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Abstract 
 

This paper examines cross-correlation matrix C of stock index returns obtained from Nigerian banking 
sector for the period 2009 to 2021 using the concept of Random Matrix Theory. The eigenvalues of the 
empirical correlation matrix are tested and their respective eigenvectors used to determine which bank(s) 
that drive the financial sector of the Nigerian Stock Market (NSM) through an analysis of their inverse 
participation ratios. It was observed that there are predominantly positive correlation among the respective 
stocks, meaning that individual stocks move in the same direction, hence diversification of assets in the 
banking sector may not be an optimal strategy except for Unity and Union bank stocks that have negative 
correlation with most of other bank stocks. To this end, and taking cognizance of the fact that Nigeria is yet 
to commence full trading on derivative products, hence no data yet on derivative trade in Nigeria, we try to 
estimate the realistic implied correlation matrix from some hypothetical option prices for some assets listed 
in the NSM as demonstration of ways to diversify assets through the use of derivatives. Finally, in this work 
we derive Marcento-Pastur law in the appendix. 
 

Key words: Random Matrix Theory, empirical correlation matrix, eigenvalues and vectors, realistic implied 
correlation matrix and implied volatility.   

 
1.0 Introduction 
 

We examine the spectral properties of the correlation matrix of the price variations in Nigerian Stock Market 
(NSM), by scrutinizing the dynamics of bank stocks price movement and trends in the fluctuations, using the 
Random Matrix Theory (RMT). We investigate the correlation matrix using RMT, through a comparison of the 
empirical correlation matrix with that of the Wishart random matrix. The linear relationships among assets in a given 
market is usually summarized in a correlation matrix hence the need to study RMT in any financial market(s) of 
interests. 

 

Our proposal to deal with data of high dimensionality in the stock price returns is through the study of 
Random Matrix Theory which has become a good tool employed in this field that seeks to adopt the method of the 
interactions’ of the nuclei of complex atoms [1] to determine the true structure of financial markets [2]. RMT 
methods for analysis of the properties of correlation matrix (C), shows that 98% of the eigenvalues of C agree with 
RMT predictions suggesting an appreciable degree of randomness in the measured cross correlation [3]. They assert 
that there are deviations from RMT predictions for 2% of the largest eigenvalues and that the largest eigenvalue of 
C represent the influence of the entire market that is common to all stocks. 

 

Szilard Pafka and ImreKondor [4] assert that correlation matrices of financial returns play a crucial role in 
various aspects of modern finance including investment theory, capital allocation and risk management. In their 
view, for a theoretical perspective, the main interest in examining correlation of price returns is for proper 
description of the structure and dynamics of correlations whereas for a practitioner, the emphasis is on the ability of 
the models to provide adequate inputs towards the numerous portfolios and risk management procedures required 
in the financial industry.  
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Kawee Numpac haroen [5] observes that financial institutions usually hold multiple assets in their portfolios 

that may include basket of options or derivatives, credit derivatives or other correlation trading products which 
depend largely on the correlation coefficients between the underlying assets, hence the need to study RMT. 

 

Sensoy, A. et al.[6] affirm that high correlation among stocks in any portfolio of assets means that the 
benefits of portfolio diversification is lowered since according to their finding, high correlation is synonymous to 
high volatility of stock prices. In this situation therefore, the better alternative for investors is thus thinking through 
the derivative (option) trade as a profitable risk management process in their portfolio of investments. Therefore, it 
becomes imperative that one should carry out a comprehensive analysis of the nature of correlation among assets in 
any given financial market and thereafter relate the observed stock price dynamics and the information therein as a 
useful tool in the hand(s) of investors in such markets. It is worthy of mention that following the introduction of 
RMT into the financial markets by R.N. Mantegna [7], Laloux et al. [8] and Plerou et al. [9], RMT has been found to 
be indispensable in study of statistical properties and stock price dynamics of cross-correlation in different financial 
markets [10-35].     

                                                                                                 

[8] declare that for financial assets, banks inclusive, the study of empirical correlation matrix is very 
important, and from their investigation, the estimation of the correlations between the price movements of different 
assets constitutes an important and indispensable aspect of risk management. They indicate that the likelihood of 
large losses for a certain portfolio or option book is dominated by correlated moves of its various constituents and 
that a position which is simultaneously short in bonds and long in stocks or vice-versa will be perilous since bonds 
and stocks usually move in reverse directions, especially during crisis periods. When the asset diversification 
approach to risk management fails as a result of a very high correlation among stocks, investors in the given financial 
market are required to use derivatives products as a hedge on the underlying assets for risk management and are, 
consequently encouraged to buy call/put options respectively for those assets whose returns move in opposing 
directions as may be inferred from the calculated empirical correlation matrix. Furthermore, Plerou et al.; [15] opine 
that an accurate quantification of correlations between the returns of various stocks is of practical importance in 
determining the risk of portfolios of stocks, pricing of options and forecasting. They declare that financial 
correlation matrices are the salient input parameters to Markowitz's fundamental theory of portfolio optimization 
problem [36] that aims at providing a recipe for the selection of a portfolio of assets so that the risk associated with 
the investment is minimized for a given expected return. 

 

 The fascinating question that concerned investors need to answer is how the (implied) volatility, which is a 
measure of market fluctuations, affects the dynamics of the market or vice versa. It is, therefore, beneficial to 
examine the relationship between the two distinct properties of market which includes volatility as an index of 
market fluctuations and the coupling of stocks with one another using the concept of correlation matrix [22]. 
Correlations amongst the volatility of different assets are very useful, not only for portfolio selection, but also in 
pricing of options and certain multivariate econometric models for price forecasting and volatility approximations 
[37]. They contend that with regards to Black-Scholes [38] option pricing model the variance of portfolio, ρ of 
options exposed only to Vega risk is given by  
 

                                             ρ    
             

        
                                                                (1) 

where   are the weights in the portfolio,     is the correlation matrix for the implied volatility for the underlying 

assets and the Vega matric    is defined as 

                                                                                                         
   

   
                                     (2) 

 

with    as the price of option i,    is the implied volatility of asset underlying option j and     is the 

standard deviation of the implied volatility   . 
 

It our goal to evaluate the correlation microstructure of the stock price dynamics particularly for the bank 
assets enlisted in the Nigerian Stock exchange as against the earlier study of the entire stocks listed in the NSM 
considered by Urama, et al. [39]. This will, no doubt, provide useful hints for investors in the Nigerian Market taking 
in lieu of the fact that derivative products are being introduced to the NSM as a tool for risk management to 
investors and also remembering that next to the oil industry the major assets that have overbearing influence in the 
Nigerian Market is the banking sector.  
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Edelman Alan [40] advocates the use of random matrix theory properties as a juxtaposition between the 
cross-correlation matrices obtained from a given number of empirical time series of underlying stocks data for a 
period T with an absolutely random Wishart matrix W, of the same size with the empirical correlation matrix in 
order to obtain some useful information about the market(s) to be deployed in portfolio optimization and risk 
management. RMT predictions represent the mean of all possible interactions between the constituent assets in a 
given market under consideration. The departure of the eigenvalues from universal predictions of RMT obtained 
from the Wishart matrix is used in identifying the system specific, non-random properties of the market under 
consideration and such deviations usually about 2% [3] provide information about the underlying interactions of the 
assets. The absence of deviating eigenvalues in the region predicted by RMT means that the entire system is engulfed 
by noise (is random), hence no statistical inference could be drawn from the analysis.  

 

 In other words, the process is to compare the statistics of the cross-correlation coefficients of price 

fluctuations of stock   and j against a random matrix of the same size, having the same symmetric properties as that 
of the empirical matrix. The RMT is known to distinguish the random and non-random parts of the 
cross-correlation matrix C and the non-random parts of C which deviates from RMT results is known to provide 
information regarding genuine collective behaviour of the stocks under consideration and indeed the entire market 
from where the sample stocks were drawn [16].  

 

The investigation of correlations among price changes of various assets in a given market is not only 
necessary for quantifying the risk in a given portfolio but also of scientific interest to researchers in economics and 
financial mathematics [42,43]. Nonetheless, the problem of interpreting the correlations between individual 
stocks-price changes in a given financial market can be likened to the difficulties experienced by physicists in the 
fifties, in interpreting the spectra of complex nuclei. Due to the huge amounts of spectroscopic data on the energy 
levels that were available which were too complex to be interpreted through model calculations, since the nature of 
the interactions were not known, the concept of Random Matrix Theory (RMT) was developed to take care of the 
statistics of energy levels of the complex quantum systems [43-45].  

 

Analogously, for financial time series in a stock exchange, the nature of interactions among constituent 
stocks are unknown hence the need to adopt the RMT method in explaining the influence each individual stock has 
with the others within the same market. This, no doubt, will provide the desired market microstructure of stock 
price dynamics desired for portfolio optimization and risk management.  It is, therefore, this estimation of risk and 
expected returns, based on variance and expected returns in a given portfolio that constitutes Markowitz's model 
[36].  

 

In carrying out RMT method of portfolio optimization and risk management, the period T, under 
consideration, has to be relatively large in comparison with the number of stocks being considered in order to 
minimize the noise in the correlation matrix. The two sources of noise envisaged in the use of RMT to investigate 
the dynamics of cross-correlations of stocks in a given financial market include: the noise from the period length T 
considered with respect to the number of stock and that emanating from the fact that financial time series of 
historical return itself is finite or bounded, thus introducing, inadvertently estimation errors (noise) in the correlation 

matrix [4]. Szilard and Kondor [47] also discover that the effect of noise strongly depends on the ratio  
 

 
 , where 

N is the number of stocks considered and T the length of the available time series. They discover that for the ratio 
r = 0.6 and above, there will be a remarkable effect of noise on the empirical analysis, as was also asserted by G. 

Galluccio et al. [48]; V. Plerou et al. [4]; L. Laloux et al. [34] and they infer that for smaller value of r (  
            ; the error due to noise drops to an admissible level(s). For this research, we use the empirical data 

obtained from NSM, with   
  

    
            thus within the tolerable value of r. 

 

In the following analysis, if the obtained eigenvalues of the empirical correlation matrix and that of the 
Wishart matrix lie in the same region without any significant deviations, then the stocks are said to be uncorrelated 
and therefore no inference or deduction can be made about the nature of the market. However, if on the contrary 
there exists at least one eigenvalue lying outside the theoretical bound of the eigenvalues in the empirical correlation 
matrix obtained from the stock market returns with that of the theoretical Wishart matrix, then the deviating 
eigenvalue(s) is(are) known to carry information about the market under consideration, and the asset whose 
component corresponds with the leading deviating eigenvalue is said to drive the financial market and indeed in this 
case the stock driving the banking industry in Nigeria. 
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 2. Data 
 

The Data set is made up of the daily closing prices of 15 bank stocks listed in the Nigerian Stock Market, 
NSM from 3rd August 2009 to 31st December, 2021, giving a total of {3101} daily closing returns after removing 
bank assets that were delisted, that did not trade at all or that have partially traded for few days within the period 
under review. The bank stocks considered are Access Bank, Diamond (Access) Bank, Equatorial Trust Bank 
otherwise known as Ecobank, First Bank of Nigeria, First City Monument Bank, Fidelity Bank, Guaranty Trust 
Bank, Skye Bank now Polaris Bank, Stanbic IBTC Bank, Sterling Bank, United Bank for Africa, Union Bank, Unity 
Bank, WEMA Bank and Zenith Bank.  

 

We remark that for the daily asset prices to be continuous and to minimize the effect of thin trading, it is, 
therefore, expedient to remove the public holidays in the period under consideration. Furthermore, to reduce noise 
in the analysis, market data for the present day is assumed to be the same with that of the previous day in the case(s) 
where there is no information on trade for any particular asset on a given date(s). 
 

Let       be the closing price on a given day  , for stock   and define the natural logarithmic return of the index as 

                                                                                 
       

     
                                            (3) 

where      is the number of observations in the Nigerian Stock Market (Bank Stocks).  
3 Theoretical Backgrounds 
3.1 Computing Volatility 

We compute price changes in assets over a time scale    which is equivalent to one day and denote the price of 

          
 
       

 

   
 at a time t as       with the corresponding price change or logarithmic returns 

      over time scale    as  

                                                                                                                            (4) 
 
Next, we quantify volatility in the respective asset return as a local average of the absolute value of daily returns of 

indices in an appropriate time window of   days as  

                                           
        
   
   

   
                                                (5) 

To standardize the values obtained from equation (4) above for all values of  , we normalize       as follows:

                                               
              

  
                                                                               

where           
           

          represents the average in the period studied. 

From real time series return data, we can obtain the elements of       correlation matrix C as follows 

                               
                            

     
       

      
       

  

                                                             

     lies in the closed interval         , with       means there is no correlation,         implies 

anti-correlation and        means perfect correlation for the empirical correlation matrix gotten from implied 

volatility surface. 
 

3.2 Eigenvalue spectrum of the correlation matrix 
 

As specified earlier, our aim is to extract information about the cross correlation from the empirical 
correlation matrix C. To this end, we compare the properties of C with those of a random matrix, T. Colon et al. 
[49]; L. laloux et al. [34]; V. Plerou et al. [9]; P. Gopikrishnan et al. [35]; V. Plerou et al. [17]. It can be shown from 
Sharifi, S [11] that the empirical correlation matrix C can be expressed as  

                                             
 

 
                                                   (8) 

 

where G is the normalized N x L matrix and   is the transpose of G. This empirical correlation will be 
compared with a random Wishart matrix (random matrix) R given by: 

                                                                            
 

 
                                                    (9)     
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so as to distinguish the information from noise in the system, T. Colon et al. [49] and P. Gopikrishnan et al. 

[35], where A is an       matrix whose entries are independent identically distributed random variables that are 
normally distributed and have zero mean and unit variance. 

 
In our effort to use the random matrix theory in portfolio optimization and (derivative) assets risk 

management, we should be conversant with the universal properties of random matrices. Wilcox et al. [31] contend 
that there are four underlying properties of random matrices which include: 
 

 (a) Wilshart distribution of eigenvalues from the correlation matrix, (b) Wigner surmise for eigenvalue spacing (c) 
the distribution of eigenvector components of the corresponding eigenvalues and finally (d) Inverse participation 
ratio for eigenvector components of the resulting correlation matrix. 
[50-52], and A. Edelman [40] assert that the statistical properties of R are known and that in particular for the limit 

as             we have that    
 

 
       is fixed and that the probability function       of 

eigenvalues λ of the random correlation matrix R is given by 

                                      
 

    
                 

 
                                      (10) 

for    such that            , where     is the variance of the elements of A. Here       and 

              satisfy 

                                                           
 

 
                                                 (11) 

 

The values of lambda from equation (11) that satisfy (12) and (13) are called the Wishart distribution of 
eigenvalues from the correlation matrix. These values of lambda as stated earlier determine the bounds of theoretical 
eigenvalue distribution. When the eigenvalues of empirical correlation matrix C are beyond these bounds, they are 
said to deviate from the random matrix bounds and are therefore supposed to carry some useful information about 
the marketstocks under consideration [28]. 

 

The distribution of eigenvalue (surmise of eigenvalue) spacing was introduced as the required test for the 
case when there are not significant deviations of the empirical eigenvalue distribution to that of the random matrix 
prediction, [31].  When the eigenvalues so obtained from the correlation matrix do not deviate significantly from 
the predictions of the RMT we apply the so-called Wigner surmise for eigenvalue spacing otherwise called Gaussian 
orthogonal ensemble Plerou et al. [17] and is given by  

                                     
 

  
     

   

 
                                                (12) 

where               and   denotes the average of the differences        as   varies. 
 

3.3 Distribution of eigenvector component  
 

The concept that low lying eigenvalues are really random can also be verified by studying the statistical 

structure of corresponding eigenvectors. The     component of the eigenvector corresponding to each eigenvalue 

   will be denoted by      and then normalized such that     
  

     . Plerou et al. [9] assert that if there is no 

information contained in the eigenvector      , one expects that for a fixed α, the distribution of   

                     is a maximum entropy distribution. This therefore leads to what is called Porter-Thomas 

distribution in the theory of random matrices written as 

                   
 

   
      

  

 
                                            (13) 

It has been found that the eigenvector components     for α=1, 2, 3 ….n of an eigenvector    are 

normally distributed with zero mean and unit variance, [53]. The distribution so obtained from (13) above are 
expected to fit well the histogram of the eigenvector except for those corresponding to the highest eigenvalues 

which lie beyond the theoretical value of     , [9]. 
 

3.4 Inverse participation ratio 
 

Guhr, T. et al. [53] assert that in order to quantify the number of components that participates significantly 
in each eigenvector, we use inverse participation ratio. Inverse participation ratio (IPR) shows the degree of 
deviation of the distribution of eigenvectors from RMT results and distinguishes one eigenvector with 
approximately equal components with another that has a small number of large components. For each eigenvector 

  , V. Plerou et al. [17] defined the inverse participation ratio as  
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                                                  (14) 

where N is the number of the time series (the number of implied volatility considered) and hence the number of 

eigenvalue components and   
 
 is the j th component of the eigenvector   . There are two limiting cases of    (i) 

when an eigenvector    has an identical component,         
 

  
          

 

 
 and (ii) For the case where   

has one element with         and the remaining components zero, then       
 
Therefore, the IPR can be illustrated as the inverse of the number of elements of an eigenvector that are different 
from zero that contribute significantly to the value of the eigenvector. A. Utsugi et al. [54] in their study of the RMT 
declare that the expectation of the IPR is given by  

          
 

  
      

  

    
     

       
 

  
         

 

 
                          (15) 

since the kurtosis for the distribution of eigenvector components s 3.  
 
4.0 Empirical Result and data analysis 
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Empirical correlation matrix for bank stocks in the NSM 
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4.1 Eigenvalue analysis 
 

We took a sample study of 15 (N=15) bank stocks from the Nigerian stock market totaling L= 3101 daily 

closing prices and the theoretical eigenvalue bounds are respectively           and           as 

minimum and maximum values with   
 

 
 

    

  
       . Further from the calculation the market value 

shows that the largest eigenvalue         which is approximately three times larger than the predicted RMT of 
value (1.36).  
 

 
Figure 1: Theoretical (Marcenko-Pastur) empirical eigenvalues for banks in NSM. 

 
Figure 2:  Distribution of eigenvector components of stocks in NSM 

 
Figure 2 above represent the distribution of eigenvectors for the various eigenvalues in the empirical 

correlation matrix. The first diagram represents an eigenvector component for deviating eigenvalue in the 
theoretical region where as the other 2 are the eigenvector components of the eigenvalue within the regions 
predicted from the random matrix theory. 
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Figure 3: Inverse participation ratio and their ranks for NSM. 

 

The inverse participation ratio (IPR) is the multiplicative inverse of the number of eigenvector components 
that contribute significantly to the eigenmode, [17]. For the largest eigenvalue (deviating from the RMT bounds) 
almost all the stocks contribute to the corresponding eigenvector thereby justifying treating this eigenvector as the 
market factor. The eigenvector corresponding to other deviating eigenvalues also exhibit that their corresponding 

stocks contribute slightly to the overall market features in the NSM. The average IPR value is around      larger 

than would be expected        , if all components contributed to each eigenvector, [53 former 49]. The 

remaining eigenvectors appear to be random with some deviations from the predicted value of         possibly 

as a result of the existence of fat tails and high kurtosis of the return distributions. 
 

5. Conclusion and hints on future work 
 

It was observed that 7 out of 15 bank assets considered that have their corresponding eigenvalues lie 
outside this theoretical bound of eigenvalues, therefore, 53% of the information from the return distributions is 
purely random thereby leaving us with the alternative hypothesis of the RMT which states that the information on 
the market lies on the deviating eigenvalues. This means then that for NSM banks the true market characteristic lies 
with a significant number of the stocks resulting to 47% of the banks considered. 

 

 It can be observed from the correlation matrix obtained that most of coefficients of each pairs have 
positive coefficients meaning that the respective stock move in the same direction hence the diversification method 
in the portfolio is not an optimal portfolio strategy.  It is therefore better to invest in some derivative products like 
call and or put options to hedge against the risk on the portfolio in the Nigerian market. 
 

Algorithm for Calculating Realistic Implied Correlation Matrix,    
 

Kawee and NattachaiNumpacharoen [55] defined a valid empirical correlation matrix from an identity nxn 
matrix as a matrix with the following properties: (a) All the diagonal entries must be one which is the case for the 
empirical correlation matrix obtained from the sample of stocks considered with the NSM in this paper (b) 

Non-diagonal entries of     are real numbers in the closed interval          (c) The empirical correlation 

matrix is symmetric (d) The empirical correlation matrix must be positive (semi) definite to accommodate matrix 
decomposition for some desired purposes like Monte-Carlo simulation KaweeNumpacharoen [5]. They further 
stated that when the empirical correlation matrix are not identical as is the case with the matrix derived from the 

asset return distribution of stocks selected from NSM, the implied volatility of the portfolio      
 

 is given by 
 

                                                                   
                                                                         (16) 

Similarly, if       
 

 is the implied volatility of the portfolio obtained from    then it can be described as  

                                                                  
                                                  (17) 

where,           are the weights of the respective stocks in the portfolio; 
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 is a diagonal matrix obtained from the implied volatility of the respective assets being 

considered. 

     

     
 
       

 
    
 

   

    
 

    
 

       
 

 

 is the desired realistic implied correlation matrix. 

                              or      
 

          
 
      

 
  
  

   
 
                                                           (16a) 

                                                          
        

    
           

       
   

  
   

   
   

 
                       (16b) 

Buss and Vilkov [56] assert that to identify           correlations that satisfy equation (16a), we propose the 
following parametric form for implied correlations: 

                                                                                                                                                   (18) 

where,     is the expected correlation under the objective measure and   is the parameter to be identified. 
By substituting equation (18) into equation (16) we shall have: 

                                            
      

 
                 

          
      

                               (19) 

and from equations (16)  and (17) is equivalent to: 

                                          
      

 
          

       
 
  
  

   
 
   

        
 
 
 
  

   
 
          

  
                            (20) 

 

Buss and Vilkov [56] impose a restriction on the values   to be in the region       for it to satisfy 

the technical conditions on the correlation matrix which includes that all the correlation     
 

 do not exceed one and 

that the correlation matrix is positive definite. 
 

Now we consider the cases when     and this occurs when      
       

 
 since            and 

this could make the realistic correlation matrix    to be invalid when     
       

 
,[55]. He proposes a formula 

for valid correlation matrix that will take care of this shortcoming as stated below. Given any two valid correlation 

matrices C and D of dimensions     then there exists another valid correlation matrix F of the same dimension 
such that 

                                                                                        (21) 

where  is a real number in the interval        
 

It therefore depends on the nature of the inequality existing between      
  and     

 
 respectively that will 

inform our decision on the equivalent upper or lower bound equicorrelation matrix C to be used in obtaining a 

realistic implied correlation matrix. The corresponding equicorrelation matrices are represented by      for upper 

equicorrelation matrix and      matrix whose entries are  
 

   
                       as the lower 

equicorrelation matrix. 

Replacing equation F by     and D by   in (21) we will obtain 

                                                                                                                    (21a) 
and from equations (16) and (17) we shall have: 

                                          
      

 
         

   

             
                                        (22)    

 

As a demonstration of the use of (yet to commence) derivatives trade in the NSM in managing portfolio of 
investment, we therefore consider some assets in NSM namely Guinness, Cadburys, Access Bank, AIICO 
Insurance, Zenith Bank and Nestle Foods. We want to show the use of realistic correlation matrix for risk 
management by assigning an arbitrary correlation matrix for the chosen assets drawn from the NSM with varied 
asset weight associated with the chosen stocks: 
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  Guinness Cadburys Access Bank AIICO Ins Zenith Bank Nestle Foods 

Guinness 1 -0.051 -0.003 0.003 -0.001 0.0157 

Cadburys -0.051 1 0.057 0.107 0.026 -0.001 

Access 
Bank -0.003 0.057 1 0.042 0.166 0.005 

AIICO 
Insurance 0.003 0.107 0.042 1 0.027 0.001 

Zenith 
Bank -0.001 0.026 0.166 0.027 1 -0.007 

Nestle 
Foods 0.017 -0.001 0.005 0.001 -0.007 1 

 
Table1: A typical correlation matrix from NSM price return 
 

Realistic Implied Correlation matrix computations: 
 

Suppose we have the following weights and implied volatility (computed from option prices) for the under 
listed assets drawn from the Nigerian Stocks Market. 

Asset weigh
t 

implied 
volatility 

    
Corr. 
Coffs.           

     

Guinness 15% 23% 1.0000 -0.0508 -0.0026 0.0032 -0.0014 0.0157 

Cadburys 28% 26% -0.0508 1.0000 0.0565 0.1073 0.0264 -0.0006 

Access Bank 10% 30% -0.0026 0.0565 1.0000 0.0418 0.1658 0.0052 

AIICO Insur. 35% 15% -0.0032 0.1073 0.0418 1.0000 0.0267 0.0012 

Zenith Bank 23% 34% -0.0014 0.0264 0.1656 0.0267 1.0000 -0.0073 

Nestle Foods 18% 36% 0.0157 -0.0006 0.0052 0.0012 -0.0073 1.0000 

 Table 2: Empirical correlation matrix of some assets considered in NSM with their assumed weights and Implied 
volatilities. 
 
Thus, from the asset return from NSM the empirical correlation matrix  

   

 
 
 
 
 
 
      
       
       
      

       
      
      
      

                          
                         
                        
                        

                                      
                                       

 
 
 
 
 

 

 

The eigenvalues of    =                                             . Thus the minimum 

eigenvalue of            which shows that    is a valid correlation matrix. Therefore, to estimate the realistic 

implied correlation matrix   from the assumed implied volatility for the given portfolio consisting of six assets, we 

assume that the implied volatility of portfolio     
      . 
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From Table 1: The weights of the respective assets                                  ;    

                       

 
 
 
 
 
 
    
    
    
    

    
    
    
    

                
                
                
                

                        
                         

 
 
 
 
 

 

We now use equation (19) and the respective values of          to calculate     
 . 

                                                                                      
                      = 0.1546. 

Since                 
       

 , therefore we shall replace C in equation (22) by an equivalent identity 6x6 

equicorrelation matrix to obtain the value of w: 

   
      

 
         

   

                    
  

      

                    
 

  
      

      
 = 0.5963 

Therefore,                         

  

 
 
 
 
 
 
     
     
     
     

     
     
      
     

                    
                    
                    
                    

                              
                               

 
 
 
 
 

 

 

The eigenvalues of                                           from where we obtain the minimum 

eigenvalue to be 0.3359 showing that    is also positive semi-definite. We now verify our solution from equation 

(16) to compute the variance of portfolio using the obtained realistic implied correlation matrix   gotten above: 

                                       
                      = 0.28 as required. 

 

Contribution to Knowledge 
 

The research has provided an insight into the dynamics of bank assets price correlation in the Nigerian Stock 
Market and consequently the information on the best risk management practices for bank investors in the 
Exchange. The empirical correlation matrix so obtained has shown that most of the bank stocks of NSM move in 
the same direction except the Union bank and Unity banks that have inverse correlation with the other banks. For 
an investor in the NSM it therefore pays to have stakes in other non-bank stocks if he wants to diversify his portfolio 
in the market. It is, therefore, advisable to include derivative asset products due for introduction in the NSM to 
hedge against risk associated with having stocks in the banking sector especially when the stock prices of bank assets 
go down. The implied correlation matrix is applicable in hedging risks associated with foreign exchange. Large 
corporations are always very interested in hedging their currency exposures by using a basket of options instead of 
taking separate put options for the respective countries where they have their investments [57]. This will help guard 
against the unnecessary losses they might incur in an event of rising value of the domestic currency where they have 
these investments. Companies that are therefore exposed to a variety of currency fluctuations find it profitable to 
directly hedge their aggregate risk by using a basket of options made possible through the use of estimated implied 
correlation matrix from a basket of options [58]. For a manufacturing firm in the United States that sources its raw 
materials in Nigeria, Ghana and South Africa and pays for its operation in those countries in local currencies is likely 
to be exposed to exchange rate risk. To hedge against the risk or falling prices of the United States dollars against 
Naira, Cedi and Rand, the manufacturing firm has to use a basket of option in its risk management strategy. The 
company could therefore directly buy an option on a basket of currencies at a lower price than it can purchase 
through separate options on the individual currencies. This is possible through the use of historical return time 
series correlation results, as we have done with some stocks in the NSM, Urama T.C.et al; [39], and the major 
concern will then be the amount of weight to be assigned to the individual stocks (or currencies). For optimal 
portfolio on the investment, we need to predict correctly the future correlation of the respective option values by 
observing the correlation throughout the life span of the option. 
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Appendix 1 
 

DERIVATION OF MARCENKO-PASTUR LAW (DISTRIBUTION) 

 

The Marcenko-Pastur (M-P) law investigates the level density for various ensembles of positive matrices of 

a Wishart-like structure which is denoted by      , where   stands for a random matrix. In particular, for 

some stocks in the Nigerian Stock Market (NSM), we have    
 

 
    with   as the period of time considered in 

the time series and we make use of the Cauchy transform to derive the M-P distribution. 
To derive the level density associated with a given ensembles of random matrices, and in a more general sense some 
free convolutions of the M-P law, we will use the Voicucescu S-transform and the Cauchy functions. 

Suppose that                  
   where     are independent and identically distributed with mean zero 

and variance one. Furthermore, let's define 

                                         
 

 
                                                                                           

and let            denote the eigenvalues of the matrix   . In particular, from the data used in my 

research for the stock from Nigerian Stock Market,             Suppose we define the random spectral 
measure by 

                                         
 

 
      
 
                                                                                         

where    are the eigenvalues of the random matrix, we can then state the, M-P distribution as follows: 
 

Marcenko-Pastur Law (Distribution): If  ,    are defined as in (1) and (2) above, and suppose further that 
 
   approaches         where     are sufficiently large, then we have           almost surely (a.s) with   

µ known to have a deterministic measure whose density is given by 

                                     
  

  
  

 

   
                                                                       

   Here, a and b are functions of Q given by                           with a and b representing 

              respectively in the thesis. 

Remark: We observe that when the rectangular parameter                  we shall have  

                         
  

  
  

 

   
                  

 

  
 
   

 
                                  (4) 

which yields the image of a semicircle distribution under the mapping       
The variable x represents a suitably rescaled eigenvalue λ of   . For normalized random Wishart matrix, with 

respect to the trace condition       , the rescaled variable is        where   is the size of matrix,  . 
We now use the S-transform that corresponds to an unknown probability measure defined on a complex variable ω, 
on the x-axis for the analysis of M-P distribution defined as  

                                  
 

   
                                                               (5) 

To infer this measure and the spectral density    , Mlotkowski et al. (2015) write the S-transform as  

                                 
   

 
                                                               (6) 

where,               
 

    
   

 

    
                                                                 (7) 

Suppose we set the characteristics function χ(ω) as 

                      
 

    
                                                              (8) 

This will enable us to obtain the implicit solution to the Green's function G(z) which can also be referred to as the 
Cauchy function written as: 

                                   
 

 
                                                             (9)  

where, A connotes a random matrix from the ensemble investigated (which in this work represents the 82 stocks 
considered drawn from market prices in the Nigerian Stock Market). 
Putting equation (8) into (7) we shall have: 
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Thus from (9) above 

                                            
 

 
              

   

 
                               (10)  

Furthermore, from (6) and (8) we shall have:       
   

  
 which implies that 

                                                                                              (11) 

We now demonstrate how to obtain the general form of the M-P distribution which describes the asymptotic level 

density      of random states of    
   

      , where    is the rectangular complex Ginibre matrix of size 

   , with the chosen rectangular parameter          
Consider another S-transform similar to that of equation (5) defined as: 

                                             
 

    
                                                  (12) 

which reduces to equation (5) for     and putting equation (12) into (11) we shall obtain: 

      
 

    
         or               

                                                                                (13) 
By solving the quadratic equation in terms of ω using the general formula we shall obtain: 

   
                     

  
 

                                 = 
                            

  
 

                                 =   
                             

  
 

Thus, the imaginary part of ω is zero when c lies outside the interval                 . Finally, to obtain the 
spectral density as shown in equation (3), we apply the Stieltjes inversion formula and since the negative imaginary 
part of the Green's function yields the spectral function, 

                                      
 

 
                                                      (14) 

we shall have: 

                                 
  

  
  

 

   
                   as required; 

where               ≡         and               ≡       and x being a dummy variable is 

represented by c. 
 
The M-P equation has undergone several reformulations since its first appearance in the original paper of 
Marcenko-Pastur (1967). Some of this reformulation process was the instantiation of the equation by Silverstein and 
Bai under four different assumptions for the derivation of the theorem. To this end therefore, one derives the 
Marcenko-Pastur law as above using Marcenko-Pastur Theorem or the Silverstein and Bai Theorem (1995) as stated 
below: 

Consider an      matrix,    . Assume that 

(a)   is an    matrix such that the matrix elements   
  are independent identically distributed (i.i.d) complex 

variables with mean zero and variance 1,       
         

              
        

(b)                           In particular, for the Nigerian bank stocks that were considered, 

                    
              . 

(c)           
    

      
  where  

    and the eigenvalue distribution function (e.d.f) of {  
    

      
   

converges almost surely in distribution to a probability distribution function (p.d.f)             

(d)         
 

 
  
     , where   is a Hermitian     matrix for which     converges vaguely to Æ almost 

surely, Æ being a possibly defective (i.e with discontinuities) nonrandom distribution function 

(e)             are independent. 

Then, almost surely,    converges vaguely, almost surely, as     to a non-random distribution function (d.f) 

   whose Stieltjes transform          satisfies the canonical equation   

                                        
      

       
                                              (15)   
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We begin by defining the Stieltjes transform in an eigenvalue distribution which has proven to be an efficient tool 

for determining a limiting density. For every non-real  , the Stieltjes (or Cauchy) transform of the probability 

measure                  is given by 

                                          
 

   
      

 

  
                                           (16) 

with               

Suppose        from (d) above,     
 

 
  
       The Stieltjes transform of   , from definition (16) above 

will then be  

       
 

   
   

 

 
 

and using Marcenko-Pastur theorem as expressed in equation (15) above, the Stieltjes transform      of    is 
given by 

                                               
 

    
      

       

                                       (17) 

we can therefore find that the inverse of      will be given by 

                                               
 

 
   

 

    
                                   (18) 

 

Equation (18) can be seen as an expression of relationship between the Stieltjes transform variable   and 

the probability space   which can alternatively be referred to as a canonical equation or functional inverse of     . 
Thus, to determine the density of   as defined in (d) above using inversion formula (14) we need to solve 

(18) for       Hence, to be able to simplify the relationship between m and z we need to obtain       from 

equation (18). Theoretically,       could be regarded as any density which satisfies the conditions of 

Marcenko-Pastur theorem. In Particular, for some specific distribution of       we can obtain the density 
analytically. 

 

For       in (c) above of the theorem, which coincidentally is the same as was observed from the 

empirical matrix (as the diagonal elements of     are non-random) with distribution function . We note here that 

for general forms of the probability distribution      it is not possible to find an analytic solution for m in (18) 
above, however, for the well-known white Parcenko -Pastur or canonical form of the distribution, equation (18) can 

be solved using the relation              to obtain     
 

 
 

 

   
  Thus, with      we obtain from 

equation (18) 

    
 

 
 

 

   
 

                            or                                (20) 
 
which is analogous to the expression represented by equation (13) and solving as before we can therefore obtain the 

solutions of   in terms of  . 
Thus, to obtain the density which is usually referred to as the Marcenko-Pastur distribution we solve the quadratic 
equation in (20) above and make use of equation (14) to get: 

                                       
      

  
  

  

  
  

 

   
                   as obtained before. 
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