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Abstract 
 
 

We introduce a general Jacobsthal sequence that generalizes the classical Jacobsthal 
sequence. Many properties of these numbers , ,k nJ n N are deduced directly from 
elementary algebra in a similar way that in the case of the k‒Fibonacci numbers. 
Finally, we will find that the Pascal triangle related with the k‒Jacobsthal numbers 
coincides with the triangle obtained for the k‒Fibonacci numbers. 
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1.  Introduction 
 

In this section, we introduce the k‒Fibonacci numbers, defined previously by 
Falcon and Plaza (2007). 
 
For any positive real number k, the k‒Fibonacci sequence,say ,k n n N

F


isdefined 

recurrently by: 
 

, 1 , , 1k n k n k nF k F F    (1.1) 

 
for n ≥1, with the initial conditions ,0 0kF   and ,1 1kF  . 
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Particular cases of the k-Fibonacci sequence are: 
 
 If k=1, the classical Fibonacci sequence is obtained:

0 1 1 10, 1 and for 1.n n nF F F F F n       So,    0,1,1,2,3,5,8,...nF   

 If k=2, the classical Pell sequence appears: 
 0 1 1 10, 1 and 2 for 1. Then 0,1, 2,5,12,70,169,...n n nP P P P P n P        

 
2.  The k-Jacobsthal Numbers 

 
In a similar form to the k-Fibonacci numbers, we define the k-Jacobsthal 

numbers by mean of the recurrence relation 
 

, 1 , , 1 for 1k n k n k nJ J k J n     (2.1) 

 
with the initial conditions Jk,0 = 0 and Jk,1 = 1.  
 
We will represent the k-Jacobsthal sequence as  ,2 ,30,1, , ,...k k kJ J J  

 
For k = 1 and k = 2, the Jacobsthal sequence J1 coincides with the classical 

Fibonacci sequence and the classical Jacobsthal sequence  0,1,1,3,5,11,...J  , 

respectively. 
 
For k = 1, 2…30, all the k-Jacobsthal sequences are listed in Sloane N.J.A. from now 
on OEIS.In general,we will take k N  and the firstk-Jacobsthal numbers are: 
 

Table 1 
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,2

,3

,4

2
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2 3
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1
1
1
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k

k

k

k

k

k

k

J
J
J k
J k

J k k

J k k

J k k k
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2.1 The Binet Identity for the k-Jacobsthal Numbers 
 

The solutions of the characteristic equation 2r r k   associated to the 

recurrence relation (2.1) are 1
1 1 4

2
k  

  and 2
1 1 4

2
k  

 , and 

consequently, the solution of the recurrence relation is , 1 1 2 2
n n

k nJ c c   . Then: 

 

1 2

1 1 2 2

0 0
1 1

n c c
n c c 
   
   

 

 
From these equations we obtain the general term of the k-Jacobsthal sequence 

 ,k k n n N
J J


 :  

 

1 2
,

1 2

1 1 4 1 1 4 1
2 24 1

n nn n

k n
k kJ

k
 
 

                        
               (2.2) 

 

If k = 1, then 1
1 5

2
 

  is the Golden Ratio Φ. 

 
If 1   or 2   it is 2 k   . 
 
The characteristic solutions verify the following properties: 

 

1 2 1 2 1 2

1 2 2 1

· 1 4 1
1 0 | |

k k     
   

      
  

 

 
2.2 Two Expressions for the Positive Characteristic roots as Limits 

 
Here, two different ways for representing the metallicmeans are given. 
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2.2.1 Continued Fractions 
 

First, note that from characteristic equation 2r r k  itis immediately 

obtained 2
1 1 1

1

1 kk  


     , from where by repeated substitutions we have: 

 

1 1
1

1
1

1 ···

k
k

k
k

  







 

 
Note the last continued fraction represents the positive rootof the 

characteristic equation, since all the terms are positive. Besides, for different values of 
the parameter k, we have the continued fraction corresponding of some of the most 
common k-Jacobsthal sequences. Then, for the classical Fibonacci sequence (k = 1), it 

is 1
11 11 11 11

1 ···

  







 

For the classical Jacobsthal sequence (k = 2), it is 1
21 21 21 21

1 ···

  







 

 
2.2.2 Nested Radicals 
 

From the characteristic equation it is 1r k r  ; and applying iteratively this 

relationwe can write 1 1 ···k k k k k        and, as in the case of 

continued fractions, note thisexpression corresponds to the positive characteristic 
root. 
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2.3 Ratio between two k-Jacobsthal Numbers 
 

If r is a positive integer number, then ,
1

,

lim k n r r

n
k n

J
J




  

 
Proof. 
 

21 2
1 2

, 11 2 1 2
1

1 2, 1 2 2

1 2 1

lim lim lim lim

1

nn r n r
r r

n r n r
k n r r

n n nn nn n n n
k n

J
J

   
   


    
  

 

 


   

          
   

    

 

 

because 2
2 1

1

| | lim 0
n

n


 



 
   

 
 

 

Particularly, 1, 1 1

1,

lim limn n

n n
n n

J F
J F

 

 
   , is the golden Ratio, 1 5

2


  . 

 
2.4 Relation between the Sequences  n and Jk 

 
For n ≥ 1 and if σ = σ1 or σ= σ2, it is , , 1 .n

k n k nJ J k     
 
Proof. By induction. For n = 1, ,1 ,0k kJ J k   . 

 
For n = 2, 2

,2 ,1k kJ J k k      . 

 
Let us suppose this formula is true for n. Then 

 

 1 2
, , 1 , , 1 , , 1

, , 1 , , 1 ,

( )

( )

n n
k n k n k n k n k n k n

k n k n k n k n k n

J J k J J k J k J k

J kJ J k J J k
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Then, the sequence of powers  n contains the k-Jacobsthal sequence as 

coefficients of  and also as coefficients of the parameter k. 
 
2.4.1 Proposition 1: Catalan Identity 
 

2 2
, , , ,For : ( )n r

k n r k n r k n k rn r J J J k J
      (2.3) 

 
Proof. By using Equation (2.1) in the left hand side (LHS) of this relation, and taking 
into account 1 2 = - k, we obtain: 
 

 

     

2

1 2 1 2 1 2

1 2 1 2 1 2

2 2 2 2
1 1 2 1 2 2 1 1 2 2

2
1 2

2 2
2 1 2 1

1 2 1 2 1 2
1 2 1 2

( ) ·

2

1 ( )2 2
4 1 4 1 ( )

n r n r n r n r n n

n n r n r n r n r n n n n n

r r r rn
n n n

r

LHS

k
k k

     
     

         
 

        
   

   

   

   
     

     




                      
2

21 2
,

( )( ) ( )
4 1

r r
n r n r

k rk k J
k

  


 
 


     


Note that for r = 1, Equation (2.3) gives the Simson Identity for the k-Jacobsthal

 

sequence: 
 

2 1
, 1 , 1 , ( 1)n n

k n k n k nJ J J k 
      (2.4) 

 
2.4.2 Proposition 2: Convolution Identity 
 

, , 1 , , , 1k m n k m k n k m k nJ J J k J J     

 
 Proof. Applying the Binet formula for the k-Jacobsthal numbers to the Second Hand 
Right (SHR) of this relation, we have: 
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     1 1 1 1
1 2 1 2 1 2 1 22

1 2

1 1 1 1 1 1
1 1 2 2 1 12

1 2

1 1 1
2 2

1
( )

1 ( ) ( )
( )

( )

[

]

m m n n m m n n

m n m n n m n n m n m n m n

m n n m n

SHR k

k k k k

k k k

       
 

    
 

 

   

           

    

       

       


    
1 2 1 2

1 1 2 22
1 2

1 2 1 2
1 1 1 2 2 2 1 22

1 2

1 1
1 1 1 2 2 2 2 2 1 2 ,2

1 2 1 2

1 ( ) ( )
( )

1 ( ) ( )
( )

1 1( ) ( ) ( )
( )

m n m n

m n m n

m n m n m n m n
k m n

k k

J

   
 

     
 

         
   

   

   

     


     

     

           
 
Particular cases of the convolution formula: 

 
 Even k-Jacobsthal numbers: if m = n, then 2 2 2

,2 , 1 , 1k n k n k nJ J k J    

 Odd k-Jacobsthal numbers: if m = n+1, then 2 2
,2 1 , 1 ,k n k n k nJ J k J    

 If m = 2n, then 3 3 3 3
,3 , 1 , , 1k n k n k n k nJ J k J k J     

 
In a similar way that before the following identity is proven. 
 
2.4.3 Proposition 3: D'Ocagne Identity 
 
Form > n, 1

, , 1 , 1 , ,( 1)m n n
k m k n k m k n k m nJ J J J k J 

      

 
2.5 Binomial formula for the k-Jacobsthal Numbers 
 

For n ≥ 1: , 1
0

1 (4 1)
2 12

ip
j

k n n
j

n
J k

j


 
   

  where ip is the integer part of 1
2

n  .  
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Proof. If we expand the Binnet Identity, then 
 

1 2
,

1 2

3 5

1 1 4 1 1 4 1
2 24 1

1 1 2 4 1 (4 1) (4 1) ··· ( )
1 3 524 1

n nn n

k n

n

k kJ
k

n n n
k k k RHS

k

 
 

                        
      

                    

 

 
From this formula it is easy to find any k-Jacobsthal number without having 

to find before the preceding terms of the k-Jacobsthal sequence.  
 
2.6 A third Formula for the General Term of the k-Fibonacci Sequence 
 

,
0

1
2 :

ip
j

k n
j

n j
For n J k

j

  
   

 
  (2.5) 

 
Proof by induction. 
 

For n = 2it is 
0

,2
0

1
1j

k
j

j
J k

j

 
  

 
  

 

For n=3 it is 
1

,3
0

2
1j

k
j

j
J k k

j

 
   

 
  

 
Let us suppose this formula is true until the terms , 1k nJ   and ,k nJ . Now, from 

the definition of the k-Jacobsthal numbers, it is , 1 , , 1k n k n k nJ J k J   so, from the 
induction hypothesis, 
 

' '
1

, 1
0 0 0 0

1 2 1 2
1

ip ip ip ip
j j j j

k n
j j j j

n j n j n j n j
J k k k k k

j j j j
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where ip’ is the integer part of 2
2

n  . Then, if in the last summand we replace 

j by j -1 then it is 1
, 1

0 0

1 1
1

ip ip
j j

k n
j j

n j n j
J k k

j j



 

      
     

   
  .  

 

And now, having in mind that 
1

1
m m m
j j j

     
           

(Graham R.L.), we obtain: 

 
''

, 1
0 0

1
ip ip

j j
k n

j j

n j n j
J k k

j j
 

    
     

   
   where ip’’ is the integer part of 

2
n  

 
 
2.7 Sum of the first terms of the k-Jacobsthal Sequence 
 

Binet Identity (2.2) allow us to express the sum of the firstterms of the k-
Jacobsthal sequence in an easy way. 
 
2.7.1 Proposition: Sum of first k-Jacobsthal Numbers 
 

Let Sk,n  be the sum of the first n  + 1 terms of thek-Jacobsthal sequence, that 

is , ,
0

n

k n k j
j

S J


 . Then: 

 

 , , 2
1 1k n k nS J
k    (2.6) 

 
Proof. We must take into account 2

1 1 1 1( 1)k k        , and, as 

1 2 k    , we deduce 1 21    . Similarly, 2 11    . 
Then by applying the Binnet formula, it is  
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1 1 1 1
1 2 1 2

, 1 2
01 2 1 2 1 2 1 2 2 1

2 2 2 2 2 2
1 1 2 2 1 1 2 2 1 2

1 2 1 2 1 2 1 2

, 2

1 1 1 11 1 1
1 1

1 1 1 1

1 1

n n n nn
j j

k n
j

n n n n n n

k n

S

k k

J
k

    
         

         
       

   



     



      
                

       
        

 



 
As particular cases, for k = 1, the sum of the first classical Fibonacci numbers 

is 1, 2 1n nS F   , and for k = 2, for the classical Jacobsthal numbers it is 

 2, 2
1 1
2n nS J    

 
2.7.2 The Pascal 2 – Triangle 
 

From Table 1 we can see the coefficients of the powers of k in the k-
Jacobsthal numbers are the same that in the expressions of the k-Fibonacci numbers, 
and, consequently, these coefficients form the same Pascal 2--triangle (Falcon S. and 
Plaza A. (2)) 
 
3.  Generating Functions for the k-Jacobsthal Sequences 
 

In this section, the generating functions for the k-Jacobsthal sequences are 
given. As a result, k-Jacobsthal sequences are the coefficients of the corresponding 
generating function. 
 

Let us suppose the k-Jacobsthal numbers are thecoefficients of a potential 
series centred at the origin, and letus consider the corresponding analytic function 

( )kj x . Thefunction defined in such a way is called the generating functionof the k-
Jacobsthal numbers.  
 
So, 2 3

,0 ,1 ,2 ,3 ,( ) ··· ···n
k k k k k k nj x J J x J x J x J x        

 
 
 
 



Sergio Falcon                                                                                                                        77 
   
 

 

And then, 
 

2 3 4
,0 ,1 ,2 ,3 , 1( ) ··· ···n

k k k k k k nx j x J x J x J x J x J x      
2 2 3 4 5

,0 ,1 ,2 ,3 , 2( ) ··· ···n
k k k k k k nx j x J x J x J x J x J x        

 
From where, since , , 1 , 2 ,0 ,1with 0, 1k j k j k j k kJ J k J J J     , we obtain 

 2 2
,1 ,2 ,11 ( ) ( )k k k kx x j x J x J J x x       

 
So the generating function for the k-Jacobsthal sequence  , 0k k n n

J J


  is 

2( )
1k

xj x
x k x


 

. 

 
Note that by doing the quotient of the generating function a powerseries, 

centered at the origin appears, 
 
 2 3 4 2 5( ) (1 ) (1 2 ) (1 3 ) ···kj x x x k x k x k k k          where the 

coefficients of the powers of k areprecisely those in the Pascal 2 – triangle. 
 
4. Conclusions 
 

New generalized k-Jacobsthal sequences have been introduced andstudied. 
Several properties of these numbers are deduced and relatedwith the so-called Pascal 
2-triangle. In addition, thegenerating functions for these k-Jacobsthal sequences have 
been given. 
 
References 
 
FALCON, S. and PLAZA, A.(2007). On the Fibonacci k-numbers. Chaos, Solitons and 

Fractals, 32 (5), 1615-1624. 
FALCON, S. and PLAZA, A. (2007). The k-Fibonacci sequence and the Pascal 2 – triangle. 

Chaos Solitons and Fractals,33(1), 38-49. 
SLOANE, N.J.A. (2006). The On-Line Encyclopedia of Integer Sequences. Available:  
www.research.att.com/\~{}njas/sequences/ 
GRAHAM R.L., KNUTH D.E. andPATASHNIK O. (1998). Concrete Mathematics. 

Addison Wesley Publishing Co. 


