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VARIATIONS ON A TUNING ALGORITHM

WILL TURNER'

Abstract

In previous work we have presented a tuning algorithm for music written on a stave. The main idea
is that tuning the music written on a stave in this way preserves a body of the consonances of the
piece. This body of consonances does not consist of all the consonances of the piece, but rather a
subset of the set of all consonances determined by a specific algorithm. The consonances form the
arrows of a certain quiver whose vertices are the notes of the piece and whose underlying graph is
a tree. In this paper we follow up on some of the possibilities of this algorithm, by presenting
variations on it. The variations each have a musical purpose. For example, when we select certain
tunings, applying our algorithm gives music which in part lies outside the human audible range; a
variation corrects for this. To give another example, for certain tunings, the resulting music has big
leaps between notes; a variation moderates this.
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1. INTRODUCTION

The tuning of music represented on a stave has been the subject of some study
(see eg. |2 [5]). Usually the intervals of an octave, fifth, and major third are tuned
to frequency ratios of 2,3,5 respectively, or to some approximation of those. In
further work [6] we have developed tunings in which these intervals are tuned to
frequency ratios (a2,(3,(5 € R that might differ significantly from 2,3,5. The new
tunings preserve a body of the consonances of the piece. The consonances form a
quiver whose vertices are the notes of the piece, and picks out consonances between
notes that are close in the score, as specified by a certain algorithm. Here we
present variations on this algorithm, which solve various issues and follow up on
ideas suggested by it.

In the second section of the paper we describe the original algorithm, which we
regard as a ‘theme’ which is subject to ‘variations’ in the rest of the paper.

Of particular interest to us are frequency ratios (2, (3. (s which are small integers.
This is because the harmonies of a vibrating string or similar are given by integral
frequency ratios [2|. One issue that arises is that, when choosing integral elements
for (5,5, {; we frequently obtain a piece in which the piteh drift is so large, the
piece becomes inaudible in places. This is addressed in the third section of the
paper. Another issue that can arise is successive leaps in the piece become quite
large. This is addressed, by a variety of methods, in section 4 of the paper.
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A tuning behaves somewhat like a key. One can move between tunings, analogously
to moving through keys. One way to do this is described in the fifth section of the
paper.

The quiver associated to the Bach Invention we tune is connected in the original
algorithm. However, with a little tweaking, it has two connected components, an
even component and an odd component. We describe the effect of this in the sixth
section.

In section 7 we connect successive notes of the quiver with a single harmonic. In
section 8 we connect consecutive notes in each of the two parts with glissandi.

In section 9, our final variation, we discuss the problem of going backwards, and
constructing a piece of music from a quiver. Our technigue is to think of a piece of
music as defined by a sequence of constraints on a large set of potential composi-
tions. We label these constraints as either ‘rational’ or ‘arbitrary’. Our strategy is
to create a piece of music with few arbitrary constraints.

There are sound files to accompany this paper [7].

It is perhaps worth mentioning some differences between our mathematical ap-
proach to a musical score and that of A.L (see eg. [4]). We ‘train’ our quiver on
only one score, rather than a large body of work. And our new tunings often sound
quite different from the music we are representing.

2. THE THEME: A TUNING ALGORITHM

Here we describe a tuning algorithm, the ‘theme’, which we will present variations
on in the rest of the paper. This is the tuning

Let M denote the subgroup of (J* generated by 2,3,5,7. Consider the group
homomorphism m : M — Z sending 2,3,5,7 to 12,19, 28, 34 respectively. Suppose
we have a fixed natural number n with 5 < n < 10. We define g to be the restriction
of m to {1,2,...,n}-{1,2,...,n} . Let G denote the image of g. Suppose we have
a fixed section s of g.

Suppose we are given a two part composition on the stave, such as a Bach Two-Part
Invention. We denote one of the parts 1 and the other part 2. We have a linear
order of the notes of our composition, where notes are ordered by start time, and
given two notes starting at the same time we precede the note in part 2 by the note
in part 1. We denote by N the number of notes of our composition.

For 1 < z <y < N define the sequence S(z,y) of elements of {1,2,..., N} to be

(z+1l,z+2,2+43,...,y,z — 1L,z —2,r —3,...,1).

We denote by i(x,y) € Z the number of semitones required to ascend from the zth
note to the y** note.
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We define a quiver ) whose vertices are given by the notes of our composition,
and whose arrows are labelled with elements of G. This is the consonance structure
which, when represented, defines an interpretation of our two part composition.

Our algorithm to define ) begins with a quiver with a single vertex, corresponding
to the first note of the composition, and no arrows; it adds vertices and arrows
successively. We run through elements y of {1,2,..., N} consecutively, in standard
order. For a fixed y we run through the elements x with 1 < x < y in reverse order.
For a fixed = and y we search through S(z,y) for vertices in our quiver to connect
to z. If x already belongs to our quiver, we abandon our search through S(z,y)
straightaway. Otherwise we run through the elements z of S(x,y) in sequence. If

i(r,z) € G and z belongs to our quiver, we add = to our quiver, draw an arrow
from r to z, labelled with i(x, z), and discontinue the search through S(x,y).

The underlying graph of @ is a tree, since our algorithm involves adding leaves
successively. We will assume that the vertex set of @) is the set of all notes of our
composition, although there do exist examples where this is not the case.

Choose positive real numbers (a2, (3, (5, (7. These determine a homomorphism (¢
from M to R sending p to (,, for p = 2,3.5,7. Consider the double of ), which
is the quiver obtained from @ by adjoining a single reverse arrow from v’ to v for
every arrow from » to »" in Q. We label the arrows of the double of () as follows:
given an arrow in our quiver labelled by i, we label the corresponding arrow in our
double quiver with ¢(s(7)) and the corresponding reverse arrow with ¢(s(7)) .

A path in the underlying graph of () determines a path in the double of ), and thus
a real number, via the above representation: this real number is the product of the
real numbers labelling the arrows in the path. Choose an initial frequency Fy € R.
Every vertex v of our quiver is connected by a unique path in the underlying graph
of () from the first note of the composition, and thus multiplying the real number
given by this path by Fjy determines a frequency, which gives the frequency F), of
v.
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To a frequency f € R we assign the function from R to R sending ¢ to the sum
S sin(2r £C(i)t)/+/i. We call £((i) the i*" harmonic of this function. To a vertex
v of our quiver we have associated a frequency, and to a frequency we have assigned
a function. We call the resulting function *the function assigned to v’

By construction, an arrow in () directed from v, to vy corresponds to at least one
common harmonic of the functions assigned to v; and vy. Indeed, if s(i(vy,v2)) =
a/f, for 1 < a, 8 < n, then the frequencies of vy and v, differ by the factor {(a/j3),
and the fact that ¢ is a group homomorphism implies the a!®* harmonic of the
function assigned to v is equal to the At harmonic of the funetion assigned to vs.
We obtain a piece by playing, for every vertex v, the function assigned to v», for the
duration of the note associated to v in our score. This piece is a representation of the
consonance structure ), and an interpretation of the original two part composition.

In all the examples of this paper, we set n = 5, in which case (- is redundant. In
the numbered examples we use the two part composition Invention No. 9 by Bach.

3. VARIATION: RESTRAINING MOTION

Of particular interest are the cases when all of the (,s are integers.

Our choices for ¢, in the preceding section are rather limited if we want to select
integers, and we also want the piece to be entirely audible. Substantial pitch drift
can occur that means it is not possible to place the piece in the audible range. To
get around this, we restrain the motion in the piece to lie within audible constraints.
Let £ be one of the (ps.

In our algorithm, a frequency F), is obtained via a sequence of frequencies

where 0, vy, vq,..., v, are the vertices in the unique shortest path from 0 to ». We
obtain F,, from F,, by multiplying by a certain ¢(j)*!. In our restraining motion
algorithm, we instead obtain F,, from F,_, by multiplying by our {(j)*' and
dividing by &, if the result is > 2000; by multiplying by our ¢(j)*! and multiplying
by &, if the result is < 50.



32

American Review of Mathematics and Statistics, Vol. 11, No. 2, December 2023
Example 1 ((2,(3.G) = (2,3,11), £ = 3.

4. VARIATIONS: REORDERING

The variation example of the preceding section had big leaps between successive
notes: the mean leap was 0.88 octaves. In this section we discuss various ways to
reduce the mean leap size by reordering.

The first way is to introduce an additional pair of elements 41 to the set G, and a
frequency ratio a little greater than 1 in ({5, (3, {5) which we define to be s(1). We
define s(—1) = s(1)~!. The effect is to smooth out some of the leaps of the piece,
as in the following example.

Example 2 ((3,(3,() = (3,5,11) and s(1) = 27/25. The mean leap is 0.36
octaves. It would be 0.5 octaves if we didn’'t introduce the smoothing out.

The second way is to define 5 to be the unique increasing function from G to Im((s),
and work with s instead of (s when labelling the double of Q.

Example 3 ((3,(3.¢5) = (2,3,9), £ = 3. The mean leap is 0.65 octaves. It would
be 0.75 octaves if we didn’t introduce the reordering.

The third way is to reorder in bars to reflect the original composition. Indeed,
take a two part composition, interpreted as in section For each bar, take the
fundamental frequencies F, of the notes ny,nqy +1,n7 + 2,...,n1 + ny — 1 of that
bar in order, and take a permutation o that permutes these notes so that these
fundamental frequencies lie in increasing order. Take the fundamental frequencies
of the notes ny,n; +1,ny +2,...,ny + ny — 1 of the original composition, and take
a permutation 7 that permutes these notes so these fundamental frequencies lie in
increasing order. Apply the permutation 7 'o to the notes of the bar of the retuned
interpretation, and reorder the frequencies of the piece correspondingly. In this way
we obtain a reordered composition which, within bars at least, has fundamental
frequencies that occur in the same order as those in the original composition.

We have not stated how we should permute notes in a bar so that fundamental
frequencies lie in increasing order. To do this, we begin with our list of fundamental
frequencies: fo, f1, f2,..., fno—1. We let i run from 1 to np — 1, and if f; | > f;
we swap f;_, and f;. We then repeat this run n, — 1 times, at which point our
frequencies will be in ascending order. This algorithm determines a permutation as
required.
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Example 4 ((2,(3,¢5) = (3,4,7), £ = 7. The mean leap is 0.57 octaves. This
compares with a mean of 1.10 octaves without the reordering.

We can also reorder notes in a bar so that fundamental frequencies lie in increasing
order, as in the following example:

Example 5 ((2,(3,(5) = (2,3,11), £ = 3.

5. VARIATION: MOVING THROUGH ‘KEYS’

We can think of a choice of (s as analogous to a key. It makes sense to smoothly
change ‘key’ as the piece progresses.

Indeed, consider our original algorithm, together with the following variation:
Suppose we have an element 6, = (61,0 2,03, ....,0,,) of RZ, where 6, ; = 1,
for every vertex v of Q).

We label the arrows of the double quiver of ) as follows. Given an arrow from vy
to ve in @), labelled with ~, we label the corresponding arrow in the double quiver
with the real number 6'1}2‘_,{(5(-”)191__.1‘_,{[3(-{)}2_1. We label the corresponding reverse
arrow in the double quiver with the inverse of this real number.

A path in the underlying graph of () determines a path in the double of @), and thus
a real number, via the above representation: this real number is the product of the
real numbers labelling the arrows in the path. Choose an initial frequency Fy € R.
Every vertex v of our quiver is connected by a unique path in the underlying graph
of () from the first note of the composition, and thus multiplying the real number
given by this path by Fy determines a frequency, which gives the frequency F), of

v.
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To the vertex v in Q we assign the function from R to R sending ¢ to the sum
S %ﬁ sin(27F,#,:t). We call F,f, ; the i harmonic of this funetion.

By construction, an arrow in () directed from v; to vy corresponds to at least one
common harmonic of the functions assigned to v and vo. Indeed, if [(s(i(vy, v2))) =
(aq,az), for 1 < ay,az < n, then the frequencies of v; and v, differ by the factor
HUE,QLHUIEQE_H which implies the agh harmonic of the funection assigned to v, is
equal to the af‘ih harmonic of the function assigned to vs.

We obtain our variation by playing, for every vertex v, the function assigned to v,
for the duration of the note associated to v in our score.

It remains for us to select our ¢, ;3. We fix three choices of (,, which we call
((:%(:éil C.%): (f;-?z f;?? QSQ) (Cgvigcg) We also fix int.egers 0= ap < bl < az < 52 <
az < by = m, where m is the number of notes of our piece. We let 6, ; = (,'; if
v € [a;,b;], for j =2,3,5and i = 1,2,3. We allow @, ; to interpolate exponentially
between Cj and (;;f“ forv € [bj,a;.4],for j =2,3,5and i =1,2. Wedefinef, ; =1
for all v, and 6, 4 = 932 for all v.

Example 6 We take ((3,(35,(5) = (2,3,5), (63,¢5,85) = (2.3,6), (&3.G,¢) =
(2,4,6). We take by = 60, ay = 250, by = 310, a3 = 500, while m = 560.

6. VARIATION: TWO PARTS DRIFTING INDEPENDENTLY
For n = 5, we have
G ={—28 —-24,-19,—-16,—12, -9, -7, —5,—4,0,4,5,7,9,12,16, 19, 24, 28}

which, in our original algorithm, we map via (s to a set of real numbers. Let us
rather use the composition of (s and the map from

H = {—28,—24,—18,—16, —12, —10, —6, —4,0,4,6, 10, 12, 16, 18, 24, 28}

to G sending +18 to £19, sending £10 to +9, sending +6 to £7, and fixing « if o
is even.

If we use this in an analogous way to (s in our algorithm, we obtain a variation,
in which the quiver has two distinet subquivers with no arrows between them, an
even subquiver and an odd subquiver. This is because all the elements of H are
ever.

As the piece progresses, the pitch drift for the two subquivers can be different, so
that even if we align the pitches of the first notes in the two subquivers at the
beginning, and set ((2,(3,(s) = (2,3,5), by the end of the piece we can be quite
far from 12 tone equal temperament.

Example 7 We take ({2.,(3,(5) = (2,3,5). We set the first and fifth note of the
piece to differ in frequency by a factor of 3. Consequently the 540th and the 539th
note of the piece differ by 2.53 semitones.
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7. VARIATION: CONSONANCE STRUCTURE HARMONICS

Example 8 As we observed in our section on the original tuning algorithm, an
arrow in () corresponds to a common harmonic of two notes ny and ny. Here we
play such harmonics, for the duration starting at the beginning of n;, and ending
at the end of ny. We take ((2,¢3,¢() = (2,3,5).

8. VARIATION: GLISSANDI

Example 9 Here we connect consecutive notes in each part with glissandi. We
take [:(;21 (:31 (:5) = (31 51 10)

9. VARIATION: RATIONAL CONSTRAINTS MODELLED ON THE TUNING
ALGORITHM

To write a piece of music, a composer must choose a single element from a large set
of potential compositions. To do this, a number of choices must be made, which
can be thought of as subsets of the large set to which the single element must
belong. or as constraints on the large set. The single element which constitutes the
composition lies at the intersection of the constraining subsets. Constraints also
operate in the mind of a listener to a piece of music. For example, towards the end
of a piece of tonal music, a listener might be able to hum along, demonstrating the
presence of constraints on the way the music is going in their mind.

In this section, we discuss some examples of compositions constructed by making
a sequence of constraints on a large set of potential compositions. We assume that
constraints are either rational constraints, or arbitrary constraints. Here, rational
constraints are constraints which have some logic behind them, often a similarity
with existing music, or an internal similarity, whilst arbitrary constraints are choices
made without any rational support, beyond the fact that they are necessary to
obtain a single composition after all constraints are applied.

To illustrate how this works, let us consider a simple example.

We consider a piece of music written as a sequence of frequencies and durations
(we consider this restriction to be rational, because a great deal of existing music
is constructed this way).

We consider a piece of music written in a single part in the frequency range 260-880
Hz(we consider this restriction to be rational, because it mimics a human soprano
vocal line).
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We consider music written in equal temperament (we consider this to be rational
because it contains maximal translational similarities between subsets of notes).
We consider equal temperament that contains 2 as a frequency ratio (we consider
this to be rational because the octave gives a very significant similarity between
notes, even to the point that such notes are labelled by the same letter in the
musical literature).

We consider equal temperament that approximates 3 as a frequency ratio (we con-

sider this to be rational because 3 is the next integer ratio after 2, and the perfect

fifth with frequency ratio 3/2 gives another significant similarity between notes).

We consider 12 tone equal temperament (we consider this to be rational because it

satisfies the three preceding constraints).

We consider an ascending scale, or a descending scale (we consider this to be

rational, because it minimises the logarithmic sum of successive leaps; here if

(fi)®, is a sequence of frequencies the logarithmic sum of successive leaps is

> io [log(fi/ fi1)]).

We allow no repetitions in our scale (we consider this to be a rational way to avoid

monotony).

We consider a scale of maximal length subject to the other constraints (we consider

this to be rational because our piece is too short as it is).

We choose an ascending chromatic scale rather than a descending chromatic scale

(we consider this to be an arbitrary choice).

We take scale frequencies {217 - 880| — 21 < n < 0} (we take the initial frequency

of our scale to be an arbitrary number just > 260 Hz).

We choose all notes to have the same duration (we consider this to be rational,

because it maximises similarities of duration between notes).

We take notes of duration 1s (we consider this choice to be arbitrary).

In conclusion, our piece is the chromatic scale with initial frequency 9~ . 880 Hz
and final frequency 880 Hz, and notes of duration 1s.

The strategy was to use few arbitrary constraints.

The range of choices for our initial note frequency was [260, 2~ 2 -880]. If we identify
such a frequency with the closest frequency to it in {880 - 21200 |0 € Z}, then we
have 12 choices (we are assuming the ear would identify notes that are this close).
A range of durations we could have chosen from is [27°,1]. If we identify such a
duration with the closest duration to it in {272 |n € Z}, then we have 721 choices.
(we are assuming the ear would identify durations that are this close).

For our human vocal range, we chose soprano. We could have just as well chosen
bass, baritone, tenor, contralto or mezzo. That makes six possible choices.

We chose an ascending chromatic scale, rather than a descending one. There were
two possible choices here.
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Altogether, that makes 12 - 721 - 6 - 2 arbitrary choices (there is of course some
flexibility in how we have made this calculation - for example, we might have
selected a different number of possible durations or frequencies, and it is debatable
how ‘rational’ some of our rational choices are - but the main point is that we have
made far fewer arbitrary choices than if we were to generate a piece of a similar
length, whilst making no rational constraints at all).

It is our intention to use the above strategy, of using rational constraints where
possible, to generate a piece of music that is slightly more complicated, and departs
from 12 tone equal temperament.

Example 10 Let Q be a quiver whose underlying graph is a tree, and whose edges
are labelled with elements of {1,2,3,4,5}-{1,2,3,4,5} 1. We assume each vertex
of our quiver has a distinguished vertex vy, and an initial frequency Fj. We assume
we have positive integers (5, (3, (5. We associate a note to each vertex of our quiver,
just as in the tuning algorithm which is the subject of this paper.

We regard the use of a quiver in this way to be a rational way to construct a set of
notes, as it formalises the use of a consonance structure. As in the pieces obtained
from our eponymous tuning algorithm, we assume that notes which are close in the
quiver are close in time.

We select (C2,¢3,¢5) = (2,5,11). It makes sense to choose small positive integers
(< 20, say) to avoid a piece containing very large leaps. So this is an arbitrary
choice out of 20° possible choices.

Our quiver has two connected components, one for each of two movements of the
piece. As is standard musical practice, we assume the two movements of the piece
to be in contrast. The number two is an arbitrary choice.
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We assume that each connected component is obtained by gluing together a number
of similar subquivers (it is standard to generate music by similarity). To mark out
a contrast between the two, for connected component 1, we assume the subquivers
are all stars with g; vertices, whilst for connected component 2, we assume the
subquivers are all lines of length g (stars of diameter 2 and lines of diameter g, have
the biggest difference in diameter for connected trees with g2 +1 > 3 vertices). For
connected component 2, we glue together lines into a long line. Again for contrast
we obtain connected component 1 by connecting our g, vertex star S = S” to g; —1
copies of S by gluing its leaves to their centres, to form a graph 5’, then connecting
S’ to (g1 — 1)? copies of S by gluing its leaves to their centres, to form a graph S,
ete. up to S™ which is connected component 1.

Above, g, and g are arbitrary choices which we assume to be at most 20, estimating
a typical motif to have between 1 and 20 notes.

For connected component 1, there is one obvious way to arrange our notes so that
adjacent vertices in the quiver sound simultaneously. It goes as follows: Label the
edges of 5, and order the leaves of S linearly. Extend the labelling of S, compatible
with all the gluings, across S™. We play the note corresponding to the central
vertex of S” for the full duration f of the piece. Play the notes corresponding to
the leaves of SY with duration f/(g; — 1), with order given by our linear order of
the leaves of S. Play the notes corresponding to the leaves of S' with duration
f/(g1 —1)?, so that they sound alongside the leaves of S, that they are attached
to, with order given by our linear order of the leaves of S, etc.

We specify h = 4 so that the piece sounds in five parts, which is a musical choice
that can be found in Bach’s well-tempered clavier, for example. We take as our
labellings all possible ratios of ;s between 1 and 3 (ratios more than this introduce
very big intervals, which we would like to avoid for range reasons). These are
5/4,2/1,11/5,11/4. We need an ordering of these. The most harmonious interval
appearing here is 2/1, so we put that last in our ordering. We then choose an
ordering with the smallest logarithmic sum of successive leaps: 5/4,11/5,11/4,2/1.
The same sum is achieved with the ordering 5/4,11/4,11/5,2/1. Selecting between
these is an arbitrary choice. The duration f is also an arbitrary choice. The
frequency ratio of the highest to the lowest harmonic is (11/4)* - 11. We pick an
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initial frequency Fy = 30 Hz so this remains in the audible range. In principle Fj
could go as low as 20 or as high as 31.8.

We next turn to connected component 2, whose quiver is a line. The labels of the
edges of this line form a sequence of frequencies in {1,2,5,4,11}-{1,2,5,4,11} ' To
generate our music by similarity, we consider a pair of "motifs”, which are words
in 251, 551 4F! 115! and obtain our piece by composing factorisations of these
motifs. To avoid excessive pitch drift, we assume these words multiply together
to give a number approximately equal to 1. The number of motifs is somewhat
arbitrary, although it makes sense to use 2 since it is bigger than 1, for complexity,
and small enough that the ear stands a chance to recognise the motifs. As our
motifs we select m; = 5%-1172.277 ~ 1.0088. and mq = 11° - 275 . 574 2~ 1.0066.
We need to select some factorisations of our motifs. For ms,, we consider factorisa-
tions whose terms are 271 (6 times), & (once) and & (4 times). This selection is
made so that successive terms are as small as possible. To keep the motifs short.
we have also chosen not to extend the factorisation in length by including mutually
inverse terms. For m,, by similar logic, we consider factorisations whose terms are
2 (twice), 2 (four times), 2 (once).

There are a number of choices of how to compose these factorisations, as a sequence
of labelled edges of our quiver (we use the obvious total order on the edges of our
linear quiver). We do so as follows:

At the beginning put a factorisation of m,, then a single term from a factorisation
of ms, then another factorisation of mq, then a single term from our factorisation
of mo,..., until all the terms from our factorisation of my are exhausted, at which
point we start again with another factorisation of m.,, etc.

Our logic is to keep the copies of the terms in m; at regular intervals to help them
be recognisable by the ear. We will play the single notes connected by terms in our
factorisation of mso simultaneously.

We want to limit the range of frequencies of our music, at least so it is audible. If
we were to place no limits on the factorisations above we would have a potential
range ratio of roughly 2° - ( %)2, which together with the range ratio of harmonics
of 11 gives a range ratio of 2°-11%. 572 & 3400, greater than the range ratio of the
human ear (here the range ratio of a range ry Hz-ro Hz is r2/rq).

A practical way to limit factorisations is to alternate terms > 1 and terms < 1.
For msy, when we do this, odd terms are 2= whilst four even terms are 15—1 and one
even term is 14—1 Altogether there are 5 choices of factorisation. The range of m,
is less concerning: it is maximally only a bit more than 2 octaves. There are 105
possible factorisations for mq, without any restrictions.

We order our factorisations lexicographically. This is a rational choice, since lex-
icographic ordering is based on similarity, and it is a standard principle to place
similar musical elements side by side. We have 5. 11 = 55 terms of mgy (resp. 105
factorisations of m,) if we take the entire sequences.



40 American Review of Mathematics and Statistics, Vol. 11, No. 2, December 2023

As they are currently ordered, the notes of our realisations of our motif m, poten-
tially jump up and down quite a lot. When we reorder them in time, we leave fixed
the first and last frequencies of a realisation of m, and rearrange the intermediate
frequencies in ascending order. (it is rational to have either an ascending sequence
or a descending sequence, because it minimises the logarithmic sum of successive
leaps, but choosing between ascending and descending is arbitrary).

We run through 55 repetitions (together with the first 55 of 105, ordered lexico-
graphically). The choice of an interval of 55 out of 105 involves an arbitrary choice
from 51.

The duration of all our notes is identical, for similarity. The value of this duration
is arbitrary. Our initial frequency Fj = 220 is chosen so the top harmonic of the
highest note is close to the upper end of the audible range. Again, of course, this
involves some arbitrary choice.

Let us discuss the problem of finding approximate relations. Suppose we are given
two real numbers 71,2 = 1 that are not equal to 1. Choosing a,.as € Z judiciously,
we can find a closer approximation r{*r3? ~

For example, suppose 1, =53 - 1172, 7, =27 - 573, Then ry7; ' =5%-277.11 2 is
closer to 1. Suppose ry = 11/16, ro = 11/10. Then ryrj = 11° - 278 . 5% is closer
to 1.

Suppose 71 = 13-371.272, 45 =3%.271. 137! Then 717, % = 377 - 132 is closer to
1.

Let us be more systematic. Suppose we begin with two linearly independent ele-
ments s;, s, € A, where A is a subgroup of (J*.

Reordering, and replacing with inverses if necessary we may assume 1 < s <
s1. For n > 3 we recursively define a relation 1 < s, < s, | to be s, = 5, 2
mod (s,_1). By induction, the pair (s,,_1,s,) is linearly independent for n > 2.
The descending sequence (s, ) converges on 1, and lies in A.

(Why does this sequence converge on 17 Consider the logarithm of the sequence
(si). This is a sequence (a;). If o, 1 > %O{n_g then a,, = ap_2 —an_1 < %Q’n_g.
Ifa,_1 < %Ct'n_g then a, < ap_1 < %G‘n_g. Thus agpg < 2%1:31 which implies the
sequence (a,) cONverges on zero.)
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