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1. Introduction  
 

The weibull distribution and other related distribution like exponential, Rayleigh and extreme 
value distributions are very use full in survival, reliability renewal theory and branching processes can 
be seen in recent papers among the others Olnyede (2006) who shows that the weighted distribution are 
used to adjust the probabilities of the events as observed and recorded Gupta and Kundu (2009) 
discussed a new class of weighted weibull distributions. 

 
2. Modified weighted weibull distribution. 
 

Let x be a non-negative random variable with continuous distribution function F(x) and 
probability density function f(x) and X|{w}| be a weighted random variable with probability density 
function given as: 
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Where 0 < E [1-w (t(x))] < ∞, Among others see; Ramadon (2013) 
 

The new class of modified weighted distributions is defined by the probability density function 
(pdf) given as: 
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Where Fx (θx) = w (t(x)), and c, θ are additional shape parameters. 
 

Now, the pdf of weibull distribution is given as: 
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Where “β” is scale parameter and “ϒ” is shape parameter. 
 

The distribution function of X| {β, ϒ} is given as: 
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And we get 
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Putting (2.2) to (2.4) in (2.1) we get, 
 

For x > 0          
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The pdf (2.6) is referred to as MWW (β, ϒ, θ, C). 

 
Let X1 and X2 are two i.i.d distributed random variables with PDF f(y) and CDF F(y), then for θ 

> 0 and ϒ = 2 Mohdy (2011) worked on the weighted gamma distribution from two i.i.d gamma 
distribution. But we explore a new modified weighted gamma distribution from two i.i.d gamma 
distributions as given: 
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Now (2.1) can be obtained from eq. (2.7) by inserting  
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3. The Graph and Table   
 

The table and graph of the MWW (β, ϒ, θ, C) by using eq. (2.6), WW (β, ϒ, θ) and W (β, ϒ) 
distribution functions are given below : 

Table 
 

f(x) β=0.1, ϒ=2, θ=0.1, C=10 
X MWWD WWD WD 
1 0.180967 0.018269 0.217917 

2 0.268128 0.108107 0.260191 

3 0.243942 0.220748 0.225175 

4 0.161517 0.258935 0.139012 

5 0.082085 0.204695 0.064567 

6 0.032788 0.117098 0.023104 

7 0.010425 0.050351 0.006451 

8 0.002658 0.016646 0.001416 

9 0.000546 0.004294 0.000245 

10 9.08E-05 0.000873 3.37E-05 

 
 

Graph 
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Comments 
 

We conclude that the new (pdf) MWW (β, ϒ, θ, C) is more skewed as compare to the WW (β, 
ϒ, θ) and W (β, ϒ) distribution functions. 

 
4. Properties 

 
i) The rth moment of X|{β, ϒ, θ, C} is given as: 
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From (4.1) putting r = 1, r = 2 we get the mean and variance as: 
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ii) The distribution function FMWW (β, ϒ, θ, C) of MWW (β, ϒ, θ, C)  is given by: 
( 1)
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iii) The Reliability function RMWW (β, ϒ, θ, C) of MWW (β, ϒ, θ, C) is given by: 

MWW MWW

( 1)

R  ( , , , C) (x) = 1 - F  ( , , , C)

(4.3)c Xe
  

     
 

 

iv) The hazard function hMWW (β, ϒ, θ, C) (X) of MWW (β, ϒ, θ, C) is given by: 
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v) The reversed hazard function r MWW (β, ϒ, θ, C) (X) of MWW (β, ϒ, θ, C) is given by: 
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vi) The mean reversed residual function m MWW (β, ϒ, θ, C) of MWW (β, ϒ, θ, C) is given by:  
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5. Special Cases 
 

(a) From eq. (2.5) the modified weighted probability density function  
 

y1 = log [ Xϒ] is given by: 
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For Y1 > 0 which is modified weighted extreme value distribution. 
 

(b)  The modified weighted probability density function of  Y2 for    putting r = 2 in eq. (2.5) is given by: 
 
For Y2 > 0 

2 22 ( 1)
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Eq. (5.2) is modified weighted Rayleigh distribution, 
 
(c)  The modified weighted probability density function of  Y3 for putting r = 1 in eq. (2.5) is given by: 

 
For x > 0 

( 1)
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Eq. (5.3) is Modified weighted Exponential distribution. 

 
6. Parameter Estimation 
 
From eq. (2.5) the log-likelihood function is given as: 
 
Partially differentiating (6.1) w.r.t unknown parameters β, ϒ, θ and c  we get: 
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We can solve the eq. (6.2) to (6.5) to get the MLEs of the unknown parameters λ= (β, ϒ, θ, c) 
simnltanionsly. 
 
The information matrix is given as:  
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are given in Appendix A. 

The variance and covariance matrix may be approximated as; 
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The asymptotic distribution of the MLE’s of ˆ ˆˆ ˆ( , , , )c   is given as, see; Milla (1981) 

ˆ ~ N ( ,V ) (6.6)i   
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Since “


” involve the corresponding MLE’s in order to obtain an estimate of “


” which is given as; 

 
1

~
ˆ( )I    

Then by using (6.6) approximate 100(1-α)% confidence intervels for the parameters. 

/2
ˆ ˆi iZ v   

For i = 1, 2, 3, 4. Where Zα/2 is the α-th upper percentile of the standard normal distribution 

 

 
7. Appendix: A 
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