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Abstract

The aim of this paper is to build an exact formula for ruin probability of generalized
risk processes under interest force with assumption that claims and premiums are
assumed to be positive-valued random variables and interests are assumed to be non
- negative- valued random variables (claims, premiums and interests are assumed to
be independent). In addition, they are homogeneous Markov chains. This situation
is quite realistic for many situations. An exact formula for ruin (non-ruin)
probabilities is derived in this paper.
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1. Introduction

In the risk theory, there has been a major interest in actuarial science. Since a
large portion of the surplus of insurance business from investment income, actuaries
have been studying ruin problems under risk models with rates of interest. For
example, Teugels and Sundt [9], [10] studied the effects of constant rate on the ruin
probability under the compound Poisson risk model. Yang [12] established both
exponential and non — exponential upper bounds for ruin probabilities in a risk model
with constant interest force and independent premiums and claims. Cai [1], [2]
investigated the ruin probabilities in two risk models, with independent premiums and
claims and used a first-order autoregressive process to model the rates of in interest.
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Cai and Dickson [3] obtained Lundberg inequalities for ruin probabilities in
two discrete-time risk process with a Markov chain interest model and independent
premiums and claims. Promislow, S., D. [5], given upper bounds for ruin in a process
with dependent increments. Xu, L. and Wang, R. [11] established both exponential
and non — exponential upper bounds for ruin probabilities in a autoregressive risk
model with Markov chain interest rate. However, those results is only given upper
bounds for finite-time probabilities and ultimate ruin probability that they did not
provide an exact formula for finite-time probabilities.

Claude Lefevre and Stéphane Loisel [4] studied the problem of ruin in the
classical compound binomial and compound Poisson risk models. Their primary
purpose is to extend those models which is an exact formula derived by Pircard and
Lefevre [4] for the probability of (non-ruin) ruin within finite time.

However, Claude Lefevre and Stéphane Loisel [4] did not provide an exact
formula for ruin probability of generalized risk processes under interest force with

surplus process {Ut}t>1 of insurance company written as

U, =U_ @+1)+X, -Y;t=12,.
(1.1)
or

U =U,_+X)A+1,)-Y;t=12,.. (1.2)
where U, =u s initial surplus, u and t are positive integer numbers,

X = {Xi }iZl are premiums of the company, Y = {YJ}J->1 are claim of the company ,

X, and Y, take values in a finite set of positive numbers; | = {Ik}k>1 are interests of

company, |, take values in a finite set of non — negative numbers. X, Y and 1| are
assumed to be independent.
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In [7], Nguyen Thi Thuy Hong built an exact formula for ruin (non-ruin)
probability for model:

Ut=u+ZXi—Zt:Yi (13)

with u,t, X,,Y; are positive integer number.

Phung Duy Quang [8] extended the result of Nguyen Thi Thuy Hong, the
author built an exact formula for ruin (non-ruin) probability for model:

U, =u@+r)' + Zt: X (L+r) - Zt:Yi (1+r)" (1.4)

with u,t, X,,Y; are positive integer number, r is positive constant interest.

In [6], Bui Khoi Dam and Phung Duy Quang built an exact formula for ruin

(non-ruin) probability for model (1.1) and (1.2) with X ={X,}._and Y :{YJ},->1
are independent identically or non identically distributed positive-valued random
variables; | ={Ik}k21 are independent identically or non identically distributed non-

negative-valued random variables. In addition, X,Yand | are assumed to be
independent.

The aim of this paper is to build an exact formula for finte time ruin (non-

ruin) probability of model (11) and (12) with X ={X,} , Y ={Yj}j>land

i>1’
[ ={Ik}k>1 are homogeneous Markov chains. In addition, X,Y and | are assumed

to be independent. This result also extends the ruin probability to the general model,
which is given in [6].
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2. Finite — Time Ruin Probability in a Generalized Risk Processes under
Interest Force with sequences of dependent random variables

Let model (1.1). We assume that:

Assumption 2.1. U, t are possitive integer numbers.

Assumption 2.2. X :{Xn}nZl is a homogeneous Markov chain, X take values in
a finite set of positive numbers Gy ={X;,X,,..., X, } (0 <X <X, <...<X,) With

p; = P(Xmﬂzxj‘xm = X; ),(me N, X € Gy, X; € Gy )where
M

0<p; <L) p;=1.
j=1

M
In addition, P(X; =x) = p, (% €G,),0< p; <L) p =1.

i=1

Assumption 2.3. Y ={Y,} _is a homogeneous Markov chain, Y, take values in a

n>1

finite set of positive numbers G, ={Y;,Y,,.... Yy J(O< Y, <Y, <..<Yy) with
O =P (Y =Y.[Yn =V, ).(MeN,y, €G,,y, € G,)where

0<q, sl,iqrs =1.

s=1

N
In addition, P(Y, =y;) =0, (y; €G,), 0<¢q, <1, g, =1.
i=1

Assumption 2.4. | = {In}nZl is a homogeneous Markov chain, | take values
in a finite set of non - negative numbers G, = {i,i,,...,i;} (0 <i, <i, <...<i;) with
uv v

R
f,=P(l,.=r[Y,=r).(meN,r, G, 1,eG,) where 0<r, <1 > r, =1.
s=1

R
In addition, r, = P(l, =i,)(i, €G,), 0<r, 31,Zrk -1,
k=1
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Asumption 2.5. The sequences { X, | . {Y,} ,and {I } _ are assumed to
be independent.

From (1.1), we have:

U, =u.1t_[(1+lk)+tzll[(xk —Yk)lt_[(l+lj)j+ X, =Y. (2.1)

j=k+1

b b
where throughout this paper, we denote H z, =1 and Z z,=0ifa>Db
t=a

t=a

and AZB if P(AAB) =0 with AAB = (A\B)U(B\ A).

Supposing that the ruin time is defined by T, :inf{j U, <0}, where
infgp=00.

We define the finite time ruin (non-ruin) probabilities of model (1.1) with
assumption 2.1 to assumption 2.4, respectively, by

l//t(l) (u)= P(Tu <t)= P[U(Uj < 0)j : (2.2)
(Dt(l) (u) zl_Wt(l) ()= P(Tu 2t+]) = P[h(uj 2 0)) (2.3)

Now, we give an exact formula for finite time ruin (non-ruin) probability of
model (1.1).
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Theorem 2.1. If model (1.1) satisfies assumptions 2.1 to 2.5, then finite time
non-ruin probability of model (1.1) is defined by

@)=

R M

Z Z r;qucz"'rqlqpmpm"'pmm(Z Z anqmzqmj (2.4)

©.C - G=1m, ..., =L n<g lay<g, I<n<g

where

1
9, = max{nl : ynl < min{uH(1+iCk)+xnh’ Yn }}’

k=1

g, max{n Yo, <mln{uH(1+| )+Z(x —ynk)H(1+| )+, ,yNH

j=k+1

g, —max{n ‘A <m|n{uH(1+| )+Z(xmk ynk)H(1+| ) X s Vi

j=k+1

Proof.

Firstly, we have

A:=h(uj20)
:(Ylsuli[(1+lk)+xljm
[ uH(1+I )+Z(x Y)H(l+| )+ X, )

j=k+1

[ uH(1+|)+Z(x Y)H(1+I)+Xj

j=k+1

[Y <uH(1+I )+Z(x Y)H(1+I )+xj (2.5)

j=k+1

i
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By assumption 2.4, we put I, =i, I, =i_,...,1, =i with i_,i_,...,i, being
non - negative numbers and statisfy condition: OSICl 6" ,IC[ <l,.

Let A . :(I1 :icl)r\(l2 = icz)r\...r\(lt :iq).

Since | :{In}m isa homogeneous Markov chain then
P(A, )= [( 1_icl)m(lz=icz)r\...r\(lt:ict)]
=P(1,=i, ) P(1, =i [l =i, ) P(1 =il =iy, ) =1 (2.6)

By Assumption 22, we put X, =X ,X,=X,,..,X =X, Wwith

my

X 1 X, 10001 Xy being positive numbers and satisfy condition:

<
O<xml,xm, o Xy S Xy

Let A, :(X1 :xml)m(x2 :xmz)m...m(xt = th)-

Since X = {X,},., isa homogeneous Markov chain then

P(Au.n) = P[(x1 =%, ) (X, =%, )X, =x, )]
=P(X, =%, ) P( Xy =X, | X, =%, ) P( X, =% | X, =%, )

= B, Prym, - Prn_m -
(2.7)
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Firsly, we consider 1, =1 (¢, = 1, R) then (2.5) is given

as R

A

(1, —iq)m{(Y1SUﬁ(l+iq)+XlJm

G =

Y, <u(l+i )H(1+| )+Z(x Y)H(1+I )+ X, ]

|
.

<u(l+i )H(1+| )+Z(x Y)H(1+I )+ X ]

j=k+1

[Y <u(l+i )H(1+| )+Z(x Y)H(1+I )+ X, D

j=k+1

Similarly, we consider 1, =i ,...,l, =i (C,,....¢, =L R), (2.5) can be written as

as R

A= (J {(I1 =icl)r\(l2 =icz)m...r\(lt :iq)}m

0. Cp =L

((Ylguﬁ(l+ick)+X1Jm
[ uH(1+| )+Z(x Y)H(1+| )+x]

j=k+1

[Y3£uf[ @+i, )+Z(x Y)H(1+| )+x]

j=k+1

[Y <uH(1+| )+Z(x Y)H(1+| )+XD

j=k+1

Next, we consider X, = X, (m, =1,M), then

A 0 ({(IlziQ)m(IZ :i%)m...ﬁ(h :ic‘)}

€1,Cp =1

r{tﬂj (X, =Xy) r{(Yl < uﬁ(1+ I, )+ xmljm
m;=1 k=1
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[Yz Sul£[(1+ick)+zl:(xmk —Yk)ﬁ @+i, )+ ijm

j=k+1

[Y3£uf[(1+ick)+{(xml Y)+Z(X Y)}H(lﬂ )+x]

j=k+1

.m(YtSu]L[(uick){ Y)+Z(X Y)}H(lﬂ HX]D

j=k+1

Similarly, we consider X, =X, ,..., X; =X, (M,,...m =LM), (25) can be
rearranged as
as R

A= | ({(Il:icl)m(l2 :i%)m...m(lt :iq)}m

C1.CprnG L

( U {(Xlzx,,l)m(xzzxw)m...m(xt=>gn)}m

M my....M=1

( <u li[1+ick)+xmljm
ﬁlﬂ )+Z(X Yk)ﬁ(1+icj)+xm2]m

j=k+1
3
< ulkl(1+ ick)+kzl:(xmk YOI T @+i )+ xmslm...

j=k+1

j=k+1

.r\(Yt < uﬁ(1+ ick)Jri(xmk -Y,) ﬁ @+ie)+ X, BJ

R

iy ({(Ilziq)m(lz:i%)m...m(lt:iq)}m

.G &=L

—

tAJ {(Xl =X, ) (X, =%, ) NN (X :Xm[)} ACpmm )]

My, ..., M=L

&

U{ U A, “%--MC%”%“‘}} (28)

CCoren G =L\ MMy, =1
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Where

as 1
Ccfl“é:i-c-;mt :[Yl < ulk_[(1+ i, )+ me
=1
2 1 2
Y, Sul_[(1+ick)+2(xmk —Yk)H (L+i )+ %, [N
k=1 k=1

( uH(1+| )+Z(x —Y)H(1+| )+ X, J
[Y <uH(1+| )+Z(x —Y)H(1+| )+ X, j

(2.9)

By assumption 23, we put Y, =Y,,Y,=Y, ,..Y =Y, With
Yoo Yo, o0 Y, being positive numbers and  satisfy  condition:

O0<Y Yoo Yo, <Yy

Thus, (2.9) can be written as

as
CCy.nG  __ —
lenz‘z---m1 - U (Yl - y”i ) a
1
ynl sul_[(l+iCk )+xrnl

( uH(1+| )+Z(xmk ynk)H(l+| )+ X, }

j=k+1

[YgsuH(lﬂ ){(m yq)+Z(Xm Yo }H(]-H )%j

j=k+1

(Y <uH(1+| ){()gnl yrh)+2(>§W Y, }H(lﬂ )+>§“D

J=k+
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S U Mh=y)n

1
Yy s(u |<1_—[1(1+i°" Xy j

U (YZ = ynz)m

2 . 1 2 .
Y s[u kf:11(1+|Ck )+k§1(xmk Yy )J_:I;Iﬂ(lﬂxj )+xmzj

(Y, = Y,) e

3 . 2 3 .
Yng s[u kf:11(1+|Ck )+k§1(xer Y )J_:fklﬂ(lﬂXj )+xm3j

...m(\(t SuH(1+iq()+tZ(xw —yW)H(1+iCJ)+xmj...D (2.10)

j=k+1

Using by assumption 2.3, we put Y, = Yn with Yn being positive number

and statisfy condition 0 < Yo <Yy then (2.9) can be rearranged as

is U U

1 2 1 2 3 2 3
i . . . . ~ .
Vm{“g( “o«)%j yryﬁ(uklg(lﬂtk)+k§1(xTk yrk)Hl:Iﬁ(lﬂcj )+>s@] y@{uklzll(lﬂo‘)%(mk yrk)Hl:Iﬁ(ercj )+>s73j

(Y =y,) (Y =y | (2.11)

L o t .
Yoy é(ul}'[:l(hlq( )+kZ:;1(><fYk Ve )j:1;[+1(1+|Cj o j

1
By using Lemma 2.1 in [6], u] J@+i, ) +x,, .
k=1
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uH(1+| )+Z(xmk yn)H(1+| ) +X,,

j=k+1

uH(1+| )+Z(xmk yn)H(1+| )+X,  are positive numbers and

j=k+1

0< Y, Yy Yo <Yy then, we define

9,= max{n Yo, <m|n{uH(1+| )+xml,yN}}

k=1

{nz yHZSmn{uH(lﬂ )+Z(er yn()H(1+| )%, yNH

j=k+1

gtzmax{nt:ym mln{uH(lﬂ )+Z(xmk ynk)H(1+| )+, yNH

j=k+1

Thus, (2.11) can be rearranged as

cs = U U - U {(%=v)n %=y, )ren(h=y, )} 12)

Isn<g, I<ny<g, 1=<n =g
Because Y = {Yn}n>1 isa homogeneous Markov chain then

P(Y:=¥5) (Yo = Y5 Joen(Ye= v, )|

=P(Y, =y, )P (Y Yo, Yy = ynl) (Y Yo Y. = ym) G, Gy, -G 1

In the other hand, system of events
{(Y1 = ynl)m(Y2 = ynz)m...m(Yt =Yn )}1 (i in (2.12) be incompatible then
<n <g; (j=
P(BmlmZ“'mI) - Z Z Z qnlqnan."an—lnt ' (213)

1<n<g; I<n,<g, 1<n,<g,
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By X,Y,l are assumed to be independent, with c,cC,,...,c, and

m;, m,,...,m, hold then
mym,...M; i
A, o' Bum,..m1Cec, o« are independent events.
In addition, system of events
mymy..m, : - :
{A\acz---q N B, m MCee, e }cj:ﬁ;mjzm(ﬁ) in (2.8) is incompatible.

Therefore, using (2.8) combining (2.6), (2.7) and (2.13), we have

(pt(l) (U) = P(A)
= ZR: ( i P{Aacp-ct N By, mCCTéT-?-amt }]

e AN T,

M

- 3 [ 3 Plh )R Pl

My My ..M =L

01.Co G =L My, My .My =1

2 F T

1<n,<g, 1=n,<g, 1<n<g,
R M

= Z Z Ve Toc, Ve e Py Prm, - Prn_im, -

01.Co oG =L My, My . My =1

( IDINED'S %%nz---qw}- (2.14)

1<n<g, I<n,<g, 1=n<g,
This completes the proof of the Theorem 2.1.

Corollary 2.1. 1f model (1.1) satisfies assumptions 2.1 to 2.4, then finite time
ruin probability of model (1.1) is defined by
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v&(U)=1-¢0 ()
R M

= 2 2 hgl Py PPy I{ZZ 2 %Gy j (215)

.G GEM, My, ML =g ng Ny
Remark 2.1.

Fomula (2.4) (or (2.15) gives a method to compute axactly finite time non-ruin
(ruin) probability of model (1.1) which X ={X_} and Y ={Y} are

nJnx1
homogeneous Markov chains, they take values in a finite set of positive numbers and

I ={In}nZl is a homogeneous Markov chain and they take values in a finite set of

non- negative numbers.
Let model (1.2) satisfy assumptions 2.1 to 2.5.

From (1.2), we have:

=u.ﬁ 1+1 )+Z[(x @+1,)- Y)H(l+| )j+x Y, (2.16)

j=k+1

Supposing that the ruin time of model (1.2) is defined by
=inf{j:Uj<O},whereinf¢:oo.

We define the finite time ruin (non-ruin) probabilities of model (1.2) with
ssumptions 2.1 to 2.5, respectively, by

yPu) =P, <t)= P(U(Uk < 0)) (2.17)

P2 (1) =1-y?(u) = P(T, 2 t+1) = P(ﬁ(uk > 0)) (219

Next, we give an exact formula for finite time ruin (non ruin) probability of
model (1.2).
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Theorem 2.2. If model (1.2) satisfies assumptions 2.1 to 2.5, then finite time

non-ruin probability of model (1.2) is defined by

R M

A OE Z Z I Yo, o Py Prym, -+ Py -

€1.Co G =M M, ..M =1

D 2 D Oyl

j (220
n<g I<ny<g, 1<n<g

where

1
g, = max{n1 LY, <min {uH(lJr I, )+ X L+ ), Yy }}
k=1

g, =max{nz Y, sm'n{ul_[(1+iq()+2(>grk @+, )-Y, )H(1+icj )+, @+, ), Yy }}

J=k+1
0 = max{n[ LY, <min {uﬁ(ﬁ I, )+t2(xw @+, )Y, )lt_[ (1+iCJ ), A+1), Yy }}

Proof.
We proof similarly as Theorem 2.1.

Corollary 2.2. If model (1.2) satisfies assumptions 2.1 to 2.5, then finite time

ruin probability of model (1.2) is defined by

v® () =1-¢ U)

R M

= 2 (eeg---c;&q)-(nqnm---w(Z Z'"Z%%&"'%ﬂj @2)
NGlng Nng

G.Cor G, ML
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Remark 2.2. Fomula (2.20) (or (2.21)) give a method to compute exact finite
time non-ruin (ruin) probability of model (1.2) which X ={X_} _and Y ={Y, |
are  homogeneous Markov chains and they take values in a finite set of positive

n>1

numbers. In addition, | ={In}nZl is a homogeneous Markov chain and they take

values in a finite set of non- negative numbers.
3. Conclusion

Using technique of classical probability with u, t are possitive integer numbers,
claims and premiums which all are positive numbers and interests are non — negative
numbers, this paper constructed an exact formula for ruin (non-ruin) probability for
model (1.1) and model (1.2) where sequences of claims, premiums and interests are
homogeneous Markov chains. Our main results in this paper are Theorem 2.1 and
Theorem 2.2.
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