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Abstract 
 

When the outcome variable is ordinal, the ordered logit model is a popular choice of the analytical 
approach. However, often, the data set does not meet the proportional odds assumption. In this research, 
we propose a generalized linear regression model for the ordinal analysis, which increases the degree of 
freedom of the model (number of the variable)by a small amount. The proposed model calibrates the 
“break point” between the ordinal outputs. The proposed model would perform better than the ordered 
logit model when the proportional odds assumption is not met. It would provide a straightforward 
approach of linear models with a relatively good fit of calibration data. Another benefit is that the 
projection with calibrated “breakpoint” is more balanced, that the overrating and underrating count are 
roughly the same. The projection reflects the original data better at the aggregate level.   
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Introduction 
 

When the outcome variable is ordinal, meaning the outcome is ordered and discrete, the most popular 

model for the analysis is the ordered logit model. The outcome variable                   takes M 

potential values. The ordered logit model requires data to meet the ordered odds assumption, which requires the 

odds ratio to stay the same for all the outcome levels. The odds ratio is defined as                      

          . 
 

Unfortunately, the data in real life rarely meets the proportional odds assumption. Some practitioners 
choose to ignore the assumption and continue to use the model. Some practitioners choose to use the 
generalizedlinear model which is not necessarily suitable for the purpose. One of the main objections to the 
generalized linear model is that it requires the assumption that the numerical distance between each set of 

subsequent categories is equal, if we assign the M outcome variables naturally to                     .   

In this paper, we propose a methodology to calibrate the breakpoint between the categories, which implicitly 
removes the equal distance assumption.  The introduction of the M-1 breakpoints will add M-1 degree of freedom. 
Depending on the dataset, in many cases, those parameters are worth-while addition to the model. 

 

In this work, we will illustrate the application of the calibration method with the National Bridge Inventory 
(NBI) data. The NBI condition rating is an important data source on bridge conditions nationwide. In our study, we 
apply the model to three outcome variables, Deck, Superstructure and Substructure. The independent variables are 
location, age, etc. We used the R packages and excel to perform the analysis. 

 

In [1], Pan Lu, Hao Wang and Denver Tolliver compared the ordinary linear model with the ordinal logit 
model. The breakpoints of the ordinary linear model in [1] is not calibrated. They found the ordinal logit model 
performed better. Predicting the future condition rating of bridges has been a topic for many researchers [2 - 13]; 
Many types of models has been experimented by the researchers in the literature, including straight-line 
extrapolation, linear regression, Markovian, nonlinear regression, logistic regression models, artificial neural 
networks, Bayesian network, Monte Carlo methods, and data mining-based algorithms. 
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To assess the overall performance of the model, we use three measures, the accuracy, Mean Absolute Error 
(MAE) and the balance. The accuracy rate is defined as percentage of accurate predictions. MAE measures the 
distance between true categories and predicted categories. Balance measures the overrating and underrating at the 
overall level. Ideally, the predicted categories reflect the true categories at the aggregate level without bias.  
 

The Model and the Performance Metric 
 

Let                       be the training data set of N observations, where    is the outcome 

variable for the observation  , and                       is the input variable and     ,           are 

individual predictors. 
 

The linear regression model is applied as usual. The           be the (continuous) prediction. The usual 

way of discretized the projection is to have the break point in the middle of the outcome                 , 

that is                                 . We use the name Model1 as name of the model and    for the 

prediction of model. 

              

  

                             

                                                            

                               

  

We propose the following method to calibrate the breakpoint. The model with the new break point will be referred 
as Model2. 

The following process is used to calibrate the breakpoints                   . 

For each            ,  

{Count of   such that           }  = {Count of   such that          }. 

In practice,      would be calculated recursively from     to 1. 

The new model, with calibrated break points, is 

              

  

                 
                                  

                   

  

For reference, we would use the               as the prediction of the third model, the ordered logit 
model. The theoretical definition of the model is readily available in the literature, and the implementation of the 
model is available in the R package. The R package used in this research is VGAM. 

 

To access the overall performance of the models, we use the following three measures, accuracy, MAE and 
balance.  

Let          be the projected outcome of the input variable   . We define 

The Accuracy Rate =               
 
   ,  

where            if       and            if      . 

MAE =                
 
   . 

And  

In-Balance =                        
 
                        

 
    

As defined above, a better model should have a higher Accuracy Rate, smaller MAE, and smaller In-Balance. 
 

The Data set and the Result 
 

We will use the NBI data to test and illustrate the methodology [14], [15]. NBI is the most comprehensive 
database on bridges in the United States. It has more than 100 fields in the database, collection information such as 
condition of the deck, structures, location, years build, traffic volume, and engineering attributes, such as span, high. 
In this study, we will study the condition of deck, superstructure and sub-structure 
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Table 1: Condition ratings used in the National Bridge Inventory (NBI) 
 

Code  Meaning  Description  

9 Excellent As new  

8 Very Good  No problems noted. 

7 Good Some  Minor problems. 

6 Satisfactory  Structural elements show some minor deterioration. 

5 Fair  All primary structural elements are sound but may have minor section loss, 
cracking, spalling or scour 

4 Poor  Advanced section loss, deterioration, spalling or scour. 

3 Serious  Loss of section, deterioration, spalling or scour has seriously affected primary 
structural components. Local failures are possible. Fatigue cracks in steel or shear 
cracks in concrete may be present. 

2 Critical  Advanced deterioration of primary structural elements. Fatigue cracks in steel or 
shear cracks in concrete may be present or scour may have removed 
substructure support. Unless closely monitored it may be necessary to close the 
bridge until corrective action is taken. 

1 Imminent Failure Major deterioration or section loss present in critical structural components or 
obvious vertical or horizontal movement affecting structure stability. The bridge is 
closed to traffic but with corrective action may put back in light service. 

0 Failed  Out of service, beyond corrective action. 

 
Source: United States Department of Transportation. Recording and Coding Guide for the Structure Inventory and 
Appraisal of the Nation's Bridges. Washington, D.C., 1995, page 38. 
 

Among the fields in the NBI, we pick the following variables to be the explanatory variable. The age of the 
bridge and the annual daily traffic per lane and the bridge material type are critical variables. We also included age 
squared to capture if there is any convexity in the age variable. 

 

Table 2: Description of variables used in analysis. 
 

Name of variable   Description of variable 
Reconstruction   Reconstruction record: Yes, No (binary variable) 
Bridge Material Type  Structure materials: Steel, Concrete, Timber (dummy variable) 
District Highway districts:  Bismarck, Devils Lake, Dickinson, Grand Forks, Minot, Valley City, Williston, 
Fargo (dummy Variable) 
Age Bridge age:   Inspection year-construction year or inspection year-reconstruction year (continuous 
variable) 
Age2    Bridge age squared (continuous variable) 
ADT    Annual daily traffic per lane (continuous variable) 
 

The Result 
 

We performed the regression on three outputs, deck, superstructure and sub-structure with all 3 models. 
Model1 is theordinary linear model with breakpoint in the middle. Model 2 is an ordinary linear model with 
calibrated breakpoints. Model 3 is the ordinal logit model. All three outputs take potential values of 0, 1, 2, …9.  

 

In Table 3, Table 4 and Table 5 below, we have the detailed cross table of comparison of the Model 1 and 
Model 2. The difference between the two models is the break points. In the table, the vertical counts are the original 
categories the horizontal count are the predicted categories. The diagonal would be the count the projected and the 
original categories did not change, that they are the same. Looking at the Model 2, in the total column and the total 
row, the count in each of the categories are very close, inmost of the case, they are exactly the same. This is implied 
by the calibration method of Model 2.  
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Table 3: Cross table for Deck, predicted vs original, Model 1 and Model 2 
 
Model 2   Original                     

Deck   0 1 2 3 4 5 6 7 8 9  Total 
Predicted 0 0 0 0 0 3 1 0 1 0 0 5 
  1 0 0 0 0 1 0 0 0 0 0 1 
  2 0 0 1 1 2 3 1 0 0 0 8 
  3 0 0 0 2 4 12 2 1 0 0 21 
  4 0 0 3 4 24 36 27 3 3 0 100 
  5 0 1 1 10 41 132 132 46 6 0 369 
  6 1 0 3 3 16 109 245 211 49 4 641 
  7 0 0 0 2 11 73 217 448 147 9 907 
  8 0 0 0 0 1 3 16 186 327 45 578 
  9 0 0 0 0 0 0 1 11 46 69 127 
  Total 1 1 8 22 103 369 641 907 578 127 2757 

        
Accuracy 
Rate 45%   MAE 70%   In-Balance 0.54%   

             Model 1   Original                     

Deck   0 1 2 3 4 5 6 7 8 9   Total 
Predicted 0 0 0 0 0 0 0 0 0 0 0 0 
  1 0 0 0 0 0 0 0 0 0 0 0 
  2 0 0 0 0 0 0 0 0 0 0 0 
  3 0 0 0 0 0 0 0 0 0 0 0 
  4 0 0 0 0 0 0 0 0 0 0 0 
  5 0 0 5 12 60 109 78 15 8 0 287 
  6 1 1 3 8 34 200 364 292 62 4 969 
  7 0 0 0 2 9 60 189 463 219 13 955 
  8 0 0 0 0 0 0 10 137 275 83 505 
  9 0 0 0 0 0 0 0 0 14 27 41 
   Total 1 1 8 22 103 369 641 907 578 127 2757 

        
Accuracy 
Rate 45%   MAE 66%   In-Balance 1.49%   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Shamita Dutta Gupta                                                                                          33 
 
 

Table 4: Cross table for Superstructure, predicted vs original, Model 1 and Model 2 
 
Model 2   Original                     

Super   0 1 2 3 4 5 6 7 8 9   Total 
Predicted 0 0 0 0 0 1 1 2 0 0 0 4 
  1 0 0 0 0 1 0 0 0 0 0 1 
  2 0 0 0 3 2 2 1 0 0 0 8 
  3 0 0 2 1 6 10 3 0 0 0 22 
  4 0 0 0 4 21 37 25 13 3 0 103 
  5 0 1 4 10 37 115 136 54 12 0 369 
  6 1 0 2 1 23 127 228 212 41 4 639 
  7 0 0 0 3 12 73 219 437 149 13 906 
  8 0 0 0 0 0 4 27 180 328 39 578 
  9 0 0 0 0 0 0 0 11 45 71 127 
  Total 1 1 8 22 103 369 641 907 578 127 2757 

        
Accuracy 
Rate 44%   MAE 73%   In-Balance 0.69%   

             Model 1   Original                     

Super   0 1 2 3 4 5 6 7 8 9   Total 
Predicted 0 0 0 0 0 0 0 0 0 0 0 0 
  1 0 0 0 0 0 0 0 0 0 0 0 
  2 0 0 0 0 0 0 0 0 0 0 0 
  3 0 0 0 0 0 0 0 0 0 0 0 
  4 0 0 2 4 15 16 5 4 1 0 47 
  5 0 0 3 13 48 116 107 41 12 0 340 
  6 1 1 3 3 31 178 313 287 53 4 874 
  7 0 0 0 2 9 55 187 377 135 13 778 
  8 0 0 0 0 0 4 29 191 349 69 642 
  9 0 0 0 0 0 0 0 7 28 41 76 
   Total 1 1 8 22 103 369 641 907 578 127 2757 

        
Accuracy 
Rate 44%   MAE 69%   In-Balance 3.48%   

 

Table 5: Cross table for Superstructure, predicted vs original, Model 1 and Model 2 
 

Model 2   Original                     

Sub   0 1 2 3 4 5 6 7 8 9   Total 
Predicted 0 0 0 0 0 2 2 0 1 0 0 5 
  1 0 0 0 0 1 0 0 0 0 0 1 
  2 0 0 0 3 3 1 1 0 0 0 8 
  3 0 0 1 1 3 11 3 2 0 0 21 
  4 0 0 2 3 23 37 25 8 2 0 100 
  5 0 1 3 10 38 108 137 63 9 0 369 
  6 1 0 2 2 22 128 227 210 45 4 641 
  7 0 0 0 3 11 79 222 434 146 12 907 
  8 0 0 0 0 0 3 26 184 332 33 578 
  9 0 0 0 0 0 0 0 5 44 78 127 
  Total 1 1 8 22 103 369 641 907 578 127 2757 

        
Accuracy 
Rate 44%   MAE 73%   In-Balance 0.54%   

             Model 1   Original                     

Sub   0 1 2 3 4 5 6 7 8 9   Total 
Predicted 0 0 0 0 0 0 0 0 0 0 0 0 
  1 0 0 0 0 0 0 0 0 0 0 0 
  2 0 0 0 0 0 0 0 0 0 0 0 
  3 0 0 0 0 0 1 0 0 0 0 1 
  4 0 0 3 7 37 55 36 16 3 0 157 
  5 0 1 5 11 43 170 242 125 24 2 623 
  6 1 0 0 3 18 110 239 331 55 3 760 
  7 0 0 0 1 5 32 111 316 195 13 673 
  8 0 0 0 0 0 1 13 117 278 60 469 
  9 0 0 0 0 0 0 0 2 23 49 74 
   Total 1 1 8 22 103 369 641 907 578 127 2757 

        
Accuracy 
Rate 39%   MAE 77%   In-Balance 31.45%   
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Table 6 below has the calibrated break point for each of the output, Deck, Superstructure and the sub 
structure. We see that the calibrated breakpoints tend to shift to the center. In Table 7, the summary performance is 
provided. Overall, ordinal logit model is best for super structure predication. The ordinary linear model performed 
better for deck and sub structure. And calibration of the breakpoint did not impact the performance much for all 
three put projection, but the in-balance is reduced by design. 
 
Table 6: The Calibrated Breakpoints 
 

  
Between 1 
and 2 

Between 
2 and 3 

Between 
3 and 4 

Between 
4 and 5 

Between 
5 and 6 

Between 
6 and 7 

Between 
7 and 8 

Between 
8 and 9 

Between 
9 and  

Model 1 
Breakpoint, 
mid 0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 

Model 2 
Breakpoint 
B(m) 

         Deck 4.73 4.75 4.81 4.87 5.19 5.78 6.38 7.32 8.12 

Super 
Structure 4.01 4.03 4.16 4.42 4.93 5.67 6.39 7.52 8.36 

Sub 
Structure 3.48 3.58 3.75 3.97 4.44 5.12 5.98 7.26 8.35 
 

Table 7: Summary performance measures 
 

 Deck Super structure Sub structure 

 
Model 1 Model 2 Model 3 Model 1 Model 2 Model 3 Model 1 Model 2 Model 3 

Accuracy 45% 45% 21% 44% 44% 51% 39% 44% 22% 
MAE 66% 70% 117% 69% 73% 62% 77% 73% 124% 
In-Balance 1.49% 0.54% 110.26% 3.48% 0.69% 15.23% 31.45% 0.54% 115.67% 
 

The Conclusion 
 

Even for the ordinal data, the linear regression method would still provide a better fit of the data than the 
ordered logit model, depending on the nature of the data. The additional degree of freedom, which calibrates the 
breakpoint between the outcome categories, would improve the fit, but not necessarily always the case. 
Conceptually, the calibrated breakpoint provides additional flexibility. But as expected, the balance of the fit would 
improve, the balance measures the overall level of the overestimate and the underestimate of the fitted data. It 
would be preferable that the so that all over characteristics are preserved through the modeling process. 
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