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Abstract 
 
This paper shows how to prove the Theorem    nYnX  , i.e., the number of partitions 
of n with no part repeated more than twice is equal to the number of partitions of n with 
no part is divisible by 3.  
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1. Introduction   

We give some definitions of  nX  and  nY  [1]. We generate the generating functions for 
 nX  and  nY , and prove the Theorem    nYnX  . Finally we give a numerical example when n = 8. 

 
2. Definitions 
 

  nX : The number of partitions of n with no part repeated more than twice. 
  nY : The number of partitions of n with no part is divisible by 3. 
 
3. Generating Functions   

 We consider a function, which is the product of infinite factors, one of which is  nn xx 21   
and it can be written as; 
 

     ... 1 1 1 63422 xxxxxx  

 ...754221 65432 xxxxxx  

  n

n
xnX  1

1





              (1) 

 

              Each element of the product comes from multiplying together one term from each bracket 
either 0x or nx  or nnx   from  nn xx 21  . So in the corresponding partitions no part occurs more 
than twice. 
 

 Therefore we can say that the coefficient  nX  of nx  in the above expansion is the number of 
partitions of n with no part is repeated more than twice.  
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The generating function for  nY  is of the form [2]; 
 

          ... 1 1 ... 1 1 1 1
1

1323542   nn xxxxxx
 

 

 ...754221 65432 xxxxxx  
 

  n

n
xnY  1

1





                 (2) 

 

where the coefficient  nY  is the number of partitions of n with no part is divisible by 3. 
 

From equations (1) and (2) we get; 
 

  n

n
xnX  1

1





  

       ... 1 ... 1 1 1 263422 nn xxxxxxxx  
 

... 
1
1 ... 

1
1.

1
1.

1
1 3

3

9

2

63

n

n

x
x

x
x

x
x

x
x













  

          ... 1 1 ... 1 1 1 1
1

1323542  
 nn xxxxxx

 

  n

n
xnY  1

1





 . 

 

Equating the coefficient of nx  from both sides we get; 
 

   nYnX  . 
 

Theorem:    nYnX  , i.e., the number of partitions of n with no part is repeated more than 
twice is equal to the number of partitions of n with no part is divisible by 3. 

 

Proof: We develop a one-to-one correspondence between the partitions enumerated by  nX  
and those enumerated by  nY . Let raaan  ...21  be a partition of n with no part is repeated 
more than twice. We transfer this into a partition of n with no part is divisible by 3. If a part ma  of the 

partition, which is divisible by 3, enumerated by  nX  can be expressed into three equal parts, such 
that: 6 = 2+2+2, 3 = 1+1+1. Rearranging the parts of the partition, we can say that the parts are not 
divisible by 3. Clearly, our correspondence is one-to-one. 
 

 Conversely, we start any partition of n into with no part is divisible by 3, say  
raaan  ...21 , we consider the same part not less than thrice, it would be unique sum by same 

three parts by taking a group, such that, 5+1+1+1 = 5+3 and 2+2+2+1+1 = 6+1+1. 
 

This gives n as a partition with no part is repeated more than twice. Thus, we have the one-to-
one correspondence. The corresponding is onto, so that    nYnX  . Hence the Theorem.   
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4. A Numerical Example 
 

 When n = 8, the listed partitions of 8 with no part repeated more than twice is given below: 
 

8 = 7+1 = 6+2 = 6+1+1 = 5+3 = 5+2+1 = 4+4 = 5+3+1 = 4+2+1+1 = 4+2+2 = 3+3+2 = 3+3+1+1= 
3+2+2+1. 
 

So, there are 13 partitions i.e.,   138 X . Again, the list of partitions of 8 with no part is 
divisible by 3 is given below:  
 

8 = 7+1 = 5+2+1 = 5+1+1+1+1 = 4+4 = 4+2+1+1 = 4+2+2= 4+1+1+1+1 = 2+2+2+2 =2+2+2+1+1= 
2+2+1+1+1+1 = 2+1+1+1+1+1+1 = 1+1+1+1+1+1+1+1. 
 

So, there are 13 partitions i.e.,    138 Y .  
 

   nYnX   
 
5. Conclusion 
 

 For any positive integer of n, we can verify the Theorem    nYnX  . We have already satisfied 
the Theorem when n = 8.   
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