  and  are naturally positive quantities, implies 
that 

 

Tr A = µ1 + µ2 < 0, while 

 

Det A = µ1µ2 > 0, where  and  are the 
eigenvalues of 

the matrix  and are solutions of   µ
2 − µ  Tr  A+ Det  A = 0 . The discriminant

  Δ = Tr  A( )2
− 4Det  A  and: 

 
1. If , the eigenvalues are real and negative, which produces a knot  

implying asymptotic stability. 
 

2. If , the eigenvalues are complex conjugate but with a negative real  
part, which produces a stable focus implying spiraling asymptotic stability. 

 
Analyzing the system even closer by computing 
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It then follows that in the interval of interest for  where  10−3 ≤ ξ ≤ 0.2,  which 
corresponds to 

 

0 ≤ T < 15   and   0 ≤Y < 18.4 , 
 

 is negative and the eigenvalues of the matrix  are complex conjugate with a 
negative real part. Let µ±  be the eigenvalues and 

  µ± = r ± iω ,  
where the real part  is given by 
 

  −2r = −Tr  A =σ 1−ξ( ) + γ  ξ  2  
while the imaginary part ω  is given by 
 

 and  
σ 1−ξ( ) + γ  ξ  2⎡⎣ ⎤⎦  2 − 4γσξ 1−ξ( ).  

 
Therefore, the system is asymptotically spiraling to a stable focus. 
 
Dimensional Analysis of the System of Equations 
 
I.       The Linear Approximation. 
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for  and  can be outside of the linear approximation. Substituting  
and  into the original equations, thus yields 
 

                                                (22) 

 
and 
 

,                                                       (23) 

 

where  and all the quantities are dimensionless with the 

exception of  t , which has the dimension of time. Also,  α  and σ  have dimensions of 
the inverse of time. The dimensionless time   ̂t , is defined by 
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.                                                           (28) 

 
Then 
 

                                                  (29) 
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.                                                                 (30) 
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                                              (34) 

 
and 

  

dŷ
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where . Therefore, this is the final dimensionless and most simple function 

form of the system. 
 
Fixed Points 
 
 In order to study this system in depth, by looking for any fixed points. The 
first fixed point is   x̂ = ŷ = 0  and the second fixed point is  
 

  x̂ = −1 and ŷ = −1.                                                         (36) 
 
In order to study the second fixed point, set 
 

  1+ x̂ = x  and 1+ ŷ = ŷ.                                               (37) 
 
Thus, equations (34) and (35) yields 
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x (u) = − 1

Ku
+ o

1
u2

⎛
⎝⎜

⎞
⎠⎟

                                         (43) 

and 
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therefore, (44). In order to further analyze the behavior near , by 
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In order to understand the intricacies of these crucial features, recalling the 

paradigmatics models (39) and (40), where . The model is an approximation 

of the exact value, when both,  x  and  y  are small in modulus. The solution, 
previously found, is 

  
x u( ) = − 1

Ku +C
 and 

  
y u( ) = −e−u ew

Kw+C
dx.

D

u

∫  
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  y → 0.  It is; therefore, necessary to split the problem into two different parts, 
depending on whether   K  x  is positive or negative. 
 
The First Catastrophic Fixed Point 
 
 When   K  x < 0,  the region of T −  Y plane, where T represents the taxes and 
Y represents the population of other species, besides the standard fixed point (which 
is a hyperbolic or a saddle point) there is an attractive catastrophic fixed point for 
which the biomass and the effort both go to zero when time becomes large. In order 

to analyze the behavior of the special solution 
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when using the set of parameters values 
 

. 

 
Now from 

  X = kξ ,  
 

when 

 

ξ > 1 and X > 0 ⇒ x > 0, since  When  x  is small and positive, yields 

          
   
y x( ) = x 1− K  x + 2 K  x( )2

+⎡
⎣⎢

⎤
⎦⎥ + Λe

1
K  x .  

 
This shows that   y > 0;  therefore,  E  has to be positive because  E  is naturally 
positive. From, 

            E = kη 1−ξ( ) = 5 20−Y( ) 1−ξ( ),  
observing that 

          Y > Y ∗ = 20,  
 
since  ξ >1.  On the other hand,  ξ >1  and   Y > 20⇒T >16,  and more precisely, 
 

             Y >100T −1580.  
 
Because both  are positive, the standard fixed point is physical; however, it 
is not attractive. The fixed point will be shown to be a saddle or hyperbolic point. In 
order to check this point, recall the special case when , where 
 

  −Tr  A = −µ1 − µ2 =σ 1−ξ( ) + γ  ξ 2  and   Det  A = µ1  µ2 = λ  σ  ξ 1−ξ( ).   
 
In this case of interest,  because are naturally positive quantities. Thus, 
impling 

  Det  A = µ1  µ2 < 0,   
 
where  are the eigenvalues of the matrix  which represents the linearized 
version of the system near the standard fixed point, and are solutions of 
 

       µ
2 − µ  Tr  A+ Det  A = 0. 

 

α = γ =
1
20

, β = 10−4 (16 −T), σ = 2 ×10−4, η =
1
2

10−2(20 −Y), and k = 1000

 

x =
X
X 
.

 

X  and E 

 

γ = α

 

ξ >1

 

σ  and γ 

 

µ1 and µ2

 

A
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Introducing the discriminant 
 

  
Δ = Tr  A( )2

− 4Det  A = σ  1−ξ( ) + γ  ξ 2⎡⎣ ⎤⎦
2−4γ  σ  ξ 1−ξ( ),   

 
when , produces two real roots of opposite sign. This is a hyperbolic 
fixed point (saddle). So, there is only one attractive (catastrophic) fixed point. Finally, 
given the asymptotic relation between the pseudo-time  u  and the dimensionless time 

  ̂t  for large   u,  without approximation, 
 

     
  

dx
du

= K 1−ξ  x − 1−ξ( ) y⎡⎣ ⎤⎦ x 2 , dy
du

= x − y ,  

and 

  
t̂ = y(s)ds+ ξ y(u)− y(0)( ).

0

u

∫                                             (60) 

 
Or, the lowest order, when  are simultaneously small, 
 

         , 

and 
 

         
  
t̂ = y(s)ds+ ξ y(u)− y(0)( ).

0

u

∫   

Integrate to obtain 

         

 

            
  
y = 1

−Ku +C
+ o

1
u2

⎛
⎝⎜

⎞
⎠⎟

,  

 

  
t̂ = 1

−K
lnu + o(1)  as  u→∞  and   K < 0. 

 
In summary, when 

  Y >100T −1580  and   T >16,   
 
there is an attractive catastrophic fixed point for which the biomass and the effort 
both go to zero exponentially fast when time becomes large, while the standard fixed 

 

ξ > 1 and Δ < 0

 

x  and y 

 

dx 
du

= Kx 2, dy 
du

= x − y 

 

x =
1

−Ku + C
,
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point is a harmless saddle. Writing explicitly the asymptotic behavior of the biomass 
and the effort in terms of the real time yields: 

  
X (t) ≅ k

ρ
ξ −1( )e−ξρσ t  and 

  
E(t) ≅ 5 Y − 20( ) ξ −1( )2

ρξ
e−ξρσ t ,               (61) 

where 
 

.                                                 (62) 

 
The Second Catastrophic Fixed Point 
 
 The case   Kx > 0  leads to the existence of a second catastrophic fixed point 
for which the biomass still goes to zero with increasing time. However, the effort with 
no longer goes to zero but instead to plus infinity when the time goes to plus infinity. 
When 

  
Kx = ρX

k 1−ξ( ) > 0,                                                       (63) 

 
when  and splitting, (63) into two subcases:  0 < ξ <1 and  ξ < 0.   
 
Subcase I:  Here , which implies 

                                                          (64) 

 
and therefore,  When   y > 0   if   Y < Y ∗ = 20,  since 

                                                                   (65) 

and 
 

.                                            (66) 
 
If , then  and in all cases  because . Furthermore, 
in Subcase I,  does not remain bounded when  and the previous 
approximation is meaningless. Starting from 
 

, 

 

 

ξ =10−2 Y −20
T −16

>1

 

ξ <1

 

0 < ξ <1

 

K =
ρξ

k(1− ξ)
> 0,

 

x > 0.

 

y =
E
E 

 

E = 5(20 −Y)(1−ξ) > 0

 

Y >Y * = 20

 

y < 0

 

ξ x << 1

 

x →0+

 

y 

 

x →0+

 

dx 
du

= K 1−ξx − (1−ξ)y [ ]x 2,    dy 
du

= x − y 
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and 

  
t̂ = y(s)ds+ ξ y(u)− y(0)( ),

0

u

∫   

 
considering the fact that  is negligible in front of  is negligible in front of 
1.  Studying the approximations 
 

                                               (67) 

 
and 
 

.                                                            (68) 

 
Integrating (68) yields 
 

,                                                           (69) 
 
where  and choosing , because  has to 
be positive in this case. Also,  and in all cases, 
forces  to become very large. Introducing this value of  in (69) yields 
 

                                                            (70) 

 
and integrating (70) to obtain 
 

.                                 (71) 

 
In order to have  In the case of  there is an 
attractive physical catastrophic fixed point only when . Now showing 
that the real time   ̂t  is connected to the pseudo-time  in the present 
case. Recalling equation (31) 

  
t̂ = u + ξ x̂(s)ds+ 1−ξ( ) ŷ

0

u

∫ (s)ds
0

u

∫   

and using 

  x̂(s) = x (s)−1 and   ŷ(s) = y(s)−1   
to get 

 

x 

 

y  and ξ x 

 

dx 
du

= K 1− (1−ξ)y [ ]x 2

 

dy 
du

= −y 

 

y = Ae−u

 

A > 0 and u→−∞

 

A > 0 when Y <Y * = 20

 

y 

 

Y > Y * = 20, y < 0 and A < 0

 

u→−∞

 

y 

 

y 

 

dx 
du

= K 1− (1−ξ)Ae−u[ ]x 2

 

x = −
1

K u + A(1−ξ)e−u[ ]+ B
= −

1
Aρξe−u + Ku + B

 

x →0+, A < 0, when u →−∞.

 

0 < ξ <1,

 

Y >Y * = 20

 

u when u→−∞
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t̂ = u + ξ x (s)−1( )ds+ 1−ξ( ) y(s)−1( )ds.

0

u

∫0

u

∫                                  (72) 

Using the exact equation 

 

and substitute , where 
 

                                                             (73) 

 
in the relation between the real time   ̂t  and the pseudo-time   u.  Then, the relation 
between the real time   ̂t  and the pseudo-time  u  can be written as 
 

  
t̂ = ξ y(u)− y(0)( ) + y(s)ds

0

u

∫                                           (74) 

and 
 

,                                                                    (75) 
 
where  is valid for large . In order to find the asymptotic relation between 
the real time   ̂t  and the pseudo-time   u,  when , and only keeping the leading 
terms, to obtain 
 

  
t̂ ≅ ξAe−u + A e−s ds = − 1−ξ( )Ae−u = 1−ξ( ) A e−u ,

Λ

u

∫                   (76) 

Now, expressing the behavior of the biomass and fishing effort in this case 
 
  T >16,                                                           (77) 
 

,                                                    (78) 
 

  
X ≅ k

ρ  σ  t
,                                                                       (79) 

and 

.                             (80) 

 
The biomass goes to zero as the inverse of the real time; therefore, it goes slowly. 
Also, the fishing effort goes to infinity linearly in the real time and therefore, slowly. 
In this case, the standard fixed point is unphysical since 

 

dy 
du

= x − y 

 

x (s)

 

x (s) = y (s)+
dy (s)

ds
,

 

y (u) ≅ Ae−u

 

u→−∞

 

u

 

u→−∞

 

20 <Y <100T −1580

 

E ≅5σ (Y −20)
100(T −16)

(100T −1580 −Y)t
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.                                          (81) 
 
There is no competition between attractive fixed points in this case. 
 
Global Description of the Fixed Points in the  Plane 
 
Summary of the Situation 
 
I-1.  Existence and nature of the “standard” fixed point. 
 
In order for the standard fixed point  to exist, it is necessary that both 
 

                                                          (82) 
 
and 
 

,                                                  (83) 
    

where 

  
η =

 b 
a

l
 b 

−Y
⎛

⎝
⎜

⎞

⎠
⎟ =

 b 
a

Y ∗ −Y( )  and that 

 

k,  a,  and l , are naturally positive  

quantities with two possible cases: 
 
Case A:                                 
 

 0 < ξ <1 and   0 < Y < Y ∗ = 20                                                (84) 
 
Case B: 
 

 ξ >1  and   Y > Y ∗ = 20.                                                   (85) 
 
I-2.    Stability of the standard fixed point. 
 

I-2-1. Case A is subdivided into tree subcases: 
 

A1.    0 < ξ < 0.00099  and   0 < Y < Y ∗ = 20,  for which a knot and asymptotic 
stability. (Blue region in the  plane Figure 1) 

 

 

E = 5(20 −Y)(1−ξ) < 0

 

T −Y

 

X ,  E ( )

 

X = kξ > 0

 

E = kη(1−ξ) > 0

 

T −Y
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A2.    0.001< ξ < 0.22848  and   0 < Y < Y ∗ = 20,  for which a focus and 
counterclockwise spiral attractor. (Green region in the  plane Figure 1) 

 
A3.   0.22849 < ξ <1 and   0 < Y < Y ∗ = 20,  for which a knot and asymptotic  

stability. (Blue region in the  plane Figure 1) 
 

I-2-2 Case B is the linearized equations from matrix 

 

A , where 
 

  −Tr  A =σ 1−ξ( ) + γ  ξ 2 ,   

 

  Det  A = γ  σ  ξ 1−ξ( ) < 0,   

and 

 

Δ = Tr A( )2 − 4Det A > 0 . 
 
The discriminant  is positive; hence, the roots are real. The determinant is the 
negative product of roots, one positive, and the other negative. Therefore, this an 
asymptotic instability with a saddle point. 
 

II. Existence and nature of the “catastrophic” fixed point with three cases:

 ξ < 0, ξ >1,  and  0 < ξ <1.   
 

II-1.   , recalling   Y > Y ∗ = 20  and   T < T ∗ = 16,  for which a stable catastrophic 
fixed point in which the biomass goes to zero as the inverse of the time and 
the effort goes to infinity linearly in time. (White region in the T – Y plane 
Figure 1)  

 
The first fixed point does not exist in this case because it is unphysical, thus 
implying a negative biomass. Therefore, there is no competition between the 
two fixed points. 

 

II-2.   , recalling   T > T ∗ = 16  and   Y >100T −1580  with   0 < Y ,  for which a 
stable catastrophic fixed point, with the biomass and the effort going to zero 
exponentially fast with time. (Yellow region in the  plane Figure 1) 

 

 

T −Y

 

T −Y

 

Δ

 

ξ < 0

 

ξ >1

 

T −Y
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 The first standard fixed point, in the case, exists but is unstable (saddle 
point). Therefore, there is no competition between the two fixed points. 

 

II-3. , recalling   100T −1580 > Y > Y ∗ = 20  and   T > T ∗ = 16 , for which 
a stable catastrophic fixed point, with the biomass goes to zero as the 
inverse time, while the effort goes to infinity linearly in time. (Red region in 
the  plane Figure 1) 

 
 The first regular fixed point, in the case, does not exist in this case because it 

is unphysical and with a negative effort. Therefore, there is no competition 
between the two fixed points. 

 
Figure 1, is a graphic visualization of all the cases: 
 

Yellow: Represents a stable catastrophic fixed point in which both the biomass 
and the effort go to zero exponentially fast with time. 

  
 Green: Represents a focus and counterclockwise spiral attractor. 

 
Blue: Represents a knot and asymptotic stability. 
 
Red: Represents a stable catastrophic fixed point in which the biomass goes to 
zero while the effort goes to infinity, both slowly with time. 
 
White: Represents a stable catastrophic fixed point in which the biomass goes to 
zero as the inverse of the time, while the effort goes to infinity linearly in time. 
 
Pink: Represents a region with no physical fixed points of any kind. 

Overtaxing 
 
Overtaxing always leads to a catastrophic situation. 
I.   Overtaxing and over harvesting of other species. 
 

In this case, the biomass always goes to zero. The effort can go to zero or to 
infinity. When the effort goes to zero, it decreases exponentially in time as well as the 
biomass. This occurs for extremely high over harvesting of the other species. (Yellow 
region of Figure 1) 

 

0 < ξ <1

 

T −Y
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When the effort goes to infinity, the biomass will still go to zero but the time 
dependence is slow: linear for the effort and simple inverse power for the biomass. 
This case occurs when the overfishing of other species is moderately high. (Red 
region of Figure 1) 
 

 
 

Figure 1: Tax Per Unit of Biomass of Landed Fish 
 
II.   Overtaxing without over harvesting of other species. 
 

In this case, there is no physical fixed point of any kind. However, an interesting 
phenomenon occurs: it exists a finite time  for which the effort goes to zero, while 
the biomass remains finite. In order to better grasp this situation, by reproducing, in 
the sequel, the graphs of the explicit calculation of the time dependence of the 
biomass and the effort in the case of no overfishing of other species at all that is 

, while the taxes are . 
 

 

t*

 

Y = 0

 

T = 20 > T* =16
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Considering two different initial values: 
 

(1) At time , the biomass  = 0.5  and the effort  = 0.5  of the standard fixed 

point values. This produces a critical time , in dimensionless units, for 
which the effort goes to zero, while the biomass still remains finite a little  
below six. (Figure 2) 

 

 
 

Figure 2: Effect of Overtaxing: Biomass = .5 and Effort = .5 
(2)  At time , the biomass  = 0.3  and the effort  = 1.1 of the standard fixed 

point values. This produces a critical time  in dimensionless units, 
for which the effort goes to zero, while the biomass still remains finite. 
(Figure 3) 

 
 

 

t = 0

 

t* = 0.4

 

t = 0

 

t* =1.1
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Figure 3: Effect of Overtaxing: Biomass = .3 and Effort = 1.1 
 
* Noting that any negative effort is a result of the high increase effort in community 
contribution [9]. 
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Conclusion 
 

The objective of this paper has been achieved: to be able, using “Dimensional 
Analysis,” to get an overview of a Mathematical Model. Overview is an intension to 
classify the different solutions that could occur in different situations. 
 
 More interesting, the “Dimensional Analysis” allows the possibility to 
understand all the solutions of the model and all its weaknesses. Among the most 
classical weaknesses are parametric regions that produce unboundedness of physical 
quantities or non-positive solutions when for obvious reasons have to be positive. 
This kind of positivity and/or bounded requirements can be embedded from start in 
the equations by using standard methods that can be found in the reference book [8]. 
  

Dimensional Analysis gave a global view of the different kind of classes of 
solutions (positive, non-positive, bounded, unbounded, and etcetera) that cannot be 
given by computer calculations. The equations depend on sixteen parameters and it is 
necessary to fix all of them in order to get a computer solution. Taking the exact 
opposite approach and letting all of the parameters be free, thus, obtaining a 
panoramic view of all possible solutions. 

 
Using “Dimensional Analysis,” a tool never used before in Mathematical 

Models, help to analize the full model, which depended on sixteen parameters. 
Reducing the parameters, in all generality and rigor, to three dimensionless parameters 
out of which only one called  plays a crucial and dominant role. The parameter  
divides the parametric space into seven regions that can grossly be described by the 
presence of different fixed points and different classes of solutions corresponding to 
over or under harvesting of other species, over or under taxing etcetera. Each of these 
regions defines a class of solutions in Figure 1, having the same behavior. The analysis 
of these classes allows for detection of some limitations of the model. In some 
classes, the biomass may become negative or unbounded; in other classes, negative 
effort may appear instead. 

 
 
 
 
 
 
 

 

ξ

 

ξ



David S. Torain II                                                                                                                     
27   

	  

	  

References 
 
Holmes B., Biologists sort the lessons of fisheries collapse, Science, 264 (1994), pp. 1252-

1253. 
Tibbetts J., Ocean commotion, Environmental Health Perspectives, 104 (1994), pp. 380-385. 
Burkholder JoAnn M., Implications of Harmful Microalgae and Heterotrophic Dinoflagellates 

in Mansgement of Sustainable Marine Fisheries, Ecological Applications, 8(1) 
Supplement, (1998), pp. S37-S62. 

Burkholder JoAnn M., and Glasgow Howard B Jr., Pfiesteria piscicda and other Pfiesteria-like 
dinoflagellates: Behavior, impacts, and environmental controls, American Society of 
Limnol. Oceanogr., 42(5, part 2), (1997), pp. 1052-1075. 

Chaudhuri Kripasindhu., and Johnson Thomas., Bioeconomic Dynamics of a Fishery 
Modeled as an S-System, Mathematical Biosciences an international journal, 99 
(1990), pp. 231-249. 

Clark C. W., Mathematical Bioeconomics: The Optimal Management of Renewable 
Resources, John Wiley & Sons, New York, (1976). 

Chaudhuri Kripasindhu., Private Communication, (2005) 
Thieme R. Horst; Mathematics in Population Biology in The Princeton Series in Theoretical 

and Computational Biology, ISBN 0-691-09291-5, (2003). 
Greenville W. Jared., and MacAulay T. G., A Bioeconomic Model of a MarinePark, 

Agricultural and Resource Economics, University of Sydney, NSW, (2006). 
 
 


