American Review of Mathematics and Statistics June 2024, Volume 12, pp. 1-6 ISSN: 2374-2348 (Print), 2374-2356 (Online) Copyright © The Author(s).All Rights Reserved. Published by The Brooklyn Research and Publishing Institute DOI: 10.15640/arms.v12a1 URL: https://doi.org/10.15640/arms.v12a1

On Projective Q-Curvature Inheritance in Projective Finsler Spaces

James K. Gatoto¹ & Mary A. Opondo²

Abstract

R. B. Misra [5] has discussed projective transformation in Projective Finsler spaces. H. D. Pande et.al [6] have developed and studied projective curvature collineations in symmetric Finsler spaces. The concept of curvature inheritance in Finsler space was introduced by S. P. Singh [8]. The present author and S. P. Singh ([1], [2]) have further studied and developed curvature inheritance in recurrent Finsler spaces. The objective of the present paper is to study projective Q^- curvature inheritance in projective Finsler spaces. Some special cases are also discussed at the end of the paper.

Keywords: Curvature inheritance, contra field, concurrent field, Lie-derivative

1 Introduction

We consider an *n*-dimensional Finsler F_n space equipped with a positively homogeneous fundamental function $F(x,x^{\cdot})$ of degree one in its direction argument $x^{\cdot i}$. The fundamental metric tensors $g_{ij}(x,x^{\cdot})$ and $g^{ij}(x,x^{\cdot})$ and are symmetric in indices *i* and *j* and homogeneous of degree zero in x^{i} . R. B. Misra [5] has defined the projective covariant derivative of a vector field $X^{i}(x,x^{\cdot})$ with the help of the projective connection parameters $\pi_{jk}(x,x^{\cdot})$ as follows

$$X^i_{((k))} = \partial_k X^i - (\dot{\partial}_m X^i) \pi^m_{jk} \dot{x}^j + X^m \pi^i_{mk}$$

$$\tag{1.1}$$

where $\pi_{jk}(x,x^{\cdot})$ is positively homogeneous function being defined by

$$\pi^{i}_{jk} = G^{i}_{jk} - \frac{1}{(n+1)} \left(2\delta^{i}_{(j}G^{s}_{k)s} + \dot{x}^{i}G^{s}_{skh} \right)$$
(1.2)

Such projective Finsler space is denoted by PF_n . Then the following identities hold good:

$$(a)\pi^{i}_{jks}\dot{x}^{j} = 0, (b)\dot{\partial}_{j}\pi^{i}_{ks}\dot{x}^{j} = 0, (c)\pi^{i}_{jk}\dot{x}^{j} = \pi^{i}_{k}$$
(1.3)

The commutation formulae involving the projective covariant derivative of a tensor $T_j(x,x^{\cdot})$ are expressed by

$$\partial_h (T^i_{j((k))}) - (\partial_h T^i_j)_{((k))} = T^r_j \pi^i_{rhk} - T^i_r \pi^r_{jhk}$$
(1.4)

and

$$2T^{i}_{j[((h))((k))]} = -\dot{\partial}_{r}T^{i}_{j}Q^{r}_{shk}\dot{x}^{s} + T^{s}_{j}Q^{i}_{shk} - T^{i}_{s}Q^{s}_{jhk}$$
(1.5)

where

$$Q_{jkh}^{i} = 2\partial_{[h}\pi_{k]j}^{i} - \pi_{rj[k}^{i}\pi_{h]}^{r} + \pi_{j[k}^{r}\pi_{h]r}^{i}$$
(1.6)

¹ Department of Mathematics and Statistics, James Madison University, Harrisonburg, VA. email: chen3lx@jmu.edu Telephone: 540-568-6533 Fax: 540-568-6184

² Student, Department of Mathematics and Statistics, James Madison University, Harrisonburg, VA email: atheykm@dukes.jmu.edu

is called the projective entity. The projective entities satisfy the following relation:

(a)
$$Q_k = -Q_{ki}^i$$
, (b) $Q_k^i = Q_{hk}^i \dot{x}^h = Q_{rhk}^i \dot{x}^r \dot{x}^h$, (c) $Q_{jki}^i = Q_{jk}$. (1.7)

We consider an infinitesimal point transformation [9]

$$\bar{x}^i = x^i + v^i(x)dt \tag{1.8}$$

where $v^i(x)$ is any vector field and dt means an infinitesimal constant. The Lie-derivative of a tensor field $T^i_j(x,x^i)$ and the connection parameters π_{ik} are given by

$$L_v T_j^i = T_{j((h))}^i v^h - T_j^h v_{((h))}^i + T_h^i v_{((j))}^h + (\dot{\partial}_h T_j^i) v_{((s))}^h \dot{x}^s$$
(1.9)

and

$$L_v \pi_j^i = v_{((j))((k))}^i + Q_{hjk}^i v^h + \pi_{jkh}^i v_{((s))}^h \dot{x}^s$$
(1.10)

respectively.

The commutation formulae involving the operators L_r and ((k)) for the tensor $T_j^i(x.\dot{x})$ are given by

$$L_{v}(\partial_{l}T_{j}^{i}) = \partial_{l}(L_{v}T_{j}^{i}), \qquad (1.11)$$

$$(L_{v}T_{j((k))}^{i}) - (L_{v}T_{j}^{i})_{((k))} = T_{j}^{h}L_{v}\pi_{kh}^{i} - T_{h}^{i}L_{v}\pi_{kj}^{h} - (\dot{\partial}_{h}T_{j}^{i})L_{v}\pi_{ks}^{h}\dot{x}^{s} \qquad (1.12)$$

and

$$(L_v \pi^i_{jk})_{(l)} - (L_v \pi^i_{jl})_{((k))} = L_v Q^i_{hjk} + 2\dot{x}^s \pi^i_{rh[j} L_v \pi^r_{k]s}.$$
(1.13)

The infinitesimal point transformation (1.8) defines a projective motion if it transforms the system of geodesics into the same system. The necessary and sufficient condition for (1.8) to be a projective motion in PF_{n} is that the Liederivative of the connection coefficient π_{jk}^{i} with respect to (1.8) has the form

$$L\pi^i_{jk} = \delta^i_j \psi_k + \delta^i_k \psi_j \tag{1.14}$$

for certain non-zero covariant vector $\psi_j(x)$.

2 Projective Q- curvature inheritance in Finsler space PF_n

In this section we consider an infinitesimal transformation (1.8) which admits projective motion in projective Finsler space PF_n . We shall define and study the infinitesimal transformation which is a projecutive Q-curvature inheritance in the same space.

Definition 2.1. In a projective Finsler space PF_n , if the projective entity Q^{i}_{jkb} satisfies the relation

$$L_v Q^i_{jkh} = \alpha Q^i_{jkh} \tag{2.1}$$

with respect to vector v(x), then the infinitesimal transformation (1.8) is called Q-curvature inheritance. The entity a(x) is a non-zero function.

When the infinitesimal point transformation(1.8) defines a projective motion in the PF_n , the Lie-derivative of the connection cofficients^{π^i_{jk}} satisfies the relation (1.14).

Using the condition (1.14) on equation (1.10), we get

$$L_v Q_{jkh}^i = \delta_j^i \psi_{h((k))} - \delta_k^i \psi_{h((j))} + \delta_h^i \psi_{j((k))} - \delta_h^i \psi_{k((j))}$$
(2.2)

where we have used the facts

$$(a)\pi^{i}_{hjk}\dot{x}^{h} = 0, (b)\psi_{s}\dot{x}^{s} = 0.$$
(2.3)

Applying equation (2.1) in the above equation, it takes the form

$$\alpha(x)Q_{jkh}^{i} = 2\delta_{[j}^{i}\psi_{|h|((k))]} + 2\delta_{h}^{i}\psi_{[j((k))]}$$
(2.4)

where the index between two parallel bars is unaffected when we consider skew-symmetric part in [jk]. Accordingly we state

Theorem 2.1. In a a projective Finsler space PF_n , which admits the projective Q^- curvature inheritance, the projective entity Q^i_{jkh} is expressed in terms of the scalar function $\psi(x)$ in the form (2.4).

When the projective Q -curvature inheritance becomes affine motion , the condition $L_i \pi_{jk} = 0$ is satisfied . In this case

$$\delta^i_j \psi_k + \delta^i_k \psi_j = 0 \tag{2.5}$$

Setting i = j in the above equation, we obtain

$$(n+1)\psi_k=0$$

which implies

$$\psi_k = 0 \tag{2.6}$$

in view of (1.14)

Conversely, if (2.6) is true, then

 $L_v \pi^i_{jk=0} \tag{2.7}$

in view of (1.14)

. It means $\psi_k = 0$ is the necessary and sufficient condition for the infinitesimal transformation (1.8) to be affine motion. In this case, the equation (2.4) takes the form

$$\alpha(x)Q_{jkh}^i = 0 \tag{2.8}$$

in view of (2.1).

This implies that the space is flat since a(x) is non-zero scalar function. Hence we state

Theorem 2.2. Every motion admitted in a projective Finsler spance PF_n is a projective Q-curvature inheritance if the space is flat.

Applying the identity (1.12) on the projective entity Q_{jkh}^{i} , we have

$$L_v(Q_{jkh((l))}^i) - \alpha Q_{jkh((l))}^i = [\delta_l^i \psi_r + \delta_r^i \psi_l] Q_{jkh}^r - [\delta_l^r \psi_j + \delta_j^r \psi_l] Q_{rkh}^i - [\delta_k^r \psi_l + \delta_l^r \psi_k] Q_{jrh}^i + [\delta_l^r \psi_h + \delta_h^r \psi_l] Q_{jkr}^i - [\delta_l^r \psi_s + \delta_s^r \psi_l] (\dot{\partial}_r Q_{jkh}^i) \dot{x}^s.$$
(2.9)

in view of (1.12) and (2.1) provided the gradient vector $a_{(l)}$ is zero. Since the vanishing of the scalar function ψ_{i} is necessary and sufficient condition for the transformation (1.8) to be affine motion, the equation (2.9) reduces to

$$L_v(Q^i_{jkh((l))}) = \alpha Q^i_{jkh((l))}.$$
(2.10)

We thus state

Lemma 2.1. When the projective Q^{-} curvature inheritance admitted in a projective Finsler space PF_n becomes a motion, the covariant derivatives of the projective entity Q^i_{jk} bratisfies the inheritance property (2.10) provided the gradient vector $a_{(h)}$ is zero.

In a projective Finsler space PF_n , if the metric tensor satisfies the relation $L_{u}g_{ij}=2Cg_{ij}$ for non-zero constant C, the infinitesimal transformation (1.8) is said to be homothetic transformation [4]. In the case that the projective Finsler space PF_n admits a homothetic transformation (1.8), the condition $L_v \pi_{jk}^i = 0$ holds .We have proved that the necessary and sufficient condition for $L_v \pi_{jk}^i = 0$

to be true is $\psi_k = 0$

Hence immediately from (1.13) we get

$$\alpha Q_{jkh}^i = 0 \tag{2.11}$$

If however the projective Finsler space PF_n admits projective Q-curvature inheritance, then in view of (2.1), we get

$$\alpha Q^i_{jkh} = 0,$$

which implies that $Q^{i}_{jkb} = 0$. Consequently we state

Theorem 2.3. Every homothetic transformation admitted in a projective Finsler space PF_n , is a projective Q-curvature inheritnce if the space is flat.

In a projective Finsler space PF_n if the projective entity Q_{jkh}^i satisfies the relation

$$Q^{*}_{jkh((l))} = K_l Q^{*}_{jkh} \tag{2.12}$$

for a non-zero covariant vector K_l , then the space under consideration is called recurrent projective Finsler space and we denote it as RPF_n . The vector K_l s called projective recurrence vector [5].

Applying Lie-derivative operator to (2.12), we get

$$L_{v}Q_{jkh((l))}^{i} = (L_{v}K_{l})Q_{jkh}^{i} + K_{l}\alpha Q_{jkh}^{i}.$$
(2.13)

Using (2.1),(2.12) and Lemma 1.1, the equation (2.13) yields

$$(L_v K_l) Q^i_{jkh} = 0,$$

which implies

$$Q^i_{jkh} = 0$$

since $L_v K_l$ is non-zero.

This contradicts the assumption that the RPF_n is non-flat. Hence we state

Theorem 2.4. A general recurrent projective Finsler space RPF_n , does not permit projective Q-curvature inheritnce if it becomes affine motion.

3 Special cases

In this section we study and discuss two special cases of projective Q-curvature inheritance in PF_n and RPF_n .

3.1 Contra field $v_{((j))}^i = 0$, (3.1)

the vector field $v^i(x)$ determines a contra field.

We now consider a special projective Q-curvature inheritance in the form

$$\bar{x}^i = x^i + v^i(x)dt, v^i_{((j))} = 0.$$
(3.2)

In view of (1.14) and (3.2), the equation (1.10) takes the form

$$Q^{i}_{jkh}v^{h} = \delta^{i}_{j}\psi_{k} + \delta^{i}_{k}\psi_{j} \qquad (3.3)$$

Differentiating covariantly the above equation with respect to x' and using equation (3.1), we obtain

$$Q_{jkh((l))}^{i}v^{h} = \delta_{j}^{i}\psi_{k((l))} + \delta_{k}^{i}\psi_{j((l))}$$
(3.4)

which implies

$$2Q_{j[k|h|((l))]}^{i}v^{h} = \delta_{j}^{i}\psi_{[k((l))]} + \delta_{[k}^{i}\psi_{[j|((l))]}$$
(3.5)

In view of Theorem 2.1, the above equation takes the form

$$2Q_{j[k|h|((l))]}^{i}v^{h} = \alpha Q_{jkh}^{i}.$$
 (3.6)

Accordingly we state

Theorem 3.1. In a recurrent projective Finsler space RPF_n which admits projective Q-curvature inheritance, if the vector field v'(x) spans a contra field of the form (3.2), the relation (3.6) holds good.

In a recurrent projective Finsler space RPF_n the relation (3.6) takes the form

$$2Q_{j[k|h]}^{i}K_{((l))]}v^{h} = \alpha(x)Q_{jkl}^{i}$$
(3.7)

on assumption that the transformation (3.2) defines a projective Q-curvature inheritance in RPF_n also. Accordingly we state

Corollary 3.1. In a recurrent projective Finsler RPF_n , which admits the projective Q-curvature inheritance of the form (3.2), if the vector field $v^i(x)$ spans a contra field, the relation

$$\alpha(x)Q_{jkl}^i = 2Q_{j[k|h|}^i K_{l]}v$$

is necessarily true.

3.2 Concurrent field

In a projective Finsler space PF_n , if the vector field v'(x) satisfies the relation

$$v_{((j))}^i = \lambda \delta_j^i \tag{3.8}$$

where λ is a non-zero constant, the vector field $\nu(x)$ determines a concurrent field.

In this case we shall consider a projective *Q*-curvature inheritance of the form

$$\bar{x}^{i} = x^{i} + v^{i}(x)dt, \quad v^{i}_{((j))} = \lambda \delta^{i}_{j}$$
(3.9)

Using (3.2),(1.14)and (3.7), we obtain the relation (3.3).

Taking covariant differentiation of relation (3.2) with respect to x^{\prime} and in view of (3.5), we obtain

$$Q_{jkh((l))}^{i}v^{h} + \lambda Q_{jkl}^{i} = \delta_{j}^{i}\psi_{k((l))} + \delta_{k}^{i}\psi_{j((l))}$$
(3.10)

which implies

$$Q_{j[k|h|((l))]}^{i}v^{h} + \lambda Q_{j[kl]}^{i} = \delta_{j}^{i}\psi_{[k((l))]} + \delta_{[k}^{i}\psi_{[j|((l))]}$$

Now applying Theorem 3.1 on the above equation, it takes the form

$$2Q_{j[k|h|((l))]}^{i}v^{h} + 2\lambda Q_{j[kl]}^{i} = \alpha(x)Q_{jkl}^{i}, \quad (3.11) \text{ Consequently we have}$$

Theorem 3.2. In a projective Finsler space PF_n which admits the projective Q-curvature inheritance of the form (3.9), if the vector field $v^i(x)$ determines a concurrent field, the relation (3.9) holds good.

Let us now assume that the space under consideration a recurrent one. In this case , the equation (2.8) takes the form

$$2Q_{j[|h|}^{i}K_{l]}v^{h} + 2\lambda Q_{j[kl]}^{i} = \alpha(x)Q_{klj}^{i}$$
(3.12)

We have

Corollary 3.2. In a recurrent projective Finsler space RPF_n, which admits the projective Q-curvature inheritance of the form (3.9), if the vector field $v^i(x)$ determines a contra field , the relation (3.12) is necessarily true.

References

J. K. Gatoto and S. P. Singh, Q-Curvature inheritance in Projective Finsler spaces, Tensor N.S., 75(3), (2014), 203-210.

J. K. Gatoto and S. P. Singh, Projective K~-Curvature inheritance in Finslerspace, Tensor, N.S., 70(2008), 1-7.

J.K. Gatoto and S. P. Singh, Curvature inheritance in R- recurrent Finsler space, Tensor, N.S., 74(2013), 277-283.

H. Hiramatu, Group of homothetic transformation in a Finslerspace, Tensor, N.S., 3, 1954, 131-134.

- R. B. Misra, The projective transformation in a Finslerspace, Ann. Soc. Sci. de Bruxelles, 80,1966, 227-239.
- H. D. Pande, A. Kumar and V. J. Dube, *Projective curvature collineation in symmetric Finslerspace*. Revue de la Fac. de L'Univd'Istanbul ,1978, 197203
- H. Rund, The differential geometry of Finslerspaces, Springer-Verlag, 1959.
- S. P. Singh, On the curvature inheritance in Finsler spaces, Tensor N.S., 64, 2003, 211-217.

K. Yano, The theory of Lie-derivatives and its application, North-Holland Publ. Co., Amsterdam 1957