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A Class of Modified Weighted Weibull Distribution and Its Properties
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1. Introduction

The weibull distribution and other related distribution like exponential, Rayleigh and extreme
value distributions are very use full in survival, reliability renewal theory and branching processes can
be seen in recent papers among the others Olnyede (2006) who shows that the weighted distribution are
used to adjust the probabilities of the events as observed and recorded Gupta and Kundu (2009)
discussed a new class of weighted weibull distributions.

2. Modified weighted weibull distribution.

Let x be a non-negative random variable with continuous distribution function F(x) and
probability density function f(x) and X|{w}| be a weighted random variable with probability density

function given as:
1-w(t()] f, (x)
Fw) (x) = [ ]

S -0 < X <o
E[1-w(t(x))]

Where 0 < E [1-w (t(x))] < o, Among others see; Ramadon (2013)

The new class of modified weighted distributions is defined by the probability density function
(pdf) given as:
1-F  (0X)) £, (%)
foQ}(x):( ) —, x>0 (2.1
E(1-F (6 X))

Where Fy (6x) = w (t(x)), and c, 6 are additional shape parameters.
Now, the pdf of weibull distribution is given as:

fXHﬂ‘y}:,Byxy’le’ﬂXy (2.2

Where “B” is scale parameter and “Y™ is shape parameter.
The distribution function of X| {B, Y} is given as:

Ry =17 (2.3
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And we get
- ~BOxXY
FWMJQ@—l—e

And
C < C
E[l— Fein (ex)} = | [1— F s (ex)} F gy (90X
1
cO’+1
Putting (2.2) to (2.4) in (2.1) we get,
Forx>0

fxl{ﬂ,yﬂ,c}(x) = ,B V4 (CQ ¥ +1) x71 e*ﬂ(CGVJr]_)X‘/

The pdf (2.6) is referred to as MWW (B, Y, 6, C).

2.4)

(2.5)

(2.6)

Let X; and X; are two i.i.d distributed random variables with PDF f(y) and CDF F(y), then for 6
> 0 and Y = 2 Mohdy (2011) worked on the weighted gamma distribution from two i.i.d gamma
distribution. But we explore a new modified weighted gamma distribution from two i.i.d gamma

distributions as given:

o [RErne
x| p20c} me({( X, % ) 1Jcox <x, })

Now (2.1) can be obtained from eq. (2.7) by inserting

fopy = 2Bxe7"
Fepn =1-7
oo\/E@Xl .
PRcOx >x,) =I I 48°x,x, e PR dx dx,
0 0
_ch?
1+c6?
And
P(Wcox <x,) =1-P(/cox >x,)
1
1+ch?
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3. The Graph and Table

The table and graph of the MWW (B, Y, 6, C) by using eq. (2.6), WW (B, Y, 6) and W (B, Y)
distribution functions are given below :

Table
(x) p=0.1, Y=2,6=0.1, C=10
X MWWD WWD WD
0.180967 | 0.018269 | 0.217917
2 0.268128 | 0.108107 | 0.260191
3 0.243942 | 0.220748 | 0.225175
4 0.161517 | 0.258935 | 0.139012
5 0.082085 | 0.204695 | 0.064567
6 0.032788 | 0.117098 | 0.023104
7 0.010425 | 0.050351 | 0.006451
8 0.002658 | 0.016646 | 0.001416
9 0.000546 | 0.004294 | 0.000245
10 9.08E-05 | 0.000873 | 3.37E-05
Graph
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Comments
We conclude that the new (pdf) MWW (B, Y, 6, C) is more skewed as compare to the WW (3,
Y, 6) and W (B, Y) distribution functions.

4. Properties
i) The r'" moment of X|{B, Y, 6, C} is given as:
w, = y(O +)B T (rly+1)(co” +1)"" (4.2)

From (4.1) putting r = 1, r = 2 we get the mean and variance as:
y(CO” +1) VT (Al y +1)(cO” +1) V7

Mean =pu, =
i, = y(cO’ +)B T2y +1)(cO” +1)7
And
var(x) = g, =
S.D =  +Variance
CV = S.D/mean
if) The distribution function Fyww @, v, 0, c) of MWW (B, Y, 6, C) is given by:
(4.2)

FMWW(ﬂ,;/,@,c) (X) — 1_e*ﬁ' (cO7 +1)X 7

iif) The Reliability function Ryww @, v, 6, c) Of MWW (B, Y, 6, C) is given by:

Ryww (8,7, 0,C) (x)=1-Fyw (B, 7,0,C)
(4.3)

_ g B0 X7
iV) The hazard function hMWW B,Y,0,C) (X) of MWW (B, Y, 9, C) 1S given by

=yB (& +)X""

(4.4)

V) The reversed hazard function r yww g, v, 6, c) (X) of MWW (B, Y, 0, C) is given by:

e r0ome 1= 280

_ y B (097 +1)X 71 @B 07 +)X" .s
T e (@5)
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vi) The mean reversed residual function m yww g, v,0,c) of MWW (B, Y, 6, C) is given by:

Mograg () = | FOUR/FX)

= (1er@ X )712(—1)”10!)’10;/ 1)t (3.6)
5. Special Cases -
(@) From eq. (2.5) the modified weighted probability density function
y: = log [BX"] is given by:
fly) = et e*
fywevo (V) = (07 +1)e%e |

For Y; > 0 which is modified weighted extreme value distribution.

co’ +1)eyl

(5.)

(b) The modified weighted probability density function of Y, for putting r =2 in eqg. (2.5) is given by:
ForY,>0
fom(Y,) = 2B(CO%+1)xe? DX (5.2)
Eqg. (5.2) is modified weighted Rayleigh distribution,

(c) The modified weighted probability density function of Y3 for putting r =1 in eq. (2.5) is given by:
For x>0
e (V) =B (cO+1)e 0" (53)
Eqg. (5.3) is Modified weighted Exponential distribution.

6. Parameter Estimation
From eg. (2.5) the log-likelihood function is given as:

Partially differentiating (6.1) w.r.t unknown parameters 3, Y, 6 and c we get:
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logL(x)=nlogy +nlog g +nlog(cOd’” +1)+

(v —1)Zn: log x; —(cO” +1)ﬁzn: X/ (6.1)
—alog;(x):n/ﬁ—((ceul)ﬁzn: X! (6.2)
dlogL(x) _ n n(co ".log @) ! B
o _}/+ (07 + 1) +§1|09Xi

Blco “log 6> x/ +(cO” +1)
i=1

> x/ log(x,) (6.3)
i=1
olog L(x) ncy@’* O
- - 0" ’ 6.4
20 co 1 Pe7 2 X (6.4)
o0log L(x) ne’ -
= — 9}/ Y 6.5
oc co’ -1 “ ;X' (6-5)

We can solve the eq. (6.2) to (6.5) to get the MLEs of the unknown parameters A= (B, Y, 0, ¢)
simnltanionsly.

The information matrix is given as:

L(2) 1o (2) 1(2)
el O

1 (4)
20 (2)
20 (4)
w(2)

Where
0% log L(x)

777

The value of [ } are given in Appendix A.

The variance and covariance matrix may be approximated as;

Viu V2 Vi3 Vi

Vv Vv Vv a
v = 2 23 2| Z17(2)
Va3 Vi
A

The asymptotic distribution of the MLE’s of (,3, 7, 0, C) is given as, see; Milla (1981)

A~ N(@&V) (6.6)
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Since “v ” involve the corresponding MLE’s in order to obtain an estimate of “v ™ which is given as;

v= 1%1)
Then by using (6.6) approximate 100(1-a)% confidence intervels for the parameters.
j:’I * Za/Z \7i

Fori=1, 2, 3, 4. Where Za,; is the a-th upper percentile of the standard normal distribution

7. Appendix: A
2 n n
Glogl(x) _ {cm log6> % + (c0” +1)>" (X! log xi)} 6.7)
8ﬂ 8}/ i=1 i=1
2 n
0 log L(x) _ —cy@y’lzxf (6.8)
op oo =
2 n
J"logL(x) _ —0" > x (6.9)
opoc =)
0*logL(x) _ nc(cod’ +1)[y0" " logd +0"1-ncy6” " logh
oyo0 (cO” +1)?
,Bc{y@“ log@+6"" + y@yfli x’ log xi} (6.10)
i=1
d*logL(x)  no (6.1)
dyoc  (cO” +1) '
0 log L(x) =] =} A%
= 9" (cO” +1)t = BrvO7 4 6.12
Sone - MO+ - Br Z:,X (6.12)
d° log L(X) n
i~ Sk S’ A 6.13
o5 5 (6.13)
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o?logL(x) n nclog®0.0”[co” +1-c’0” logh |
R e A
o’y y? (cO” +1)?

— Bclog 9{07 log 6?2”: X/ + 972[% log X, ]}
i=1

i=1

-B {cé” log ei (x” logx,) + (cO” +1)i[x{ log® x, ]} (6.14)

i=1 i=1

o?logL(x)  ncy(y —1)07*(cO” +1) — nc’y?6*™

5% (cO” +1)? (6.15)
0% log L(x) —no*
o’ (cO” +1)° (6.16)
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