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Abstract

In this paper, the Metropolis-Hastings algorithm is applied to find Bayes estimates of three
parameters of the Burr Type III distribution. The Metropolis-Hastings algorithm is a Markov
Chain Monte Carlo (MCMC) method to sample from distributions that cannot easily be sampled
from by other means. Using this same algorithm, arthritis relief times data is analyzed.
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1. Introduction

In 1942, Burr [2] introduced numerous cumulative frequency functions,
which included the two-parameter Burr III distrbution. Although the dis-
tribution was intended for application to survival and lifetime data, 1t has
been used in various statistical modeling projects due to 1ts flexaibality. For
example, Mokhlis [12] applied it to discuss the reliability of a system in 2006.
Also, Gove [6] used it to analyze rotated sigmoidal diameter distributions in
2008. In 1996, Lindsay [10] introduced and applied the four-parameter Burr
[T and XII distrnibutions to forestry. The mtroduced cumulative distribu-
tion function (CDF) and probability density function (PDF) of the Burr 111

" Seneca Valley Senior High School, Harmony, PA, Email: kimak.query@gmail.com



18

American Review of Mathematics and Statistics, Vol. 11, No. 2, December 2023

distribution are given by, respectively,

Fa) = [1+(——)7*
flz) = kj:(z;iﬂ)”l[l+(ijf]—{k+1)

with location parameter a < x, scale parameter b > 0, and two shape pa-
rameters ¢ > 0 and & > 0.

There are twelve different Burr distributions. It 1s noted that substituting
X with 1/X in the Burr XII distribution equals the Burr III distribution.
Burr [3] and Johnson [5] introduced the usefulness and characterized the
properties of the Burr distributions. Abd-Elfattah [1] considered a Bayesian
estimation for the Burr Type I1I distribution based on double censoring. Kim
8][9] estimated two parameters of the Burr III distribution using Bayesian
methods including the dual generalized order statistics (DGOS), which was
introduced by Burkschat [4]. Also, Kim [7] estimated the best linear unbi-
ased estimators and the best linear invariant estimators for the location and
scale parameters of the Burr III distribution based on the DGOS.

2. Markov Chain Monte Carlo Simulation

In this section, I will use a Markov Chain Monte Carlo (MCMC) simu-
lation, specifically using the Metropohs-Hastings algorithm, to estimate the
scale and shape parameters b, ¢, and k. It 1s assumed that a = 0 since 1t does
not affect the shape of the distribution. In this case, performing an MCMC
simulation requires a joint posterior density function of b, ¢, and k. So, the
following CDF and PDF of the Burr III distribution are used to get the joint

posterior density function:

F) = 1+
kc b b
flx) = ?(E}Hl[l"‘fg}c]_ﬁﬂu (2.1)

Since each of the parameters are positive and the exact prior distributions
are unknown, I decide to assign a gamma distribution with large variance as
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the prior to each parameter. Then, the prior distributions of parameters b, c,
and k are

1
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Given samples X = (xq,...,1,), using (2.1) and (2.2), the joint posterior
density function 1s given by

m(e, k,b|X) = f(z1)--- flzn)mi(c)mal(k)ms(b)

" ke b b
o ([ 22 ()L + (=) )
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w bﬂa+ﬂ~:—lcaﬁ+n—1 kak+n—1 (23]

Now, the Metropolis-Hastings algorithm can be used to find Bayes es-
timates of the parameters in question. Given a parameter vector f, the
Metropolis-Hastings algorithm 1s defined as

1. Set an mitial #;.
2. Propose candidate 6] ~ q(y|f,_).
3. Calculate acceptance probability A = min(1, ﬂﬁfﬂj - jE::_T;E%].

4. Accept 67 with probability A, if accepted 6, = 67, else #; = ;1.

Since (2.3) causes exploding values due to p e lgaetn-lportn=l e

following log posterior density function has to be used to make calculations
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feasible:

Inm(e k, bl X) = Z 11'1{ )< b —)5) )

Ii
b k
_ — c—1)Inb
[.»'5'b+»3 + SR}—I—(crb—i—m‘ )1In
+ (ae+n—1)lnc+(ap+n—1)Ink (2.4)

For this simulation, the proposal density q will be a normal distribution
with mean 6,1 and variance o= = 25. Since the normal distribution is sym-
metric, g(f;—1|07) = q(67|f;—1) and A = min(1, ﬂ—éi—] Now, the algorithm I
am going to use has the following steps:

1. Set an nitial #y = (bo, co. ko).
2. Propose candidate 87 ~ N(#,_1.02).
3. Calculate log acceptance probability In A = min(0, In[x (8] )] — In[x(6,_1)]).
4. Draw u ~ U(0,1) and if Inu < In A, then 6, = 6}, else 6, = 6, .

Since (2.3) causes exploding values due to p e lgoetn—lportn=l the
following log posterior density function has to be used to make calculations
feasible:

In (e, k,b|X) o Zln{ (L 4+ (o))~

4]

b k

b, e c—1)Inb
(5a+3+3;.)+(ab+ﬂc }In

+ (ag+n—1)lne+(ap+n—1)Ink (2.4)

For this simulation, the prc:posa.l density q will be a normal distribution
with mean #;_1 and variance o= = 25. Since the ncrrmal distribution 1s sym-
met.rir:‘_, qg(f—1|6F) = q(676;—1) and A = min(1, #ﬂ—} Now, the algorithm I
am going to use has the following steps:
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Set an initial 6y = (bo. co. ko).

Propose candidate 87 ~ N(6,_1.02).

Calculate log acceptance probability In A = min(0, In[x(#])] — In[z(#;_1)]).
Draw u ~ U(0,1) and if Inu < In A, then 8, = 87, else 6, = 6, ;.

Ll

To execute this algorithm, it 1s assumed that a = 0. b = 10, ¢ = 2, and
k = 30. Figure 1 displays the PDF of the proposed Burr III distribution.
The CDF 1s

F) =1+ ()7 25
T
Using the mverse CDF technique, 100 samples from the proposed distri-
bution will be drawn. The inverse of (2.5) 1s

x=10[F(z) 3 — 1] 2 (2.6)

Since 0 < F(x) < 1, 100 uniformly random wvalues are drawn and sub-
stituted for F(x) in (2.6). Such would yield 100 random values from the
proposed Burr III distribution, which are used to estimate three parameters
b, ¢, and k under the squared error loss function defined as L(¢, ¢) = (6 — )*
for a parameter ¢ and an estimate »:33 Under the squared error loss function,
E[L] is minimized when the Bayes estimates B, c, and k are means of the
posterior distributions,
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Figure 1: PDF of the Burr III distribution.
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Figure 2: Iteration plots of each parameter from the simulation.
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Figure 3: Original PDF and estimated PDF overlaid on random samples.

Figure 2 shows the iteration history of parameters b, ¢, and k. Assuming
the first half of the iterations as the burn-in period, the Bayes estimates of
parameters b, ¢, and k are b = 11.3357, ¢ = 2.2394, and k = 37.0683, which
are similar to the original parameters b = 10, ¢ = 2, k = 30. Figure 3 displays
the overlay graph with the original density and the approximated curve. The
Bayes estimates are seen to well approximate the original curve given only
100 random samples.

3. Real Data Analysis

In Section 3, [ analyze arthritis rehief times data presented by Wingo
[13]. In a clinical trial, 50 arthritis patients received a fixed amount of an
analgesic to test the effectiveness of the medication. Table 1 mcludes data
collected from the chmeal tnal, which 1s well fit by the Burr XII distribution.

Once again, the Burr III distribution can be obtained from the Burr XII
distribution by substituting X with 1/X. Hence, the Burr III distribution
well fits the data in Table 2.
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0.70
0.62
0.59
0.80
0.57

0.84
0.49
0.29
0.55
0.73

0.58
0.54
0.75
0.84
0.75

0.50
0.72
0.53
0.70
0.58

0.55
0.36
0.46
0.34
0.44

0.82
0.71
0.60
0.70
0.81

0.59
0.35
0.60
0.49
0.80

0.71
0.64
0.36
0.56
0.87

0.72
0.85
0.52
0.71
0.29

0.61
0.55
0.68
0.61
0.50

Table 1: Arthritis relief times data well fit by the Burr XII distribution.

1.428571
1.219512
1.612903
1.408451
1.694915
1.666667
1.250000
1.428571
1.754386
1.234568

1.190476
1.694915
2.040816
2.857143
3.448276
1.666667
1.818182
2.040816
1.369863
1.250000

1.724138
1.408451
1.851852
1.562500
1.333333
1.666667
1.190476
1.785714
1.333333
1.149425

2.000000
1.388889
2777778
1.190476
2.173913
1.923077
2.941176
1.408451
2.272727
3.448276

1.818182
1.639344
2777778
1.818182
2.173913
1.4T0588
2.941176
1.639344
2.272727
2.000000

Table 2: Reciprocal arthritis relief times data well fit by the Burr 11 distri-
bution.

Figure 4 shows the iteration history of parameters b, ¢, and k. Assuming
the first half of the iterations as the burn-in period, the Bayes estimates of

parameters b, ¢, and k are b = 0.6058, ¢ = 4.8269, and k = 44.05816. Figure
=4

5 strongly supports the claim that the Burr III distribution well fits the
arthritis relief times data.
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Figure 4: Iteration plots of each parameter from the real data analysis.
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Figure 5: Estimated PDF overlaid on reciprocal arthritis relief times data.
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