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Abstract 
 
Forecasting is tricky business. This is particularly true in the energy field, where the 
highly random behavior of energy prices and technological change make forecasting 
difficult. In this paper, we study the long memory characteristic using Higuchi method 
and establish SARFIMA model to forecast consumption of petroleum products in U.S. 
Furthermore, we apply an error decomposition technique to study errors in energy 
forecasts by the SARFIMA model. The results indicate the SARFIMA model give precise 
predictions. 
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1. Introduction 
 
At the beginning of the 20th century, petroleum was a minor resource used to manufacture 

lubricants and fuel for kerosene and oil lamps. One hundred years later it had become the preeminent 
energy source for the U.S. and the rest of the world. World wide consumption of petroleum was 85.4 
million barrels per day in 2009. The three largest consumption countries were: 

 
 United Sates (18.7 million barrels per day) 
 China (8.12 million barrels per day) 
 Japan (4.4 million barrels per day) 

 
The United States is the largest energy consumer in the world. The United States consumes 

more energy from petroleum than from any other energy source. In 2009 total U.S. petroleum 
consumption was 18.7 million barrels per day and the United States consumed a total of 6.9 billion 
barrels of oil (refined petroleum products and bio fuels), which was about 27% of total world oil. 
Energy consumption has increased at a faster rate than energy production over the last fifty years in the 
U.S. (when they were roughly equal). This difference is now largely met through imports (IEO 2010). 
Sakhabakhsh and Yarmohammadi (2012) indicated SARFIMA model is an appropriate model for 
energy modeling. In this paper, we evaluate forecasts errors of SARFIMA model in the energy field. As 
an illustration, we consider monthly consumption of petroleum products of U.S.  

 
The presence of long memory in the time series provides a researcher the needed information to 

transform a non-stationary series into a stationary one. Therefore it is critical to explore the presence or 
otherwise of long memory in consumption of petroleum products of U.S. This is done through the 
application of Higuchi method (Higuchi, 1988). Several estimation methods are available. However, the 
Higuchi approach clearly outperforms the other methods. This is probably due to the fact that the 
Higuchi method evaluates the cumulative sum of the data to convert the series from a noise to a motion. 
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Then we conduct our analysis using SARFIMA model’s energy forecasts with time horizons ranging 
from 1 to 15 years made during the period 1994 through 2009.  

The recent finance and economic literature has recognized the importance of long memory in 
analyzing time series data. A long memory can be characterized by its autocorrelation function that 
decays at a hyperbolic rate. Such a decay rate is much slower than that of the time series, which has 
short memory. Traditional Box-Jenkins models describing short memory, such as AR (p), MA (q), 
ARMA (p, q), and ARIMA (p, d, q) can not describe long memory precisely. A set of models has been 
established to overcome this difficulty, and the most famous one is the autoregressive fractionally 
integrated moving average (ARFIMA or ARFIMA (p, d, q)) model. ARFIMA model was established by 
Granjer and Joyeux (1980). An overall review about long memory and ARFIMA model was model by 
Baillie (1996). In many practical applications researchers have found time series exhibiting both long 
memory and cyclical behavior. For instance, this phenomenon occurs in revenues series, inflation rates, 
monetary aggregates, and gross national product series.  

 
Consequently, several statistical methodologies have proposed to model this type of data 

including the Gegenbauer autoregressive moving average processes (GARMA), k-factor GARMA 
processes, and seasonal autoregressive fractionally integrated moving average (SARFIMA) models. The 
GARMA model was first suggested by Hosking (1981) and later studied by Gray et al (1989) and 
Chung (1996). Other extension of the GARMA process is the k-factor GARMA models proposed by 
Giratis and Leipus (1995) and Woodward et al (1998).  This paper investigates a special case of the k-
factor GARMA model, which is considered by Porter – Hudak (1990) and naturally extends the 
seasonally integrated autoregressive moving average (SARIMA) model of Box and Jenkins (1976). 
Katayama (2007) examined the asymptotic properties of the estimators and test statistics in SARFIMA 
models. There are several methods for estimating the parameters in time series models. In this paper, we 
estimate the parameters using conditional sum of squares (CSS) method. 

 
2. Materials & Methods 

 
2.1 Long memory model 

 
The basic properties of processes with long memory are a hyperbolically decaying 

autocorrelation function (ACF), a spectral density increasing without limit as the frequency tends to 
zero, and the so-called Hurst phenomenon. The last characterization implies that the Hurst exponent 
(H), the parameter representing the probability that an event in a time series is followed by a similar 
event, deviates from 0.5. For  H= 0.5, the observations are independent. There are two classes of fractal 
processes, which can be persistent or antipersistent: fractional Brownian motion (fBm) and fractional 
Gaussian noise (fGn). Mandelbrot and van Ness (1968) introduced fBm as a generalization of ordinary 
Brownian motion, a continuous-time stochastic process with independent increments. Brownian motion 
with H= 0.5 separates antipersistent and persistent fBms. H can be any real number in the range [0, 0.5) 
for antipersistent and (0.5, 1] for persistent series, where antipersistence implies negative correlations 
between the successive increments of a fBm series. fGn, a discrete-time analogue of fBm, was defined 
by Mandelbrot and Wallis (1969).  

 
Gaussian noise is a stationary process with constant mean and variance, whereas Brownian 

motion is nonstationary with stationary increments. Differencing fBm creates fGn, and summing fGn 
produces fBm; the related processes are characterized by the same Hurst exponent. There are three 
major ways for capturing long memory: (1) by means of H within the scope of fractal analysis; (2) 
through the power exponent β of the power spectrum function 1/f β in the spectral analysis; and (3) 
through the fractional-differencing parameter d within the ARFIMA framework. Figure 1 illustrates 
these concepts. Table 1 summarizes the relationships between β, H, and d. 
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Table 1: Relationships between parameters capturing long memory characteristic 
 

 β H d 
Random walk  
(ordinary Brownian motion) 2 0.5 1 

Whitw noise  
(ordinary Gaussian noise) 0 0.5 0 

fGn 
[-1, 1] 
[-1, 0) antipersistent 
(0, 1] persistent 

[0, 1] 
[0, 0.5) antipersistent 
(0.5, 1] persistent 

[-0.5, 0.5] 
[-0.5, 0) antipersistent 
(0, 0.5] persistent 

fBm 
[1, 3] 
[1, 2) antipersistent 
(2, 3] persistent 

[0, 1] 
[0, 0.5) antipersistent 
(0.5, 1] persistent 

[0.5 , 1.5] 
[0.5, 1) antipersistent 
(1, 1.5] persistent 
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Fig. 1: (A) The original series (T = 512), (B) autocorrelation functions (ACFs), and (C) spectral density 
plots. 
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2.1.1 ARFIMA (p, d, q) process 
 
In this section, we present the ARFIMA (p, d, q) model (also called Fractional ARIMA model) 

and some related theoretical results. Models that include fractional differentiation d in the interval (0, 
0.5) are able to represent any time series that shows persistence. Initial studies of time series with long 
memory characteristics were given by Hurst (1951).                                                    

 
ARFIMA processes are a generalization of the ARMA and ARIMA models. Persistence or long 

memory property has been observed in time series from different fields such as metrology, astronomy, 
hydrology, and economy.                                                                                         
 
One can characterize the persistence by two different forms: 

 
• In time domain, the autocorrelation function  decays hyperbolically to zero, that is: 

  
 , when          (1) 

 

• In frequency domain, the spectral density function  is unbounded when the frequency is near 
zero, that is: 
 

 when         (2) 
 
One of the models that can describe the persistence is the so-called ARFIMA (p, d, q) processes. 
 

Definition 1: A stochastic process  is Gaussian if, for any set of , the 
random variables  have a n-dimensional normal distribution.                                                                                                 

 
We observe that weakly stationary process  dose not need to be strongly stationary. 

However, any weakly stationary Gaussian process will be also strongly stationary.                                                                                            
 
Definition 2: The process is said to be a white noise process with zero mean and 

variance , denoted by  , if         
 

, , and        (3) 
 

 
 

Definition 3: Let  be a white noise process with zero mean and variance  > 0, and B 
the backward-shift operator, i.e.,  . If  is a linear process satisfying:  

 
      (4) 

 
Where d ∈ (-0.5,0.5),  ,  are polynomials of degree p and q, respectively, given by:  

 
    

(5)   

1( ) 1 ... q
qB B B                                                                                                               

( )(1 B) ( ) ,d
t tB x B t    �

1( ) 1 ... ,p
pB B B     
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Where  are real constants, than  is called general 
fractional differentiation ARFIMA (p, d, q) process, where d is the degree or fractional differentiation 
parameter.                                                     

 
The term   , for d  , is defined through the binomial expansion:   
  

2

0
(1 B) ( ) 1 (1 ) ... .

2!
d k

k

d dB dB d B
k





 
       

 
                      (6) 

 
If d ∈ (-0.5, 0.5), then  is a stationary, and an invertible process. The most important 

characteristic of an ARFIMA (p,d,q) process is the property of long dependence, when  d ∈ (0, 0.5), 
short dependence, when d=0, and intermediate dependence, when  d ∈ (-0.5, 0).  
 
2.1.2 SARFIMA (p, d, q) (P, D, Q)s processes 

 
In many practical situation time series exhibit a periodic pattern. We shall consider the      

SARFIMA (p, d, q) (P, D, Q)s process, which is an extension of the ARFIMA process.  
 
Definition 1: Let  be a stationary stochastic process with spectral density function 

.suppose there exists a real number , a constant  and one frequency  

(or a finite number of frequencies ) such that: 
 

  (7)   
 
 

Then,  is a long memory process. 

Remark 1: In Definition 1, when , we say that the process  has the 

intermediate dependence property (Doukhan et al., 2003).  
 
Definition 2: Let  be a stochastic process given by the equation:  

( ) ( )(1 ) (1 B ) ( ) ( ) ( ) ,s d s D s
t tB B B x B B t         �          (8) 

 

Where the mean of the process is,  is a white noise process with zero mean and 

variance   is the seasonal period; B is the backward-shift operator, that is:  

(X )sk
t t skB X   (9) 

 

 The seasonal difference operator D
S  is defined as: 

 
                                                      (10) (1 )D S D

S B  
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   and  are the polynomials of degrees p, q, P, and Q, respectively, defined 

by:  

0
( ) ( )

p
i

i
i

B B 


   (11) 

0
( ) ( )

q
j

j
j

B B 


   (12) 

0
( ) ( )

P
k

k
k

B B


     (13) 

0
( ) ( )

Q
l

l
l

B B


                (14) 

 

Where, , and  are constants and  
 

 

Then,  is a seasonal fractionally integrated ARMA process with period s, denoted by 

SARFIMA (p, d, q) (P, D, Q)s, where d and D are the order of differencing and the seasonal differencing 
respectively.    

 
Theorem 1: Let  be a SARFIMA (p, d, q) (P, D, Q)s  process given by the Eq. (8), with 

zero mean and seasonal period . 
 

Suppose   and   have no common zeroes. Then, the following 
are true.                                                                                                      

 
(i) The process  is stationary if d + D < 0.5, D < 0.5 and  , for .  
(ii) The stationary process  has a long memory property if 0 < d + D < 0.5, 0 < D < 0.5 

and   , for . 
 (iii) The stationary process  has an intermediate memory property if  -0.5 < d + D < 0,  -

0.5 < D < 0 and   , for   (Bisognin and Lopes, 2009). 
 
2.2 Higuchi method 

 
In order to determine the presence of long memory in consumption of petroleum products of 

U.S, the Higuchi method is applied. In Higuchi method, the series is assumed to have the character of a 
noise, not a motion. The series is partitioned into m groups. The cumulative sums of the series are 
evaluated to convert the series from a noise to a motion. Absolute differences of the cumulative sums 
between groups are analyzed to estimate the fractal dimension of the path. The number of groups, m, is 
increased and the process is repeated. The result changes with increasing m in a way related by 
Higuchi’s theory to the Hurst parameter H of the input series.  

 
A log-log plot of the statistic versus number of groups is, ideally, linear, with a slope related to 

H, so H can be determined by linear regression. The Hurst exponent, H, helps to infer the presence or 
otherwise of long memory in a time series. If  , then the time series is said to be 
persistent. Persistent time series are also referred to as long memory characteristic. 
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2.3 Conditional Sum of Squares method 
 
There are several methods for estimating the parameters in time series models. In this paper, we 

implement the CSS method to estimate the SARIMA and SARFIMA models of consumption of 
petroleum products of U.S. This method is equivalent to the full Maximum Likelihood Estimator (MLE) 
under quite general conditional homoskedastic distributions. A description of the properties of the CSS 
estimator and its finite sample performance is presented in Chung and Baillie (1993). 
 
2.4 Evaluation of Forecast Errors  

 
In this paper, we apply an error decomposition technique to study errors in energy forecasts by 

the SARFIMA model. We are interested in understanding these errors as related to various forecasts 
time horizons years. We use two metrics to determine forecast error: mean percentage error and mean 
absolute percentage error. Mean percentage error (MPE) is an average error of all forecasts of a given 
forecast horizon and is given by the function: 

 

 
(15) 

 
 
 

Where  is our forecast horizon (1year, 2years, …, 15 years);  is our forecasted value for 
period ; y is our actual value for period ; and  is the number of forecasts with time horizon . 
MPE calculations for a single forecast horizon ( ) could take on a positive or negative value. If MPE > 
0, then the forecast value was higher than the actual value, and the forecast represents an overestimate. 
If MPE < 0, then the forecast value was less than the actual value, and the forecast is an underestimate. 
The reader should note that an average MPE near zero does not imply a near perfect forecast. The 
average may be close to zero, but may represent a combination of highly overestimated and 
underestimated forecasts that cancel each other out on average. To more clearly explore the accuracy of 
forecasts, without concern over whether forecasts are underestimated or overestimated, we apply the 
mean absolute percentage error (MAPE), given by the following function: 

 

ˆ( )y y
y

MAPE
n







  (16) 

 

Where the variables and indices remain the same as in Eq. 15. Both MPE and MAPE identify 
forecast errors. 

 
3. Empirical Study 
 
3.1 The data  

 
In this study, we will use the monthly consumption of petroleum products of U.S during (Jan 

1994 to Dec 2009). The data are obtained from the energy information administration of the U.S. 
department of energy. Figure 2 displays the data of consumption of petroleum products of U.S.,  .  

ˆ( )y y
yMPE

n






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Fig. 2: Time plot of consumption of petroleum products in U.S. 
 
3.2 Test of  long memory 

 
We used Higuchi analysis, and obtained the Hurst exponent H = 0.9507, as shown in Figure 3, 

which indicated strong long memory in the consumption of petroleum products of U.S. Test of Higuchi 
is obtained by fractal package in R (R Development Core Team), a popular and freely available 
software package frequently used in the applied social and behavioral sciences. 

 
Fig. 3: Higuchi method result 

 
3.3 Parameter estimation and establishment of SARFIMA and SARIMA models 

 
Consumption of petroleum products of U.S. exhibit a periodic pattern and contain long memory 

characteristic therefore SARFIMA model is fitted into the data. If time series exhibit long memory 
property, forecasts values based on SARIMA model may not be reliable. Therefore to search for the best 
representation of this data, we compared SARFIMA and SARIMA models in terms of AIC.   We first 
fitted data by the CSS method, where we used a sample mean of ,  as an estimator of , 
and set s = 12. AIC criteria are also used under the assumption of normality (Brockwell and Davis, 
1991). All calculations were made using S-PLUS.  
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Table 2 shows the SARFIMA and SARIMA models in terms of AIC model selection with 
estimators. The numbers in parentheses in the column of AIC denote the ranking of models in terms of 
AIC. 

 

Table 2: Summary of AIC model selection and estimates 
 

      D d AIC 
0 
-0.7 

0 
0.9 

-0.1 
0 

0.7 
0 

0 
-0.4 

0 
-0.6 

0.306 
0 

1 
1 

(1)2634.2 
(2)2799.4 

 
From the Table 2 the SARFIMA (0, 1, 2) (0, 0.306, 0)12 model is the appropriate model in terms 

of AIC among the 2 models candidates. Since the number of observations was 192, we used 168 of them 
in building SARFIMA and SARIMA models, and the rest were used to compare with the forecasting 
results. We made a 24-steps ahead forecast with SARFIMA (0, 1, 2)(0, 0.306, 0)12 and SARIMA (2, 1, 
0)(1, 0, 1)12, and compared the forecasting values with the real observations. The results are shown in 
Figure 4. 

 

 
Fig. 4: Comparison of forecast performance of SARFIMA and SARIMA models 

 
As is shown in the Figure 5, the estimated forecast values from SARFIMA model are closest to 

real data than SARIMA model. Therefore, we can conclude that the forecast performance of SARFIMA 
model is better than SARIMA model. 
 
3.4 Forecasting 

 
The appropriate model is SARFIMA (0, 1, 2) (0, 0.306, 0)12 model which is used to predict the 

consumption of petroleum products of U.S. till the end of 2012 and 2020 as shown in Figure 5 and 
Figure 6. The results of in-sample forecasts of the SARFIMA model are shown in Table 3.   

 

 
 

Fig. 5: Prediction plot of consumption rate of petroleum products of U.S. (2010-2012) 
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Table 3: In-sample forecasts for the SARFIMA (0, 1, 2) (0, 0.306, 0)12 model 
 

Error Forecasts Actual Date 
100.24 
-177.25 
-73.96 
-6.92 
-465.08 
164.66 
37.75 
279.18 
570.2 
-25.88 
80.72 
377.68 

18939.76 
18999.25 
18792.96 
18678.92 
18676.08 
18663.34 
18588.25 
18669.82 
18023.80 
18828.88 
18672.28 
18859.32 

19040 
18822 
18719 
18672 
18211 
18828 
18626 
18949 
18594 
18803 
18753 
19237 

2009-01 
2009-02 
2009-03 
2009-04 
2009-05 
2009-06 
2009-07 
2009-08 
2009-09 
2009-10 
2009-11 
2009-12 

 

 
Fig. 6: Prediction plot of consumption rate of petroleum products of U.S. (2010-2020) 

 
3.5 Analysis of MAPE 

 
This analysis offers a closer look at the general accuracy of forecasts, by the SARFIMA model, 

for time horizons ranging from 1 to 15 years, we can use this analysis to determine if forecasts exhibit 
increased uncertainty when time horizons are lengthened. Table 4 presents both MAPE and MPE 
calculations. The results from the MAPE analysis are shown in Figure 7 demonstrate that forecasts have 
relatively small errors for the time horizons analyzed (ranging from 1 to 15 years).  

 

 
 

Fig. 7: MAPE for consumption of petroleum products by forecast length 
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Table 4: Prediction errors of consumption of petroleum products by the SARFIMA  
 

Forecast horizon (years)  
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 
2 2 2 2 2 2 2 2 3 3 4 4 6 8 16 Number 

of 
observati
on 
 
MPE 
 
MAPE 

0.2
% 

1.05
% 

-
1.7
% 

0.34
% 

0.25
% 

-
2.1
% 

0.08
% 

0.1
% 

1
% 

0.2
% 

-
1.1
% 

0.002
% 

0.06
% 

0.3% -
0.4% 

0.2
% 

1.05
% 

2.1
% 

0.34
% 

0.25
% 

2.4
% 

0.3% 0.5
% 

1
% 

0.2
% 

1.4
% 

0.37% 0.23
% 

1.03
% 

0.09
% 

  
3.6 Analysis of MPE 

 
The MPE analysis expands on the MAPE analysis by identifying the directionality of forecast 

error. This analysis might point to a systemic problem with the forecast models used for a given time 
horizon. MPE calculations are shown in Table 5 and Figure 8. For forecasts between 1 to 15 years in 
length, the errors are small on average (around 2%). For forecasts of 1 year, 5 years, 10 years and 13 
years, errors are negative (representing underestimation). For another time horizons, errors are positive 
(representing overestimation). 

 

 
 

Fig. 8: MPE for consumption of petroleum products by forecast length 
 
4. Conclusions 

 
This paper has examined a seasonal long memory process, denoted as the SARFIMA model. 

We evaluated forecast errors of SARFIMA model in the energy field. As an illustration, we considered 
monthly consumption of petroleum products of U.S. The results indicated the appropriate model was 
SARFIMA (0, 1, 2) (0, 0.306, 0)12 which was used to predict the data. Also both MPE and MAPE 
calculations identified the errors are small. On the basis, we concluded that the SARFIMA model is 
effective and give precise predictions.  
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