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Abstract 
 
 

The aim of this paper is to build an exact formula for ruin probability of generalized 
risk processes under interest force with assumption that claims and premiums are 
assumed to be positive-valued random variables and interests are assumed to be non 
- negative- valued  random variables (claims, premiums and interests are assumed to 
be independent). In addition, they are homogeneous Markov chains. This situation 
is quite realistic for many situations. An exact formula for ruin (non-ruin) 
probabilities is derived in this paper.  
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1. Introduction 
 

In the risk theory, there has been a major interest in actuarial science. Since a 
large portion of the surplus of insurance business from investment income, actuaries 
have been studying ruin problems under risk models with rates of interest. For 
example, Teugels and Sundt [9], [10] studied the effects of constant rate on the ruin 
probability under the compound Poisson risk model. Yang [12] established both 
exponential and non – exponential upper bounds for ruin probabilities in a risk model 
with constant interest force and independent premiums and claims. Cai [1], [2] 
investigated the ruin probabilities in two risk models, with independent premiums and 
claims and used a first-order autoregressive process to model the rates of in interest.  
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Cai and Dickson [3] obtained Lundberg inequalities for ruin probabilities in 

two discrete-time risk process with a Markov chain interest model and independent 
premiums and claims. Promislow, S., D. [5], given upper bounds for ruin in a process 
with dependent increments. Xu, L. and Wang, R.  [11] established both exponential 
and non – exponential upper bounds for ruin probabilities in a autoregressive risk 
model with Markov chain interest rate. However, those results is only given upper 
bounds for finite-time probabilities and ultimate ruin probability that they did not 
provide an exact formula for finite-time probabilities. 

 
Claude Lefèvre and Stéphane Loisel [4] studied the problem of ruin in the 

classical compound binomial and compound Poisson risk models. Their primary 
purpose is to extend those models which is an exact formula derived by Pircard and 
Lefèvre [4] for the probability of (non-ruin) ruin within finite time.  

 
However, Claude Lefèvre and Stéphane Loisel [4] did not provide an exact 

formula for ruin probability of generalized risk processes under interest force with 
surplus process   1t t

U


 of insurance company written as 

 

1(1 ) ; 1,2,..t t t t tU U I X Y t                 
 (1.1) 

or  
 

1( )(1 ) ; 1,2,...t t t t tU U X I Y t               (1.2) 
 
where oU u  is initial surplus, u  and t  are positive integer numbers, 

  1i i
X X


  are premiums of the company,  

1j j
Y Y


  are claim of the company , 

iX  and iY  take values in a finite set of positive numbers;   1k k
I I


  are interests of 

company, iI  take values in a finite set of non – negative  numbers. X , Y and I are 
assumed to be independent. 
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In [7], Nguyen Thi Thuy Hong built an exact formula for ruin (non-ruin) 
probability for  model: 
 

1 1

t t

t i i
i i

U u X Y
 

         (1.3) 

 
with , , ,i iu t X Y  are positive integer number.  
 
Phung Duy Quang [8] extended the result of Nguyen Thi Thuy Hong, the 

author built an exact formula for ruin (non-ruin) probability for  model: 
 

1 1

1 1
(1 ) (1 ) (1 )

t t
t t i t

t i i
i i

U u r X r Y r  

 

          (1.4) 

 
with , , ,i iu t X Y  are positive integer number, r  is positive constant interest.   
 
In [6], Bui Khoi Dam and Phung Duy Quang built an exact formula for ruin 

(non-ruin) probability for  model (1.1) and (1.2) with   1i i
X X


 and  

1j j
Y Y




are independent identically or non identically distributed positive-valued random 

variables;   1k k
I I


  are independent identically or non identically distributed  non-

negative-valued random variables. In addition,  ,X Y and I are assumed to be 
independent. 

 
The aim of this paper is to build an exact formula for finte time ruin (non-

ruin) probability of model (1.1) and (1.2) with   1
,i i

X X


   
1j j

Y Y


 and 

  1k k
I I


 are homogeneous Markov chains. In addition,  ,X Y and I are assumed 

to be independent. This result also extends the ruin probability to the general model, 
which is given in [6].  
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2. Finite – Time Ruin Probability in a Generalized Risk Processes under 
Interest Force with sequences of dependent random variables  
 
Let model  (1.1). We assume that: 

 
Assumption 2.1.  u , t  are possitive integer numbers. 
 
Assumption  2.2.   1n n

X X


  is a homogeneous Markov chain, nX  take values in 

a finite set of positive numbers  1 2 1 2, ,..., (0 ... )X M MG x x x x x x      with 

 1 , ( , , )ij m j m i i X j Xp P X x X x m N x G x G      where 

1
0 1, 1

M

ij ij
j

p p


   .  

In addition, 1( ) ( )i i i XP X x p x G   ,
1

0 1, 1
M

i i
i

p p


   .  

 
Assumption 2.3.   1n n

Y Y


  is a homogeneous Markov chain, nY  take values in a 

finite set of positive numbers  1 2 1 2, ,..., (0 ... )Y N NG y y y y y y      with 

 1 , ( , , )rs m s m r r Y s Yq P Y y Y y m N y G y G      where 

1
0 1, 1

N

rs rs
s

q q


   .  

In addition, 1( ) ( )i i i YP Y y q y G   , 
1

0 1, 1
N

i i
i

q q


   . 

 
Assumption 2.4.   1n n

I I


  is a homogeneous Markov chain, nI  take values 

in a finite set of non - negative numbers  1 2 1 2, ,..., (0 ... )I R RG i i i i i i     with 

 1 , ( , , )uv m v m u u Y v Yr P I r Y r m N r G r G       where 
1

0 1, 1
R

uv uv
s

r r


   .  

In addition, 1( ) ( )k k k Ir P I i i G   , 
1

0 1, 1
R

k k
k

r r


   . 
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Asumption 2.5. The sequences   1n nX


,   1n nY


and   1n n
I


 are assumed to 

be independent. 
 
From (1.1), we have: 
 

1

11 1

. (1 ) ( ) (1 )
t tt

t k k k j t t
kk j k

U u I X Y I X Y


  

 
       

 
  .  (2.1) 

 

where throughout this paper, we denote 1
b

t
t a

z


  and 0
b

t
t a

z


  if a b   

and 
as

A B  if ( ) 0P A B   with    \ \A B A B B A   . 

 

Supposing that the ruin time is defined by  inf : 0u jT j U  , where 

inf    . 
 
We define the finite time ruin (non-ruin) probabilities of model (1.1) with 

assumption 2.1 to assumption 2.4, respectively, by 
 

(1)

1

( ) ( ) ( 0)
t

t u j
j

u P T t P U


 
    

 
 ,               (2.2) 

(1) (1)

1

( ) 1 ( ) ( 1) ( 0)
t

t t u j
j

u u P T t P U 


 
       

 
 .   (2.3) 

 
Now, we give  an exact formula for finite time ruin (non-ruin) probability of 

model (1.1).  
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Theorem 2.1. If model (1.1) satisfies assumptions 2.1 to 2.5, then finite time 

non-ruin probability of model (1.1) is defined by 
 

(1)( )t u 

1 1 2 1 1 1 2 1 1 1 2 1
1 2 1 2 1 1 2 2, ,.., 1 , ,..., 1 1 1 1

... ... ... ...
t t t t t t

t t t t

R M

c cc c c m mm m m n nn n n
c c c m m m n g n g n g

r r r p p p q q q
  

       

 
 
 

     ,  (2.4) 

 
where  
 

1 1

1

1 1
1

max : min (1 ) ,
kn c m N

k
g n y u i x y



  
     

  
 , 

2 2

2 21

2 2
11 1

ax : min (1 ) ( ) (1 ) ,
k k k jn c m n c m N

kk j k
g m n y u i x y i x y

  

           
   

  , 

... 
1

11 1

ax : min (1 ) ( ) (1 ) ,
t k k k j t

t tt

t t n c m n c m N
kk j k

g m n y u i x y i x y


  

           
   

 
. 

Proof. 
 
Firstly, we have 

1

: ( 0)
t

j
j

A U


   

1

1 1
1

(1 )k
k

Y u I X


 
     
 

  

2 21

2 2
11 1

(1 ) ( ) (1 )k k k j
kk j k

Y u I X Y I X
  

 
       

 
   

3 32

3 3
11 1

(1 ) ( ) (1 ) ...k k k j
kk j k

Y u I X Y I X
  

 
       

 
   

1

11 1

... (1 ) ( ) (1 )
t tt

t k k k j t
kk j k

Y u I X Y I X


  

 
       
 

  .     (2.5)                     
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By assumption 2.4, we put 
1 21 2, ,...,

tc c t cI i I i I i    with 
1 2
, ,...,

tc c ci i i being 

non - negative numbers and statisfy condition: 
1 2

0 , ,...,
tc c c Ri i i i  .  

 

Let      1 2 1 2... 1 2 ...
t tc c c c c t cA I i I i I i       .  

 
Since   1n n

I I


  is a  homogeneous Markov chain then 

 

     
1 2 1 2... 1 2( ) ...

t tc c c c c t cP A P I i I i I i        

     1 2 1 11 2 1 1. ...
t tc c c t c cP I i P I i I i P I i I i


     

1 1 2 1
...

t tc c c c cr r r


        (2.6) 

 
By Assumption 2.2, we put 

1 21 2, ,...,
tm m t mX x X x X x    with

1 2
, ,...,

tm m mx x x being positive numbers and satisfy condition: 

1 2
0 , ,...,

tm m m Mx x x x  .  

 

Let      1 2 1 2... 1 2 ...
t tm m m m m t mA X x X x X x       .  

 
Since   1nnXX   is a  homogeneous Markov chain then 
 

     
1 2 1 2... 1 2( ) ...

t tm m m m m t mP A P X x X x X x          

     1 2 1 11 2 1 1. ...
t tm m m t m mP X x P X x X x P X x X x


       

1 1 2 1
...

t tm m m m mp p p


 .                

  (2.7) 
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Firsly, we consider 
11 1( 1, )cI i c R  then (2.5) is given 

 

 
1 1

11

1

1 1 1
11

(1 )
Ras

c c
cc

A I i Y u i X


 
         

   

1

2 21

2 2
12 1

(1 ) (1 ) ( ) (1 )c k k k j
kk j k

Y u i I X Y I X
  

 
        

 
   

1

3 32

3 3
12 1

(1 ) (1 ) ( ) (1 ) ...c k k k j
kk j k

Y u i I X Y I X
  

 
        

 
   

1

1

12 1

... (1 ) (1 ) ( ) (1 )
t tt

t c k k k j t
kk j k

Y u i I X Y I X


  

 
          

   

 

Similarly, we consider 
22 2,..., ( ,..., 1, )

tc t c tI i I i c c R   , (2.5) can be written as  

 

      1 2

1 2

1 2
, ,..., 1

...
t

t

Ras

c c t c
c c c

A I i I i I i


         

1

1 1
1

(1 )
kc

k
Y u i X



 
    

 
  

2 21

2 2
11 1

(1 ) ( ) (1 )
k jc k k c

kk j k

Y u i X Y i X
  

 
       

 
   

3 32

3 3
11 1

(1 ) ( ) (1 ) ...
k jc k k c

kk j k

Y u i X Y i X
  

 
       

 
   

1

11 1

... (1 ) ( ) (1 )
k j

t tt

t c k k c t
kk j k

Y u i X Y i X


  

 
           

  . 

 

Next, we  consider
11 1( 1, )mX x m M  , then 

       1 2

1 2

1 2
, ,..., 1

...
t

t

Ras

c c t c
c c c

A I i I i I i


      

1 1

1

1

1 1
11

( ) (1 )
k

M

m c m
km

X x Y u i x
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2 21

2 2
11 1

(1 ) ( ) (1 )
k k jc m k c

kk j k

Y u i x Y i X
  

 
       

 
   

1

3 32

3 1 3
21 1

(1 ) ( ) ( ) (1 ) ...
k jc m k k c

kk j k

Y u i x Y X Y i X
  

              
   

1

1

1
21 1

... (1 ) ( ) ( ) (1 ) .
k j

t tt

t c m k k c t
kk j k

Y u i x Y X Y i X


  

  
               

   

 

Similarly, we consider 
22 2,..., ( ,..., 1, )

tm t m tX x X x m m M   , (2.5) can be 

rearranged as 
 

       1 2

1 2

1 2
, ,..., 1

...
t

t

Ras

c c t c
c c c

A I i I i I i


       

 
1 2

1 2

1 2
, ,..., 1

( ) ( ) ... ( )
t

t

M

m m t m
m m m

X x X x X x



      


  

1

1

1
1

(1 )
kc m

k

Y u i x


  
    

 
  

2

2 21

2
11 1

(1 ) ( ) (1 )
k k jc m k c m

kk j k

Y u i x Y i x
  

 
       

 
   

3

3 32

3
11 1

(1 ) ( ) (1 ) ...
k k jc m k c m

kk j k

Y u i x Y i x
  

 
       

 
   

1

11 1
... (1 ) ( ) (1 )

k k j t

t tt

t c m k c m
kk j k

Y u i x Y i x


  

 
         

   

  1 2

1 2

1 2
, ,.., 1

( ) ( ) ... ( )
t

t

Ras

c c t c
c c c

I i I i I i


       

  1 2

1 2 1 2

1 2

...
1 2 ...

, ,.., 1

( ) ( ) ... ( ) t

t t

t

M
m m m

m m t m c c c
m m m

X x X x X x C



       


  

 1 2

1 21 2 1 2
1 2 1 2

...
... ... ...

, ,.., 1 , ,.., 1

t

c c c m m m tt t
t t

R Mas
mm m

i i i x x x c c c
c c c m m m

A B C
 

 
    

 
  ,   (2.8) 
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Where 
 

1 2

1 2 1

1
...

... 1
1

(1 )t

t k

as
m m m
c c c c m

k

C Y u i x


 
    
 



2

2 21

2
11 1

(1 ) ( ) (1 )
k k jc m k c m

kk j k

Y u i x Y i x
  

 
        
 

   

3

3 32

3
11 1

(1 ) ( ) (1 ) ...
k k jc m k c m

kk j k
Y u i x Y i x

  

 
       

 
   

1

11 1

... (1 ) ( ) (1 )
k k j t

t tt

t c m k c m
kk j k

Y u i x Y i x


  

 
       
 

  .   

  (2.9) 
 
By assumption 2.3, we put 

1 2 11 2 1, ,...,
tn n t nY y Y y Y y
   with 

1 2 1
, ,...,

tn n ny y y


 being positive numbers and satisfy condition: 

1 2 1
0 , ,...,

tn n n Ny y y y


  .  

 
Thus, (2.9) can be written as  
 

 1 2

1 2 1
1

11
1

...
... 1

(1 )

t

t

n c mk
k

as
c c c
m m m n

y u i x

C Y y



  

  




2

2 21

2
11 1

(1 ) ( ) (1 )
k k k jc m n c m

kk j k
Y u i x y i x

  

 
        

   

1 1 3

3 32

3
21 1

(1 ) ( ) ( ) (1 ) ...
k k k jc m n m n c m

kk j k
Y u i x y x y i x

  

  
            

 

1 1

1

21 1

... (1 ) ( ) ( ) (1 )
k k k j t

t tt

t c m n m n c m
kk j k

Y u i x y x y i x
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1
1

1 11

1

(1 )

( )
n c mkk

as

n

y u i x

Y y



    
 

  

2
2 21

2 211 1

2

(1 ) ( ) (1 )

( )
n c m n x mk k k jkk j k

n

y u i x y i x

Y y

  

 
       
 




 



  

3
3 32

3 311 1

3

(1 ) ( ) (1 )

( ) ...
n c m n x mk k k jkk j k

n

y u i x y i x

Y y

  

 
       
 




 



  

1

11 1
... (1 ) ( ) (1 ) ...

k k k j t

t tt

t c m n c m
kk j k

Y u i x y i x


  

 
           

  .         (2.10) 

 
Using by assumption 2.3, we put

tt nY y  with 
tny  being  positive number 

and statisfy condition 0
tn Ny y   then (2.9) can be rearranged as 

 

1 2

1 2
1 2 2 3 31 2

1 1 2 2 3 31 1 11 1 1 1

...
...

(1 ) (1 ) ( ) (1 ) (1 ) ( ) (1 )

....t

t

n c m n c m n c m n c m n c mk k k k j k k k jk k kk j k k j k

as
cc c
mm m

y u i x y u i x y i x y u i x y i x

C

       

                                 

 
 

  
  

  

 1
1

11 1

1

(1 ) ( ) (1 )

... ( ) ... ( ) ...
t

t tt
n c m n c mt k k k j tkk j k

n t n

y u i x y i x

Y y Y y


  

 
       
 

 
 

     
    

                  (2.11) 

 

By using Lemma 2.1 in [6], 
1

1

1

(1 )
kc m

k

u i x


  , 
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2

2 21

11 1

(1 ) ( ) (1 )
k k k jc m n c m

kk j k
u i x y i x

  

      , …, 

11 1

(1 ) ( ) (1 )
k k k j t

t tt

c m n c m
kk j k

u i x y i x
  

       are positive numbers and 

1 2
0 , ,...,

tn n n Ny y y y  then,  we define 

1 1

1

1 1
1

max : min (1 ) ,
kn c m N

k
g n y u i x y



  
     

  
 , 

2 2

2 21

2 2
11 1

ax : min (1 ) ( ) (1 ) ,
k k k jn c m n c m N

kk j k
g m n y u i x y i x y

  

           
   

  , 

... 
1

11 1

ax : min (1 ) ( ) (1 ) ,
t k k k j t

t tt

t t n c m n c m N
kk j k

g m n y u i x y i x y


  

           
   

 
. 

 
Thus, (2.11) can be rearranged as 
 

      1 2

1 2 1 2

1 1 2 2

...
... 1 2

1 1 1

... ... .t

t t

t t

as
c c c
m m m n n t n

n g n g n g

C Y y Y y Y y
     

          (2.12) 

 
Because   1n nY Y


  is a  homogeneous Markov chain then 

 

     1 21 2 ...
tn n t nP Y y Y y Y y         

     1 2 1 11 2 1 1. ...
t tn n n t n nP Y y P Y y Y y P Y y Y y


     

1 1 2 1
...

t tn n n n nq q q


  

In the other hand, system of events 

      1 21 2 1 ( 1, )
...

t
j j

n n t n n g j t
Y y Y y Y y

  
       in (2.12) be incompatible then 

1 2 1 1 2 1

1 1 2 2

...
1 1 1

( ) ... ...
t t t

t t

m m m n n n n n
n g n g n g

P B q q q


     

    .            (2.13) 
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By , ,X Y I  are assumed to be independent,  with 1 2, ,..., tc c c  and 

1 2, ,..., tm m m  hold then 
 

1 2

1 2 1 2 1 2

...
... ... ..., , t

t t t

m m m
c c c m m m c c cA B C are independent events.  

 
In addition, system of events 

 1 2

1 2 1 2 1 2

...
... ... ... 1, ; 1, ( 1, )

t

t t t
j j

m m m
c c c m m m c c c c R m M j t

A B C
  

   in (2.8) is incompatible.  

 
Therefore, using (2.8) combining (2.6), (2.7) and (2.13), we have 

 
(1) ( ) ( )t u P A   

 1 2

1 2 1 2 1 2
1 2 1 2

...
... ... ...

, ,.., 1 , ,..., 1

t

t t t
t t

R M
m m m

c c c m m m c c c
c c c m m m

P A B C
 

 
   

 
   

     1 2

1 2 1 2 1 2

1 2 1 2

...
... ... ...

, ,..., 1 , ,..., 1
. . t

t t t

t t

R M
m m m

c c c m m m c c c
c c c m m m

P A P B P C
 

 
  

 
   

   1 2 1 2
1 2 1 2

... ...
, ,.., 1 , ,..., 1

. .
t t

t t

R M

c c c m m m
c c c m m m

P A P B
 

    

1 1 2 1
1 1 2 21 1 1

.... ...
t t

t t

n n n n n
n g n g n g

q q q


     

 
 
 
    

1 1 2 1 1 1 2 1
1 2 1 2, ,.., 1 , ,..., 1

... ...
t t t t

t t

R M

c c c c c m m m m m
c c c m m m

r r r p p p
 

 

   .

1 1 2 1
1 1 2 21 1 1

... ... .
t t

t t

n n n n n
n g n g n g

q q q


     

 
 
 
                                                                 (2.14) 

 
This completes the proof of the Theorem 2.1.                                                                    
  

Corollary 2.1.  If model (1.1) satisfies assumptions 2.1 to 2.4, then finite time 
ruin probability of model (1.1) is defined by 
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  (1) (1)( ) 1 ( )t tu u    

1 1 2 1 1 1 2 1 1 1 2 1
1 2 1 2 1 1 2 2, ,.., 1 , ,..., 1 1 1 1

... ... ... ...
t t t t t t

t t t t

R M

c cc c c m mm m m n nn n n
c c c m m m n g n g n g

r r r p p p q q q
  

       

 
  

 
     .   (2.15) 

 
Remark 2.1.  

 
Fomula (2.4) (or (2.15) gives a method to compute axactly finite time non-ruin 

(ruin) probability of model (1.1) which   1n n
X X


  and   1n nY Y


 are 

homogeneous Markov chains, they take values in a finite set of positive numbers and 
  1n nI I


 is a homogeneous Markov chain and they take values in a finite set of 

non- negative numbers. 
 
Let model (1.2) satisfy assumptions 2.1 to 2.5.  

 
From (1.2), we have: 
 

1

11 1

. (1 ) ( (1 ) ) (1 )
t tt

t k k k k j t t
kk j k

U u I X I Y I X Y


  

 
        

 
    (2.16) 

 
Supposing that the ruin time of model (1.2) is defined by 

 inf : 0u jT j U  , where inf    . 

 
We define the finite time ruin (non-ruin) probabilities of model (1.2) with 

ssumptions 2.1 to 2.5, respectively, by 
 

(2)

1

( ) ( ) ( 0)
t

t u k
k

u P T t P U


 
    

 
 ,     (2.17) 

(2) (2)

1

( ) 1 ( ) ( 1) ( 0)
t

t t u k
k

u u P T t P U 


 
       

 
 . (2.19) 

 

Next, we give  an exact formula for finite time ruin (non ruin) probability of 
model (1.2).  
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Theorem 2.2. If model (1.2) satisfies assumptions 2.1 to 2.5, then finite time 
non-ruin probability of model (1.2) is defined by 

 

1 1 2 1 1 1 2 1

1 2 1 2

(2)

, ,.., 1 , ,..., 1

( ) ... ... .
t t t t

t t

R M

t c c c c c m mm m m
c c c m m m

u r r r p p p
 

 

  

1 1 2 1
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where 
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Proof. 
We proof similarly as Theorem 2.1.                                                         

  
Corollary 2.2.  If model (1.2) satisfies assumptions 2.1 to 2.5, then finite time 

ruin probability of model (1.2) is defined by 
 

(2) (2)( ) 1 ( )t tu u    

1 1 2 1 1 1 2 1 1 1 2 1
1 2 1 2 1 1 2 2, ,.., 1 , ,..., 1 1 1 1

1 ( ... ).( ... ) ... ... (2.21)
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Remark 2.2. Fomula (2.20) (or (2.21)) give a method to compute exact finite 

time non-ruin (ruin) probability of model (1.2) which   1n n
X X


 and   1n nY Y




are  homogeneous Markov chains and they take values in a finite set of positive 
numbers. In addition,   1n nI I


 is a homogeneous Markov chain and they take 

values in a finite set of non- negative numbers. 
 
3. Conclusion 

 
Using technique of classical probability with u, t are possitive integer numbers,  

claims and premiums which all are positive numbers and interests are non – negative 
numbers, this paper constructed an exact formula for ruin (non-ruin) probability for  
model (1.1) and model (1.2) where sequences of claims, premiums and interests are 
homogeneous Markov chains. Our main results in this paper are Theorem 2.1 and 
Theorem 2.2. 
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