
American Review of Mathematics and Statistics 
June 2023, Vol. 11, No. 1, pp. 22-28 

ISSN: 2374-2348 (Print), 2374-2356 (Online) 
Copyright © The Author(s).All Rights Reserved. 

Published by American Research Institute for Policy Development 
DOI: 10.15640/arms.v11n1a3 

URL: https://doi.org/10.15640/arms.v11n1a3 

 
Estimate the Size of a Closed Population with Varying Heterogeneity Patterns 

 
Lihua Chen1, Kara Athey2, Nat Remmers3 

 
Abstract 
 

Capture-recapture approach is commonly used to estimate the size of a closed population. If the 
complete capture history of each individual is known, the data can be represented by a contingency table 
and loglinear models can be used to estimate the number of unobserved individuals. When there is 
variable probability of capture among individuals, a quasi-symmetry loglinear model can be used to 
address heterogeneity among individuals. This model assumes the heterogeneity pattern does not change 
across the samples. In this paper we explore the use of a more flexible partial quasi-symmetry loglinear 
model to account for varying heterogeneity patterns across the samples. We characterize the structure of 
the model and demonstrate its value and scope with a simulation study and two real-world data examples. 
 

Keywords: Capture-recapture, heterogeneity, quasi-symmetric loglinear model, partial quasi-symmetric 
loglinear model 

 

1 Introduction 
 

The size of a population can be estimated by repeatedly taking samples from the same population when it 
is infeasible or unnecessary to count every individual in the target population. This method is called 
capture-recapture due to its origin in the estimation of wildlife populations. In estimating human population sizes, 
the samples are often called lists and the individuals are called subjects. When the sampling period is relatively 
short, it is often reasonable to assume the population is closed with no birth, immigration, death or emigration 
and thus the population size is constant in the study period. 

 

Both parametric and nonparametric capture-recapture methods have been proposed for estimating the 
size of a closed population. See Seber (2002) for a general reference. Most estimators in the literature can be 

classified into    or    classes depending on how the capture probabilities for different individuals at 

different sample occasions are specified. Models of    type assume capture probabilities vary with time or 

sample occasions only, while    models assume capture probabilities vary across individuals only. In 
capture-recapture studies, it is commonly observed that capture probabilities vary across both individuals and 

sampling occasions and consequently models of     type are needed to reflect varying time effects as well as 
heterogeneity among individuals. 

 

Both parametric and nonparametric models have been developed in the     class. Chao, Lee and Jeng 
(1992), Chao and Tsay (1998) developed a non-parametric sample coverage approach. Lloyd and Yip (1991) used 
martingales approaches. For parametric models, Sanathanan (1972a,b) used a mixed logit model which expressed 
the logit of the capture probability as an additive function of a subject effect parameter and a sampling effect 
parameter. This setup could introduce as many subject parameters as the population size into the model and the 
maximum likelihood estimation of model parameters and population size will not be consistent.  
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There are two common approaches to dealing with this issue. One approach uses a continuous 
distribution which uses only one or a few parameters to model these subject parameters (e.g., Coull and Agresti 
1999). Another approach uses a latent class or finite mixture models, i.e., the subjects are partitioned into several 
groups with homogeneous subjects within each group so only a limited number of subject parameters need to be 
estimated (e.g., Agresti 1994; Pledger 2000). 
 

With a limited number of subject parameters, the population size   can be estimated by fitting a proper 
model through maximum likelihood. The loglinear model is a common choice if the complete capture history of 
each individual is known. Assume the complete capture history of an individual is represented by a vector 

          where, for              denotes “captured” and      denotes “not captured”. There are 

   capture patterns and the corresponding frequencies can be represented as a contingency table with one 

missing cell corresponding to the           capture pattern. The model parameters can be estimated through 
maximizing the multinomial likelihood of the cell counts with the cell probabilities expressed as a function of the 
model parameters. The missing cell count can be estimated based on its estimated cell probability. This is the 
basis of the commonly used loglinear modeling method (Bishop et. al 1977; Cormack 1989). 

 

A more convenient approach can adopt a quasi-symmetric loglinear model without explicitly modeling 
the subject parameters. It is shown that (e.g., Duncan 1985) under the additive logit specification, the expected 

cell counts of the contingency table satisfy the property of quasi-symmetry with some constraints, and thus   
can be estimated through fitting this particular loglinear model. The quasi-symmetric loglinear model is a valuable 
tool for accounting for subject heterogeneity. It is easy to fit using statistical software such as R or SAS and it 
generally performs better than the mixed model in some simulation studies (Coull and Agresti 1999). 

 

The additive logit formulation assumes the heterogeneity pattern is constant across the samples. That is, 
given a subject, the parameter reflecting the subject effect is constant across the sampling occasions. However, 
the heterogeneity pattern may change across samples with variation in sampling efforts or methods and therefore 
the catchability of a given subject may vary across the samples (Darroch et. al 1993). In this paper, we will explore 
using loglinear models of particular structures to estimate the population size under this relaxed condition. We 
will characterize the structure of the loglinear models that incorporate varying heterogeneity pattern. Darroch et. 

al (1993) termed the new model partial quasi-symmetry loglinear model and derived its design matrix for     
using a two stage construction technique. We will generalize the results to     cases and present the R 
command that fits the model without the need to derive the design matrix. 

 

The rest of the paper is as follows. Section 2 will explore the structure of the loglinear model under the 
assumption of varying heterogeneity patterns. Section 3 will demonstrate the value and scope of the model 
through a simulation study and real data applications. Discussions and conclusions are in section 4. 
 

2 Loglinear Modeling 
 

2.1 Quasi-symmetric loglinear model 
 

Assume we have   subjects and   samples (captures). The capture history of subject   is  
 
  

           , where            takes value 0 or 1 with       indicating capture in sample  . Let 

              
We incorporate heterogeneity using the model 

 o  t                                   (1) 
 

The parameter    reflects the subject catchability and a greater    value indicates a higher capture 

probability for subject   given a sample. We treat      as random effects having a certain distribution  . 

Greater variability in      indicates more heterogeneous individuals. The parameter    indicates the sampling 

effect and a greater    value implies a higher capture probability at sample   for a given subject. This model 

developed by Rasch (1961) was originally used in educational testing where   subjects were tested on   items 

with binary response to each question. In that setting,    reflects the ability or attitude of subject   and    
reflects the difficulty of item  . This model assumes no interaction between the subject and sampling effect. In 
fitting the model, one typically assumes independent responses by the same subject (termed local independence) 
and independence among subjects. 
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For a possible capture history  
 
          , let   

 
          be the number of subjects having that 

capture history. Let   
 
     

 
 . It is easily shown (e.g., Duncan 1985; Darroch and McCloud 1986) that, by 

averaging over the individuals in the population, model (1) implies the expected frequencies satisfy the 
quasi-symmetric loglinear model 

      
 
                                                (2) 

where   is the indicator function,            is invariant to permutations of its arguments. This implies 
interaction terms between the sampling occasions of the same order have equal coefficients. Next we will 

demonstrate that (2) can be derived without the need to specify the distribution  . From (1), we can get 

    
          

            
  

Given subject  , the probability of a particular sequence  
 
           is 

   
 
         

  

 

   

       
     

                  

                

 

Assume      with   unspecified, the marginal probability is computed as 

   
 
         

 

    
           

                  

       

The integral only depends on data through      and thus 

   
 
         

 

        
 

   

where     is an unspecified function. Taking logarithms will produce a loglinear model of the form (2). The 

argument      of function   implies identical interactions of the same order. For example, among 

           , any two of the   terms taking value   with the remaining terms taking value   will produce the 

same argument       , and hence the first-order interaction between any pair of sampling occasions, will be 
identical. This model also implies higher order interaction terms are identical as long as they are of the same 
order. 

 

We have to point out though we assume the responses by the same individual are independent, 
heterogeneity among individuals implies positive associations between each pair of the samples, both conditional 
and marginal, in the contingency table. 
 

2.2  Partial Quasi-symmetric Model 
 

Now we assume the heterogeneity pattern will change across the sampling occasions. Without loss of 

generality, assume across the   samples the catchability of a given subject takes one value from sample 1 to   

and takes a different value from sample    to sample  : 

 o  t       
                   
                       

  

Then we have 

    

 
 
 

 
           

            
       

          

            
         

  

Given subject  , the probability of a particular sequence  
 
           is 

   
 
            

  

 

   

       
     

         
 
         

 
         

 
      

               
 
                  

 
     

  

The marginal probability is 
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The integrals only depend on data through    
 
    and    

 
     , thus the marginal probability satisfies 

   
 
                  

 
       

 
                  (3) 

where   is an unspecified function. Taking logarithms of (3) leads to a partial quasi-symmetry loglinear model 

      
 
                                                   (4) 

 

To characterize the structure of the loglinear model, let us call samples 1 to   subset 1 and samples 

    to   subset 2. Model (4) implies the first-order interaction terms between any pair of sample occasions 
within the same subset are identical; the first order interaction terms between a randomly selected sample from 
one subset and a randomly selected sample from the other subset are identical. For second-order interactions, 
interaction terms among any three samples within the same subset are identical; interaction terms among any two 
samples from one subset and a randomly selected sample from the other subset are identical. 

 

Take     and     for an example. If we use   to indicate interaction terms, the model implies 

the first-order interactions satisfy                                    and the second-order 

interactions satisfy                                             . 
 

3 Numerical Studies 
 

3.1 Simulation Results 
 

In this simulation, we examine the performance of partial quasi-symmetric models under the additive 
logit specification with varying heterogeneity patterns. 

Case 1: We choose 5 total sample occasions,    . For        , we generate the capture 

probability     
          

            
, for        and     

          

            
, for        . We generate each     

Normal           and each     Uniform                 . We generate each     Uniform 

               . 

Case 2: We choose    . We generate     Normal           for    , and     Uniform 

          for          
We generate      Bernoulli                        We choose       in case 1 and        
in case 2. The frequencies of individuals with the same capture pattern form the cell counts in the contingency 

table. We pretend the cell count corresponding to capture pattern          is missing and use the remaining 

data to estimate it. Adding the observed table total and the estimate of the missing cell count produces   , the 

estimate of the population size  . 
 

We compare the performance of the quasi-symmetric model, the partial quasi-symmetric model, the full 
model and the independence model. We include first-order interaction terms only without including higher order 
interaction terms. Fitting partial quasi-symmetric loglinear models by R is straightforward. In the model formula, 
in addition to the regular main effect and interaction terms, we just need to add one or more I() terms, with the 
sum of the identical interaction terms inside the parenthesis. For example, to fit a partial quasi-symmetric loglinear 

model with three lists     and   including    interaction and identical    and    interactions, the R 
command is 
glm (y~A+B+C+AB+I(AC+BC), family=poisson). 

For evaluation purpose, we considered the mean squared error        
 
. We generated the data 1000 

times and reported the average of the squared errors with its standard error in Table 1. The comparison results 
showed the quasi-symmetric model performed substantially better than other models under the assumption of 
varying heterogeneity patterns. 
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Table 1: Comparison of different models 

 Case 1 Case 2 

Partial Quasi 16.8(0.8) 356.6(17.1) 

Quasi Symmetry 38.5(1.4) 2017(144.0) 

Full 120.1(8.7) 7774(48.2) 

Independence 68.9(2.0) 8318(49.5) 
 

3.2 Data Examples 
 

We will illustrate the value of partial quasi-symmetric loglinear models with two real-world date sets. 
The first is a Belgian data set on invasive pneumococcal disease (IPD) cases collected between July 1, 

2009 and June 30, 2011 (Braeye et. al 2016). 
 

The IPD cases of adults aged   50 years were collected on three lists: the hospital list on which adults 
hospitalized with microbiologically confirmed IPD were eligible for inclusion, the National Reference Centers 

(NRC) and Sentinel laboratories network (Sentinel). The data is presented in Table 2 with       indicating the 
list NRC, Hospital and Sentinel respectively. 

Table 2: Belgium IPD data 

 H=0 H=1 

N=0, S=0 ? 232 

N=0, S=1 347 34 

N=1, S=0 854 188 

N=1, S=1 843 281 
 

The data complication suggested possible NH and HS associations as the laboratories of the hospitals 
were encouraged to send cases to both NRC and the sentinel surveillance. There was possible interaction between 
the sentinel surveillance and the NRC because their detectors overlapped. 

 

Indeed the full loglinear model                shows all the three interaction terms 

         are significant at 0.05 significance level. This model produces         with a     confidence 

interval (5114, 8283). How good is this estimate? Since the full model uses all the   degrees of freedom, we can 

not use the deviance    to assess the fit of the model. The relevant outside information on the average IPD 
incidence rate in Europe in this period (Braeye et. al 2016) suggests possible model overfitting and 

over-estimation of  . 
 

Next we consider the more concise quasi-symmetric model                    This 

model fits the data poorly with          on 2 df. The estimate         is likely an under-estimate as it is 

below the lower bound estimation        produced by Chao’s samp e covera e method (Braeye et. a  2016). 
 

The partial quasi-symmetric model which lies between the two models above could be a reasonable 
choice. The referral system (from Hospital to NRC and Sentinel) suggests the interaction terms NH and SH may 

be close to each other and thus it is reasonable to consider the partial quasi-symmetric model       
           . This model produces          on 1 df. Though this    value still indicates a lack of 

fit, it greatly improves over the quasi-symmetric model with a reduction of    by 147.18. The partial 

quasi-symmetric model produces         with a     confidence interval (4388, 5965). 
 

Taking into account the available outside information, the lower bound estimate and the goodness-of-fit 
statistic, the estimate by the partial quasi-symmetric model seems more plausible compared to the estimate by the 
full model or the quasi-symmetric model. It also produces a narrower confidence interval compared to the full 
model. Saving 1 degree of freedom by the partial quasi-symmetric model is valuable given the total degrees of 

freedom is only  . 
 

The second data set came from a census study in 1988 designed to estimate the undercount of black male 
renters, a group believed to be seriously undercounted in past census (Darroch et. al 1993). The data in Table 3 
compiled black male renters aged 30-44 in St. Louis, Missouri on three lists: preliminary enumeration (list E), 
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post-enumeration survey (list P), and the administrative list supplement (list A) which was compiled from 
pre-census administrative records of state and federal government agencies. 
 
Table 3: Three source data in 1988 census in St. Louis, Missouri  

 A=0 A=1 

E=0, P=0 ? 43 

E=0, P=1 53 13 

E=1, P=0 71 7 

E=1, P=1 155 72 
 

Fitting the full model                shows all three interaction terms are significant at 

0.10 level of significance. The model produces         with a     confidence interval           . 
 

The quasi-symmetric model                   produces          on 2 df, 

indicating a serious lack of fit. This model produces        with a     confidence interval          . 
The poor fit of the model indicates the estimate of   may not be reliable. 

 

The way the data was compiled suggested the choice of the partial quasi-symmetric model, in which the 
pattern of heterogeneity of individuals was the same in the E and P samples but different in the A sample. Indeed 
the way the A list was constructed through extensive searches of administrative records of a region covered by the 
E or P list suggested it may be reasonable to assume identical PA and EA interactions. Fitting this model 

                  produces         on 1 df, a great improvement over the quasi-symmetric 

model. This model produces         and a     confidence interval           . Though we have no 
outside information to help assess the accuracy of the estimate, the good fit of the partial quasi-symmetric model 
gives us more confidence in its estimate. Compared to the full model, the partial quasi-symmetric model produces 
a narrower confidence interval with a decent goodness-of-fit. 
 

4 Conclusions 
 

In this article, we explore the partial quasi-symmetric loglinear model which can be used to model varying 
heterogeneity patterns across the capture occasions (lists) in capture-recapture studies. Compared to the full 
model with separate values for different interaction terms, the properly chosen partial-symmetric model can save 
degrees of freedoms and typically produces shorter confidence intervals by constricting some interactions terms 
to be identical. Compared to the quasi-symmetric model which constrains all interaction terms of the same order 
to be identical, the partial quasi-symmetric model provides more flexibility by allowing a subset of interactions of 
the same order to be identical. This more flexible structure can lead to substantial improvement in the fit of the 
model without losing too many degrees of freedom. In summary, the partial quasi-symmetric model has potential 
of offering a good compromise when the full model seems over-fitted and the quasi-symmetric model seems 
under-fitted. The quasi-symmetric loglinear model is based on the additive logit model which assumes local 
independence among the sample occasions. When local dependence is present such as in the cases of trap 
avoidance or trap attraction, we may expand the partial quasi-symmetric model by adding some association terms 
such as interaction between adjacent sample occasions. If it is reasonable to assume the interaction terms in a 
certain group do not differ greatly, we can further consider a more concise model by restricting these terms to be 
identical. 
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