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On the k-Jacobsthal Numbers

Sergio Falcon'

Abstract

We introduce a general Jacobsthal sequence that generalizes the classical Jacobsthal
sequence. Many properties of these numbers J, ', ne N are deduced directly from
elementary algebra in a similar way that in the case of the k—Fibonacci numbers.

Finally, we will find that the Pascal triangle related with the k—Jacobsthal numbers
coincides with the triangle obtained for the k—Fibonacci numbers.

Keywords: k—Fibonacci numbers, Formulas of Binnet, Catalan, D'Ocagne and
convolution, Pascal triangle

1. Introduction

In this section, we introduce the k—Fibonacci numbers, defined previously by
Falcon and Plaza (2007).

For any positive real number k, the k—Fibonacci sequence,say{Fk'n}neN isdefined

recurrently by:

I:k,n+1 = k I:k,n + I:k,n—l (11)

for n =1, with the initial conditions F , =0 and F, =1.
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Particular cases of the k-Fibonacci sequence are:

o |If k=1, the classical Fibonacci sequence IS obtained:
F,=0F=1and F,,=F,+F,_, for n>1. So, {F,} ={0,11,2,358,...}

o |f k=2, the classical Pell sequence appears:

P,=0,F, =1land P,, =2P,+P,, for n>1. Then P={0,1,2,5,12,70,169,...}

n+1

2. The k-Jacobsthal Numbers

In a similar form to the k-Fibonacci numbers, we define the k-Jacobsthal
numbers by mean of the recurrence relation

Jin = din +KI g for nx>1 (2.1)
with the initial conditions J,, = 0and J,; =1
We will represent the k-Jacobsthal sequence as J, = {0,1, Jia ka3,...}

For k = 1 and k = 2, the Jacobsthal sequence J, coincides with the classical
Fibonacci sequence and the classical Jacobsthal sequenceJ ={0,11,3,511,..},
respectively.

For k =1, 2...30, all the k-Jacobsthal sequences are listed in Sloane N.J.A. from now
on OEIS.In general,we will take k € N and the firstk-Jacobsthal numbers are:

Table 1

J, =1
J, =1
Jis=1+k
Jia=1+2k
J )

J )

J )

k1

N

s =1+3k+k°
o =1+4k+3k?
o, =1+5k +6k* +k®
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2.1 The Binet Identity for the k-Jacobsthal Numbers

The solutions of the characteristic equation r>=r+k associated to the

C1+V1+4k - 1-J1+4k

recurrence relation (21) are o == and o, 5

3 and
consequently, the solution of the recurrence relation is J, . = ¢, +c¢,0, . Then:

n=0-c+c,=0

n=1-co, +c,0,=1

From these equations we obtain the general term of the k-Jacobsthal sequence
I ={‘Jk,n}nEN :

o'—o! 1 [(1+4ak+1) (1-vak+1)
.. = - - (2.2)
T oo—0, JAk+1 2 2
Ifk=1,then o, = 1+£/§ is the Golden Ratio @.

If c=0,0r c=o0,itis c° =c +k.

The characteristic solutions verify the following properties:

0,:0, =—K o,+0,=1 o,—0,=v4k+1

o, >1 o,<0 |o, <o,
2.2 Two Expressions for the Positive Characteristic roots as Limits

Here, two different ways for representing the metallicmeans are given.
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2.2.1 Continued Fractions

First, note that from characteristic equation r?=r+Kkitis immediately

obtained 6/ =0, +k > 0, = 1+L , from where by repeated substitutions we have:
0,

k
k
k
1-|r—k
1+:--

o, =1+
1+
1+

Note the last continued fraction represents the positive rootof the
characteristic equation, since all the terms are positive. Besides, for different values of
the parameter k, we have the continued fraction corresponding of some of the most
common k-Jacobsthal sequences. Then, for the classical Fibonacci sequence (k = 1), it

is oy =1+ !
1
1+ ——
1
1+71
1+ —
1+:--
For the classical Jacobsthal sequence (k = 2), itis o, =1+ 22
1+
2
1+ 5
1+ —
1+-

2.2.2 Nested Radicals

From the characteristic equation it is r = /1+kr ; and applying iteratively this

relationwe can writeo, = K+ o, :\/k+\/k+w/k+«/k+--- and, as in the case of

continued fractions, note thisexpression corresponds to the positive characteristic
root.
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2.3 Ratio between two k-Jacobsthal Numbers

. o .
If r is a positive integer number, then lim =2 = &'
n—o0 Jk,n
Proof.
n+r n+r n
o -0 o _Gr(%j
n+r n+r 1 2
. . O. . O — . O.
lim—"C = lim—L—2— = [im———2—=im L =g
n—oo n—oo Gl _62 n—oo Gl _02 n—o 1 62
0,-0, o,
n
. | o,
because |0, |< o, = lim| —= | =0
n—oo 61
. . J . F . : 1++/5
Particularly, lim—"2 = lim—% =@, is the golden Ratio, ® :—\/—.
n—ow ‘Jln n—o Fn 2

2.4 Relation between the Sequences {a“} and J,
Forn=1andifo=o0,0r 6= g, itis o" =J, o +J, k.
Proof. By induction. Forn=1, o = J,,0 + J, k.
Forn=2 0*=J,,0+J, k=0+k.

Let us suppose this formula is true for n. Then

o™ =0"0c= (Jk'no + Jk'n_lk)o =J,,0°+3 ko =3, (c+k)+J,, ko
=tk p)o+d k=3, a0+, K
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Then, the sequence of powers {a“}contains the k-Jacobsthal sequence as

coefficients of o and also as coefficients of the parameter k.

2.4.1 Proposition 1: Catalan Identity

Forn>r:J,,  Jea, =32, =(-k)""J:, (23

k,n—r~k,n+r

Proof. By using Equation (2.1) in the left hand side (LHS) of this relation, and taking
into accounto , o , = - k, we obtain:

n

2
-r n-r n+r n+r n n
O -0 O. -0 O, —O
(LHS)I 1 2 -1 2 _( 1 2 j

0,0, 0,-0, 0, -0,
2n n—r __n+r n+r__n-r 2n 2n n__n 2n
o, -0, o0, -0, 0, +0, —0, +20,0, -0,
- 2
(61_02)

1 n( 0, r n( O, r 0| —(-K)"( o +of
= — —= — —_ 2 =
4k+1( (o) (Glj (00:) (sz 2(00:) J 4k +1( (0,0,)

n-r (Gr _Ur)Z n-r 12
— (=)L P2 (k)T
(k) Al (k)" Jy.
Note that for r = 1, Equation (2.3) gives the Simson Identity for the k-Jacobsthal

sequence:
‘]k,n—l‘]k,n+1_‘]k2,n = (_1)nkn_1 (24)
2.4.2 Proposition 2: Convolution Identity

‘Jk,m+n = ‘]k,m+l‘]k,n + k ‘]k,m‘]k,n—l

Proof. Applying the Binet formula for the k-Jacobsthal numbers to the Second Hand
Right (SHR) of this relation, we have:

-
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1 m+1 m+1 m n-1 n-1
oL [(o a2 k(ef o)t ~et]

_ = _162)2 [Ulm+1+n _01m+1—n (—k)" - m+1—n( k)n m+1+n +k6m -1+n k6m+1—
—ko " (k)" + ka0 ]
_ 1
B (6,-0)
B 1
B (0,-03)
1
[ m-1+n

=——|0  0,(0,—0,)+0; 62(62_62)]:
(6,-0) 0179

S0 (0 +K) +03 " (02 +K) |

2 [Glm_lm (0f —010,) +05 " (05 _0102)]

m-1+n

(00" -0, =1

k,m+n

Particular cases of the convolution formula:

e Even k-Jacobsthal numbers: if m =n, then J,,. =J7 ., —k*JZ |
e Odd k-Jacobsthal numbers: if m = n+1, then J, .., =3¢, +kJZ,

e Ifm=2nthen J,,, =37 ., +kJZ K

In a similar way that before the following identity is proven.

2.4.3 Proposition 3: D'Ocagne Identity

Form>n, J, i — i madin = (D™ K"

k,m+1 k,m-n

2.5 Binomial formula for the k-Jacobsthal Numbers

ip n . —
Forn=>1:J,, :LZ(Z ) 1] (4k +1)’ where ip is the integer part of nTl

n-1
2" &
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Proof. If we expand the Binnet Identity, then

Jn =

N

o, —0, +JAk+1 2 2

o-o, 1 HHM]”_(&MH

o

From this formula it is easy to find any k-Jacobsthal number without having
to find before the preceding terms of the k-Jacobsthal sequence.

2.6 A third Formula for the General Term of the k-Fibonacci Sequence

ip —1- i _
FornzZ:JKn:§:p1 _ijl (2.5)

=0 J

Proof by induction.

1-
Forn=2itis J,, = Z( ij‘

A

Forn=3itis J, ;= Z( Jjjk‘ 1+k

j=0

Let us suppose this formula is true until the terms J, ., and J, . Now, from

the definition of the k-Jacobsthal numbers, it isJ, .., =J,, +kJ, ,so, from the
induction hypothesis,

o (n—1— 0 n-2-j) . o n-1-j)  &(n-2-j)
hom z(n J] kz(n ' ij,zh (n ' J]k,+ (n _ J)km
=0 =0 J =0 J =0 J
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where ip’ is the integer part of n_;2 Then, if in the last summand we replace

o (n-1- ) . &(n-1-j) .
jbyj-1thenitis Jk'n+1:1+2(n : ’]sz(” _ ij‘”.

=0 j=0 J

1
And now, having in mind that (m]+( 'mlj :(mfr j(Graham R.L.), we obtain:
J J- J

bon—j), ; &(n-j), . n
Jimn =1+ j kI+> j k! where ip |sthe|ntegerpartof§

i=0 i=0

2.7 Sum of the first terms of the k-Jacobsthal Sequence

Binet Identity (2.2) allow us to express the sum of the firstterms of the k-
Jacobsthal sequence in an easy way.

2.7.1 Proposition: Sum of first k-Jacobsthal Numbers

Let S,,, be the sum of the first n + 1 terms of thek-Jacobsthal sequence, that

is S, => J,;. Then:
=0

1
S = E(‘Jk,mz _1) (2.6)

Proof. We must take into account o’ -o,=k > o,(0,-1) =k, and, as
0,0, =—k, we deduce o, -1=—0,. Similarly, o, -1=—0;,.
Then by applying the Binnet formula, it is
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1 n . . 1 6n+1 _1 6n+1 _1 1 6n+1 _1 6n+l _1
Sn = 2(611_621): ( 1 _9 ]_ [ 1 L 22 j

0,—-0,

0,—0, % o,-o,{ 0,-1 o,-1 -0, o,
n+2 n+2 n+2 n+2 n+2 n+2
_ 1 o0/"°-0,-0,"+0, _ 1 o0/"°-0,-0,"+0, :i(al -0, _1]
0,—0, —-0,0, 0,—0, k k\ o,—-0o,
!
“(Jna—1)
k,n+2
k

As particular cases, for k = 1, the sum of the first classical Fibonacci numbers
is S,,=F., -1, and for k = 2, for the classical Jacobsthal numbers it is

1
SZ,n = E(‘Jn+2 _1)

2.7.2 The Pascal 2 — Triangle

From Table 1 we can see the coefficients of the powers of k in the k-
Jacobsthal numbers are the same that in the expressions of the k-Fibonacci numbers,
and, consequently, these coefficients form the same Pascal 2--triangle (Falcon S. and
Plaza A. (2))

3. Generating Functions for the k-Jacobsthal Sequences

In this section, the generating functions for the k-Jacobsthal sequences are
given. As a result, k-Jacobsthal sequences are the coefficients of the corresponding
generating function.

Let us suppose the k-Jacobsthal numbers are thecoefficients of a potential
series centred at the origin, and letus consider the corresponding analytic function

J. (X) . Thefunction defined in such a way is called the generating functionof the k-
Jacobsthal numbers.

S0, j (X) = Jy o+ J X+ I X+ I X o+ Iy X 4o
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And then,

X j () =3 X+ I X+ I 0 + 3 X et X+

X2 () = 3 X2+ X+ X+ 0, X4+ 3 X e

From where, since J, ; =J, ,, +kJ,,, with J,, =0, J,, =1, we obtain

(1_ X— Xz) ()= ‘Jk,1X+ (Jk,z - ‘]k,l)xz =X

So the generating function for the k-Jacobsthal sequenceJk:{Jk'n} is

n>0
. X
X)=——.
Jk( ) 1_X_k X2
Note that by doing the quotient of the generating function a powerseries,
centered at the origin appears,

B () = X+ X2+ L+ K)X® + L+ 2k)x* + (L + 3k + k?)k® +---where the
coefficients of the powers of k areprecisely those in the Pascal 2 — triangle.

4. Conclusions

New generalized k-Jacobsthal sequences have been introduced andstudied.
Several properties of these numbers are deduced and relatedwith the so-called Pascal
2-triangle. In addition, thegenerating functions for these k-Jacobsthal sequences have
been given.
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