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Abstract 
 

The purpose of this research is to create the time series models for predicting the maximum and minimum 
temperatures in each day of Bangkok in Thailand. The maximum and minimum temperature data sets were the 
number of 365 days between January 1, 2022 and December 31, 2022 from the Thai Meteorology Department. The 
results for these data sets show that the most suitable model for the highest temperature forecasting model is 

                                                       
and the lowest temperature forecasting model is 
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1. Introduction 
  

Temperature is a comparative measure of any heat or cold source. The most popular unit of temperature 
scale is Celsius. At present the current climate is likely to change quickly, mainly caused by human behavior, such as 
deforestation, some types of farming, production of waste from industrial sector which make the concentrations of 
greenhouse gases in the atmosphere is increasing.  

 

 The amount of these gases is over an appropriate level. As a result, the global temperature rises to abnormal 
levels which contribute to climate change on Earth such as convection and its makes the ongoing phenomenon such 
as wind, clouds or rain. The difference of temperature in each area or time period may be caused by many factors 
such as sun rays, ground and surface water conditions, ocean currents, height of area, geographical location and the 
amount of cloud cause make the temperature varies. 

 

 From the problem of variability in temperature and climate bring to the attention of the researchers to find 
the perfect model for forecasting the weather. Also, the reason that we chose Bangkok is a case of our study because 
Bangkok is the capital and the most populous city in Thailand. The city's main economic of Thailand and the source 
of many cultural Gross domestic product by 25 percent from Bangkok. That is, it comes from the retail and 
wholesale of 24.31 percent, industry of 21.23 percent, transport and communications industry of 13.89 percent and 
hotels and restaurants of 9.00 percent by this research was to create the statistical models for predicting the daily 
maximum and minimum temperatures of Bangkok in Thailand by using simple time series analysis. To bring 
benefits for the plan in the future and allows residents to be prepared for prevent and solve problems or losses 
caused by meteorological phenomena. So be aware that the climate has changed in the future will be very useful. 
 

The data in this analysis is the secondary data which was collected directly from the Thai Department of 
Meteorology such as the maximum and minimum temperature data sets were the number of 365 days between 
January 1, 2022 and December 31, 2022 by using the time series analysis for creating the forecasted statistical 
models. On this scale temperature is measured in degree celsius (°C). From the plots of time series for the lowest 
and highest temperature in each day of Bangkok, they indicate that the series are relatively jagged and are special 
cases of stationary time series in the mean. So the time series approach is proposed to forecast these data. 
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In the context of time series analysis, many similar studies can be found in Yule (1927), Bartlett (1950), 
Whittle (1954), Brillinger and Rosenblatt (1967), Helmer and Johansson (1977), Rose (1977), Schwartz (1978), Tiao 
and Box (1981), Hughes et al. (2007), and others. 

 

2. Methodology 
 

In time series analysis, there are two useful representations to express a time series process. One is to write 

a process    as a linear combination of a sequence of uncorrelated random variables, i.e., 

            
 
   , 

where           is a zero mean white noise process, and    
    

    

Another useful is to write a process    in an autoregressive (AR) representation, in which we regress the 

value of  at time    on its own past values plus a random shock, i.e., 

                          
 
Yule (1927) used an AR process to describe the phenomena of sunspot numbers and the behavior of a 

simple pendulum. Further, the AR representation is useful in understanding the mechanism of forecasting. In 
general, we choose a simpler model to describe the phenomenon. This is the principle of parsimony in model 
building recommended by Tukey (1967) and Box and Jenkins (1976). In the following topic sentence, we discuss 
some useful time series models and their properties. 
 
2.1  The General pth Order Autoregressive AR(p) Process 

The pth order autoregressive process AR(p) is 

                              

where     

                       

      is a zero mean white noise processwith constant variance    

and   is the mean of a stationary process     . 
Hence, we have the following recursive relationship for the autocorrelation function (ACF): 

                               . 

 

Then, we can easily see that when     the last column of the matrix in the numerator of the partial 
autocorrelation function (PACF) 

        

 

            
            
      

                 

 

 

              
              
      

                

 

 

can be written as a linear combination of previous columns of the same matrix. So, the PACF     will vanish after 
lag p.  
 
2.2  The General qth Order Moving Average MA(q) Process 

  
The general qth order moving average process or model of order q is given by 

                         

where      is a zero mean white noise process with constant variance    

and   is the mean of a stationary process     . 
Hence, the ACF is 

     

                   

    
      

           

                                 

   

and the autocorrelation function of an MA(q) process cuts off after lag q. This important property enables us to 
identity whether a given time series is generated by a moving average process. 
3.  Results 
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To provide information become time series are stationary. We can choose the data transformation only one 
form only suitable for the analysis of the most. We calculated the following preliminary residual sum of 

squares    
     

    for various values of the power transformation parameter as shown in Tables 1, where   
  is 

the corresponding sample mean of the transformed series. These calculations suggest that a      transformation 
be applied to the highest and lowest temperature data. 
 

Table 1: Results of the power transformation on the lowest and highest temperature data 

    
  

   
     

    

Highest temperature Lowest temperature 

-1.0      0.001631966 0.005277640 

-0.5       0.013412261 0.031002087 

0.0      1.771800122 2.943486286 

0.5     14.694630984 17.639316232 

1.0    1958.498246575 1707.392219178 

 

 The sample ACF(   ) and PACF(   ) are calculated for      transformed data from a series of 365 real 
values as shown in Tables 2 and 3, respectively.  

 
Table 2: Sample ACF for the highest and lowest temperature data 

    Highest temperature Lowest temperature 

    0.687548294 0.626822909 

    0.530810548 0.535650805 

    0.476215215 0.452160369 

    0.397916380 0.419384713 

    0.433933352 0.410215720 

 
 
 
 

Table 3: Sample PACF for the highest and lowest temperature data 

     Highest temperature Lowest temperature 

     0.687548294 0.626822909 

     0.110165725 0.235126803 

     0.145367850 0.083631276 

     0.005837403 0.095873715 

     0.211464277 0.105874976 

  
 To evaluate the significance of each parameter for the highest and lowest temperature data, we calculate the 

values of  
    

     

 where      
  is the standard error of the sample PACF, as shown in Table 4. 

 
Table 4: Significance of each parameter of the highest and lowest temperature data 

   = 
    

     

 Highest temperature Lowest temperature 

   13.135591720 11.975434870 
   2.104713228 4.492091263 
   2.777248878 1.597773281 
   0.111523432 1.831664747 
   4.040019348 2.022738585 
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From Table 4, the results for the highest temperature data indicate that the values of     until    are significant 

because they are greater than 1.96 at the significance level       , so the model of prediction for the series is 

AR3. While for the lowest temperature data, the results show that the values of     and     are significant, thus we 

get that the AR2 model fitting is adequate for the data. Then, we obtain the moment estimators for                
as  

 

 
 
 
 
   

   

 
    

 
 
 

   

                  

                  

      
                    

 

  

 

   
   
 

   

 . 

 

Usually these estimators are called Yule-Walker estimators. This leads to  the values of for                   as 

shown in Table 5.  
 

Table 5: Moment estimators of the highest and lowest temperature data 

Yule-Walker estimator Highest temperature Lowest temperature 

    0.5937 0.4227 

    -0.0089 0.1978 

    0.1374 - 

 
4. Conclusion 
  

In summary, the AR(p) process has its autocorrelation tailing off and partial autocorrelations cutting off, 
but the MA(q) process has its autocorrelations cutting off and partial autocorrelations tailing off. Moreover, the AR 
processes are useful in describing situations in which the present value of a time series depends on its preceding 

values plus a random shock (   . So for   is mean of data, the  AR2 model is given by 

             
     

     
and 

                      
where 

                . 
The  AR3 model is defined as 

              
     

     
     

and 

                             
with 

                    . 
 
Finally, based on the results of analyses, these imply that the fitted  AR3 model could a good model for the 

original series of the highest temperature data. Parameter estimation gives 

                                                        
And for the lowest temperature data, we estimated the AR2 model identified for series and obtained the following 
estimation of this model: 

                                           
 

Furthermore, we also calculate the mean square error (MSE) and mean absolute percentage error (MAPE) 
of the two models for the highest and lowest temperature data. The values of MSE and MAPE for these models are 

obtained by substituting the actual and forecast value into equations  
 

 
         

  
    and 

  
 

 
  

      

  
  

        , respectively. After we replace these values into this equation, the values of MSE for the 

highest and lowest temperature data are equal to 0.000002267 and 0.000004332, respectively. In addition, the values 
of MAPE for both data are equal to 3.59% and 3.71%, respectively, which are rather small values for the forecast 
accuracy.  
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Thus, they confirm that the fitted AR3 and AR2 model are adequate for the lowest and highest temperature 
in each day of Bangkok, respectively. 
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