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Abstract 
 

A brief review of Ridge Regression (RR) and PLS Regression (PLS) is presented. Process and Spectral data 
are used in the analysis. Both are low-rank data, which is common in chemometric work. The Ridge 
constant k is determined by minimizing the size of the residuals in Leave-one-out RR. When RR and PLS 
are applied to the data, we find that RR gives almost the same fit and cross-validation as PLS. However, in 
applications to test sets the picture is unclear; the results depend both on the test sets and how the analysis 

is carried out. When comparing RR to PLS, we use   
  from the average of 20 cross-validations. Efficient 

variable deletion/selection procedures are presented that are based on average cross-validation. When RR 
and PLS are applied, we find a very small and insignificant difference between RR and PLS. It is shown that 
RR amounts to adding small ‘noise’ values to X. The Ordinary Least Squares (OLS) solution for the 
modified X gives the same solution (regression coefficients) as RR. The theory of OLS shows that the RR 
estimates of the variance of the regression coefficients are too small. It means that we cannot apply the 
theory of RR in, for instance, analyzing the parameter estimates. RR can be carried out by the same 
algorithm as PLS. This can be used to show that the same graphic methods can be used at RR as those that 
are popular in chemometrics. The algorithm can be used to estimate the appropriate dimension to use at RR 
in a similar way as for PLS. In conclusion, we don’t find a significant difference between RR and PLS, when 
they are applied to the two types of data. However, the theory of RR does not apply to the analysis of 
parameter estimates.  
 

Keywords: Ridge Regression, PLS Regression, Ridge constant, backward elimination, forward selection, 
OLS 

 

1. Introduction 
 

Over the past several decades, there has been a disagreement about RR and PLS. Statisticians claim that RR 
is based on a well-developed mathematical foundation. PLS, on the other hand, is based on projection onto 
orthogonal variables, where the statistical properties are unknown. Therefore, RR is clearly preferable to PLS. 
Chemometricians favor the use of PLS. PLS uses projection on orthogonal vectors, which are determined in a 
similar way as at Canonical Correlation (CC). PLS uses maximization of the covariance between X- and Y- score 
vectors, while CC uses the correlation. The theory of PLS and CC are closely related. PLS has the important 
advantage that there can be more variables than samples. Validation procedures, like e.g., cross-validation and test 
sets can be used to validate the results. Graphic procedures assist experimenters in studying the data. Frank et al. 
(1993) was one of the first papers to compare RR and PLS. Their conclusion was that RR is slightly better, but the 
difference is small. The data used was a simulated one, where data are of full rank, but the last singular values are 
small. The paper was criticized for not using data that are common in chemometrics.  Since then, many papers have 
been published on the comparison, see e.g., search in scholar.google.com. The results obtained in the papers are 
somewhat mixed. Basak et al. (2002) favor RR, while Irfan et al. (2013) and Wold et al. (1983) favor PLS.  
 

The present paper uses process and spectral data. These data are typical in chemometric work. 
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In Section 2 we discuss the data that are used here. For the process data, the instrumental data X has 25 
columns (variables). Singular values of X are of order 10-6 from the 14th to the 25th. For spectral data, the 
instrumental data has 40 columns. The last 20 singular values are very small and the last seven of X are zero. Thus, 
both data have reduced rank. However, this does not give any problems, when using RR or PLS. It is common for 
industrial data they have low or reduced numerical rank. Scaling X is important when working with low-rank data. 
This issue is discussed further. 
 

In Section 3 we present a brief introduction to RR. The use of the Singular Value Decomposition (SVD) of 
X gives precise computation of the RR coefficients and their variances, even for low-rank X-matrices.  

 

The low ‘practical’ rank causes a challenge when determining the Ridge constant. The method used to 
determine k is by minimizing the size of the residuals in Leave-one-out RR. This procedure is presented in Section 
4. It gives Ridge constant k=2.6×10-5 for process data and 6.5×10-4 for spectral data. It is common to get a Ridge 
constant k of order 10-5 or smaller. When the Ridge constant is so small, the results of RR are very sensitive to the 
value of k. The variances of the regression coefficients obtained by OLS show that the modeling task consists of two 
parts, which are stochastically independent. One part is the fit obtained. The other part is the precision of the 
estimates. PLS is approaching both parts. This is briefly shown in Section 5. 

 

In Section 6 RR and PLS are applied in the analysis of process and spectral data. The estimation using all 
data gives similar results for RR and PLS. For test data, PLS and full-rank RR solutions give similar results. 
However, PLS is slightly better than RR, when low-rank solutions are used. In Section 7 it is argued for using 

average cross-validation for judging results. Denote by     the estimate of y obtained from the average of 20 

cross-validations It has become stable at the average of 20.   
  is the squared correlation coefficient between y and 

   .   
  is used in judging the dimension at PLS and in comparing PLS to RR. It is also used when comparing results 

from stepwise deletion/selection of variables. 
 

The use of   
  in the evaluation of results is described closer in Section 8.  

 

Backward elimination of variables is important when working with industrial data. The instruments and 
censors tend to give ‘too many’ numerical values. An efficient procedure to carry out the backward elimination of 
variables for RR and PLS is presented in Section 9. There is not a significant difference between RR and PLS when 
they are applied to this procedure. However, when we study applications to test sets, there is not a clear picture of 
which method is better. When working with many variables, it is often recommended to use a forward selection of 
variables. In Section 10 we present a procedure, which has been found efficient when working with many variables. 
Here we also do not find a significant difference between RR and PLS. When applied to test sets, the picture is also 
unclear. 

 

In Section 11 we show that for a given Ridge constant k>0, there is a ‘noise’ matrix Z derived from (X,y), so 
that the OLS solution based on X1=X+Z gives the same solution, regression coefficients, as RR. This is used to 
show that the variances of the regression coefficients in RR are too small.  We can use the same algorithm for RR 
and PLS. Initially, the Ridge constant is estimated. Then, the same algorithm can be used for both. Graphic analysis 
of data is important in empirical work with data. Section 12 shows some common examples of graphic analysis in 
chemometrics that is carried out for RR in the same way as for PLS.  

 

In experimental work using PLS, it is known that one should not work with too small score vectors. In RR 
a large number of score vectors can be small when computing the full-rank solution. Thus, there is an indication that 
one should work with low-rank RR solutions. Section 13 discusses the results of this paper. It is a challenging issue 
that RR performs almost equally well as PLS, while the theory of RR is not applicable. 
 

2. Data sets and scaling 
 

The process data are from the production of alcohol, see Höskuldsson et al. (2006). There are 25 process 
variables. The y-variable is the quality of the product, which is measured at the end of the production process. There 
are 154 processes. It gives X as a 154×25 matrix and y as a 154-vector. In the case of test data, X is 123×25 and Xt 
31×25, which can be selected in many different ways. The spectral data are FTIR data in the MID-IR range, see 
Jessen et al. (2014). The FTIR instrument measures the absorbance of infrared light in the liquid, giving 1100 values 
each time a sample is measured. The initial X has 1100 columns (variables). A technician suggests areas, where 
absorbance may be expected. These areas are studied and those that do not show correlation are deleted. Finally, we 
end up with 40 wavenumbers (variables) to be used in the analysis.  
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The response variable is the substance that we want to determine by the FTIR instrument. 200 samples are 
measured. Thus, X is a 200×40 matrix, and y 200×1 vector. This is used in the analysis and at cross-validation. 
However, for test data X is 160×40 and Xt is 40×40. Similarly for y. The last 7 singular values of X are zero (less than 
10-20). The 20th to 33-rd singular values are of order 10-4 to 10-3. Thus, X has a reduced numerical rank. Experience 
has shown that it is desirable to reduce the number of variables to 20 to 30. However, this is only a recommendation. 
Slightly fewer or more variables may be satisfactory. 

 

When working with low-rank data, it is necessary to scale the data. Scaling of columns of X and Y can be 
achieved by multiplying the matrices from the right by a diagonal matrix. The linear least squares solution is given by 

            . If X and Y are scaled column-wise (by variables), it amounts to the transformations, X(XC1) 

and Y (YC2), where C1 and C2 are diagonal matrices. The solution B can be obtained from the solution for scaled 
data, B1, as follows, 

           
       

       
         

         
   

 

This equation shows that if we are computing or approximating the linear least squares solution, we can 
work with scaled data. When we want the solution for the original data, we scale ‘back’ as shown in the equation. 
This property is also used when the approximate solution is being computed. 

 

The effect of scaling is better numerical precision. For a small Ridge constant, we are in RR working with a 
ratio of numbers close to zero. In PLS we are working with projections. Here the adjustment (deflation) is a 
difference between two matrices, where numbers are close to zero. Scaling secures that the numbers in the 
computations are approximately of the same size. 

 

Some experimental workers are critical towards scaling of data. The numerical precision at optical 
instruments (like those of FTIR) is often of the order 10-4. They argue that scaling may cause ‘zeros’ to be enlarged. 
But ‘zeros’ will continue to be small after scaling. Furthermore, scaling may be necessary in order to obtain precise 
solutions. Variables that have values below detection limits must be analyzed separately. 
 

In the equation below it is supposed that data values are centered. E.g., for a vector xi we write    instead of 

        . This simplifies the notation. XT is the transpose of X. The squared length of a vector is 

|x|2=(xTx)=    
   

 . 
 

3 Ridge Regression 
The OLS solution to the linear regression model  

(1)  y = b1 x1 + b2 x2 + … + bK xK +  
is given by 
(2)  bO = (XTX)-1 XTy 
When (XTX)-1 becomes close to being singular, the solution becomes unstable. In RR it is suggested to stabilize the 
solution by adding a constant k to the diagonal elements of (XTX). The RR solution is now computed as  

(3)                   
I is the identity matrix and k the Ridge constant. It is often suggested that k should be determined by a 
Leave-one-out regression. This is considered closer in Section 4.  
 

It is efficient to compute the regression coefficients bR by using the Singular Value Decomposition (SVD) of X, 
X=USVT. Here S is a diagonal matrix with singular values in the diagonal, and U and V have orthonormal columns. 
Then the OLS and RR solutions can be written as 
 

(4)                 
 

(5)         
             

       
        

       
 

where f=UTy, D0 is a diagonal matrix      
  , D1 is a diagonal matrix (      

    ) and di is the diagonal element 
of S, di=S(i,i). 

The standard OLS assumptions are that y has the variance Var(y)=σ2I and that the expected value of bO is 

E(bO)=  . The estimate bO has the variance,                  . This gives 
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(6)                  
               

     
  

 
tr() is the trace function. The variance of the RR estimates is 
 

(7)                                          
 ,  

 

where D2 is a diagonal matrix, (       
      ). This gives 

 

(8)                  
                 

   
     

      

 
The bias can be computed as 
 

(9)                                            
 

Let =VTβ. Then we get for the squared size of the bias 
 

(10)     
                     

   
     

      

  
Note, that we cannot compute the bias, when some singular values are exactly zero. This is due to that we cannot 

compute the estimate of β, bO, which is used to compute .  
 
We now use that for any random variable Z we have E(Z2)=Var(Z)+(E(Z))2. This gives 
 

(11)           
               

 

     
               

               

 

       
   

     
            

   
     

      
 

We get OLS regression, when k=0 and          
          Differentiating (11) with respect to k and let k=0, 

we get 
 

(12)              
     

  
 
From the Tailor expansion,  
 

(13)                   
 

we see that we can always find a value of k in the neighborhood of zero so that          . This is the main 

motivation for RR. By replacing     by          for some small value of k, both the variance (8) and the 
mean squared error (11) can be reduced. 

 

4. The Ridge constant k 
 

The theoretical considerations to determine k do not function well. Instead, it is recommended to 
determine k by Leave-one-out regression. The procedure is as follows. 
 

One sample among the N samples is left out and bR is computed for the (N-1) samples. The estimate (5) is used to 

compute the y-value of the left-out sample. This is repeated for all samples. Thus,       is the result for all samples 

and the difference (y-     ) shows how well the Leave-one-out regression works. The task is to find k that gives the 

minimum value of | y-     |.  
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There is a unique k, kmin, where the value of |y-     | is at minimum. Furthermore, for the present data, the 

value of the |y-     | only increases, when k is smaller or larger than kmin. Therefore, it is easy to obtain the 
minimum value. 

 
We consider first the process data. X is here 154×25. Columns of X are scaled by their standard deviation. 

The Ridge constant is generally small for X-matrices that are not of full rank. For the process data we expect k to be 

small. We compute |y-     | for k=i×10-6, i=1,2,3, … , 104. The results are illustrated in Figure 1. The minimum 

value of |y-     | is 0.212 and is obtained for i=26 or k=0.000026. The figure shows increasing values of |y-     | 
for decreasing i less than 26 and also for increasing i-values larger than 26. The total variance (8) is 
tr(Var(bR))=2.8961, which is unrealistically small for the 25 variables. When working with different k-values (e.g., 
for i=500 to 1000 in Figure 1), we see clear evidence that the value of tr(Var(bR)) is too small. This is studied closer 
in Section 11. 
 

For the spectral data X is 200×40. They are also centered and columns scaled by their standard deviation. 
Figure 2 shows the results for the spectral data. 

 
Figure 1. Upper figure plot of |y-     | versus i. k=i×10-6, i=1,2, … , 104. x-axis is the i-values. 
The lower figure is plot of tr(Var(bR)), (8), versus i. Process data. 
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Figure 2. Upper figure plot of |y-     | versus i. k=i×10-5, i=1,2, … , 104. x-axis is the i-values. 
The lower figure is a plot of tr(Var(bR)), (8), versus i. Spectral data. 

 

The smallest value of |y-     |=4.4614 is obtained for k=0.000651=6.51×10-4. The value of the total 
variance is here tr(Var(bR))=25.2809. From the figure we see that by making k larger, the value of tr(Var(bR)) can be 

made smaller. For both data we get a unique value for the minimum of |y-     |. 
 

5 PLS Regression 
We shall here briefly explain the background for PLS Regression.  
Score vectors are used as regression components. An X-score vector t is given by 
(14) t = w1 x1 + w2 x2 + … + wp xp = Xw 
Similarly, a Y-score vector is given by u=Yq. w and q are unknown weight vectors. They are determined by 
maximizing the covariance between t and u, 
(15) maximize tTu = maximize wTXYq,  s.t. |w|=|q|=1 
It can be shown that the maximization task leads to the eigensystem 

(16) XT YYT X w =  w 
When the X-score vector t has been determined, Y is projected onto it, 
 (YTt)/tTt) t 
The estimated Y, Ŷ, based on A X-score vectors, is computed as 

(17)             
                    

       
When a score vector t has been determined, X and Y are adjusted (deflated) by this score vector 
(18) X ← X – d t pT, d=1/(tTt) and p=XTt 
(19) Y ← Y – d t qT, q=YTt 
The adjustment (18) gives both orthogonal score vectors and a reduction of X by rank 1. These adjustments can be 
numerically unstable. Therefore, for low-rank data, data should be scaled. 
The weight vectors w and q can be determined by the Singular Value Decomposition of XTY, 
 XTY = U S VT, w=u1 and q =v1  
This shows that equal importance is given to X and Y. The significance of this can be seen by looking at the variance 
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of the OLS regression coefficients (written for one y-variable), 

(20) Var(bO)  s2×(XTX)-1 = [yTy – yTX(XTX)-1XTy]×[(XTX)-1]/(N-K) 
 

Assuming a multivariate normal distribution for data, the two terms in the squared brackets are 
stochastically independent. Therefore, both need to be addressed, when computing the regression coefficients. For 
further analysis, see Höskuldsson (2017). 

 

6 Application to test sets 
 

Consider first the process data. Data are divided into calibration data (X1,y1) 
containing 123 samples, and test data (Xt,yt) containing 31 samples. The test data are 
selected as every 5th, no. 2,7,12, … . Before selecting test samples, we may randomize 
the samples and select the samples from those. However, this is not done here. PLS is 
applied to (X1,y1). The test set is (Xt,yt). The regression coefficients bP are computed 
for each dimension, 1,2, …, 25. The estimated y-values for the test data are 

       =XtbP. In Table 1 is shown the standard deviations of (yt -        ), sp. We see 

that the smallest value is found at dimension 11, sp=0.0161. 
We carry out the analysis in Section 4 for (X1,y1). The revised numbers are 

k=1.8×10-5, |y-      |=0.1942, and tr(Var(bR))=5.614. At the RR analysis, the 
regression coefficients are computed for each 1 to i in (5). The Ridge constant 
k=1.8×10-5 is used. The RR coefficients bR are used to estimate the yt-values by 

       =XtbR. The last column in Table 1 shows the standard deviation of (yt -        ), 

sr. At dimension 11 the value of sr is also 0.0162. A full rank solution also gives 
sr=0.0162.  
In conclusion, we can state that there is not difference between the results of PLS and 
RR. 
The same analysis is carried out for the spectral data. Here X1 is 160×40 and Xt is 
40×40. The analysis in Section 4 is carried out for (X1,y1). The results are k=0.000061, 

|y-       |=4.295, and tr(Var(bR))=45.165. 

The regression coefficients are computed at each dimension. For PLS coefficients bP 

we compute by        =XtbP and the standard deviation of the residuals, (yt -        ), 

sp. The 40 sp-values are plotted in Figure 3 and drawn as a curve, ‘.-‘. Similarly for RR. 

The estimated yt-values are computed at each dimension by        =XtbR. sr is the 

standard deviation of (yt -        ). It is also plotted as a curve using ‘--‘. The smallest 

value of sp is obtained at dimension 25, sp=0.2777. At dimension 25 we get for RR 
sr=0.2869. The residual standard deviation is slightly smaller for PLS. At dimension 
33 the standard deviation sr is equal to 0.2769. 
In conclusion, we can state that PLS is slightly better than RR. When the full-rank 
solution of RR is used, there is for practical purposes very small difference between 
PLS and RR. 
 
 

7. Cross-validation procedures 
 

In n-fold cross-validation, samples are randomly divided into n groups. The analysis is carried out for 
samples in (n-1) groups and results are applied to the nth one. This is carried out so that each group is excluded once. 
Leave-one-out regression is an example of cross-validation, where n=N. Usually, n=10 is selected. The result of 
cross-validation is an estimate yc of y, where each value of yc is estimated by 90% of the samples. We compute the 

squared correlation coefficient,   
 , between y and yc, and the standard deviation, sc, of (y - yc). A cross-validation 

procedure can be repeated several times, e.g., 20 times, yc,1, … yc,20. The average yc=(yc,1+ …+ yc,20)/20 will be 

relatively stable. There can be uncertainties in one cross-validation, which give variation in   
  and sc. There can be 

a different reason for this. E.g., there can be relatively many y-values that are small and a few large ones, or groups 
in data, etc. We may need a stable estimate of yc in order to be able to distinguish between the x-variables, because 
there can be high correlations between variables like in the case of the spectral data. The average of 20 
cross-validations is normally fine. 

Table 1. Std for PLS, RR 

Dim sp sr 

1 0,2344 0,3050 

2 0,1710 0,2912 

3 0,1397 0,2704 

4 0,0737 0,2168 

5 0,0595 0,2187 

6 0,0221 0,1351 

7 0,0164 0,0165 

8 0,0163 0,0163 

9 0,0164 0,0164 

10 0,0164 0,0164 

11 0,0161 0,0162 

12 0,0188 0,0162 

13 0,3381 0,0162 

14 0,3381 0,0162 

15 0,3381 0,0162 

16 0,3381 0,0162 

17 0,3381 0,0162 

18 0,3381 0,0162 

19 0,3381 0,0162 

20 0,3381 0,0162 

21 0,3381 0,0162 

22 0,3381 0,0162 

23 0,3381 0,0162 

24 0,3381 0,0162 

25 0,3381 0,0162 

 



8                                       American Review of Mathematics and Statistics, Vol. 11, No. 1, June 2023 
 
 

It is important that each group in the cross-validation is representative for all data. This can be achieved in 
many ways. The samples can be mixed randomly before a cross-validation. Also, the samples can be sorted 
according to the y-values, or the first PLS score vector, or the first PCA score vector or some other criterion. 
Random selection is then based on the sorted samples, which also can be randomly mixed before cross-validation. 

 

8. Criterion of comparison of RR and PLS 
 

There are many ways to compare the two methods. The criterion chosen here is the value of   
  for the 

average yc of 20 cross-validation.   
 is the squared correlation coefficient between y and yc. In the variable selection 

methods below there is given a ‘pool’ of variables. In backwards deletion we want to determine a variable that 
should leave the pool. In forward selection we want to find the variable that is to be added to the pool. In RR we 
start, for a given pool, to determine the Ridge constant k. It is determined, like shown in Figure 1, by finding the 

smallest value of |y-     |. This Ridge constant is used in the cross-validations and in the application to a test set. 
Full rank solution is computed each time we compute the RR regression coefficients in the variable selection 
methods.  

 

In PLS, also for a given pool, we register the value of yc, the average cross-validation, at each dimension. 

For the spectral data the dimension is from 1 to 33. The last 7 score vectors are zero. We compute   
  for each 

dimension,     
 ,     

 , …,      
 .   

  for PLS is the largest value of     
  for i=1,2, …, 33. This dimension is used 

for each deletion/selection of variables of the pool. When working with test set, PLS is carried out using this 

dimension and results applied to the test set. The disadvantage of this criterion is that     
 -values tend to be almost 

equal for a range of dimensions. For instance,      
 , …,      

 , may be all almost equal, while      
  happen to be 

the largest. This may not be the best dimension for the test set. Therefore, we need to be careful in the interpretation 
of the results, when we compare results on test data. 
 
 

 

Figure 3. Plot of the standard deviations of residuals, st for PLS .-, and sr for RR --. x-axis is 

the dimension. Spectral data. 
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9. Backward deletions of variables  
 

We shall here only work with the spectral data. The engineer, who is responsible for the data, has suggested 
using 40 variables (wavenumbers). The experience is that we should use between 22 and 32 variables in future 
analyses. We shall study this task by using RR and PLS.  

 

For cross-validation, all data are used. For test data, the data are divided into calibration data, 160 samples, 
and test data, 40 samples. Variables are eliminated one by one, starting with a pool of 40 variables and continuing 
until 15. 
The following magnitudes are computed. 
1) The number of variables in the pool, initially 40 variables 
2a) For RR, the RR constant is determined using all variables in the pool. It is used at cross-validations and at test set, 
for each variable that is deleted from the pool. 
2b) For PLS determine the dimension to use in the analysis 
3) For all variables in the pool: Delete one variable from the pool, and compute 4) to 9) without this variable by RR  

4) The squared correlation coefficient, R2, between y and      =XbR, bR the RR coefficients  

5) The standard deviation, s=|y-     |/(N-1)½ 

6)   
  between y and yc, where yc is the average over 20 cross-validations 

7) sc=|y-yc|/(N-1)½ 

8)   
  between yt and      , where      =Xtb, b is bR  

9) st=|yt-     |/(N-1)½ 

10) A variable is deleted from the pool that gives the largest values of   
  

Steps 2) to 10) are repeated until 15 variables in the pool. 
 
The steps of the computations are 
0. Initially, (2a) to (9) are computed for the 40 variables. Initial pool consists of all 40 variables. This gives the first 
line in Table 2. 
1a. In the case of RR, compute the Ridge constant k for variables in the pool. 
1. Delete a variable from the pool. 4) to 9) are computed without this variable. This is carried out for all variables in 
the pool. RR is used in each regression. Same k is used for all deleted variables. 

2. Delete the variable from the pool, which gives the largest value of   
 , the squared correlation coefficient between 

y and the average of 20 values of yc. 
3. If there are variables left in the pool, go to 2a) for RR (and 2b) for PLS). 
 

Note, that the RR constant k is computed before the cross-validations and use of test set. This value of k is 
used in the computation of bR for each cross-validation and each analysis, when a variable is deleted from the pool. 

 

Table 2 shows the results for RR. Initially,   
 =98.684%. The largest value of   

  is obtained at 31 

variables, where   
 =98.787% and sc=0.3206. Thus, RR suggests to use 31 variables in the future. We see that there 

is relatively small variation in the numbers before and after deletion of a variable. The same procedure is applied for 
PLS. In the analysis 4) to 9) the dimension used in PLS is the one found before deleting a variable. This dimension 
is used in the computation of 4) to 9), when a variable is deleted. In 4) to 9) the PLS estimates bP‘s are used. We get 

a table for PLS that is similar to Table 2. It is not shown here. The largest value of   
  is 98.771%, which is found at 

29 variables. And sc=0.3226. The numbers for   
  and sc are very close to each other for RR and PLS. One cannot 

state if one is better than the other.  
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Table 2. Backward deletion of variables, RR  

1) 2) 3) 4) 5) 6) 7) 8) 9) 

0 0 0,000375 99,254 0,2514 98,684 0,3343 99,236 0,2785 

40 15 0,000375 99,240 0,2537 98,716 0,3301 99,257 0,2751 

39 8 0,000640 99,237 0,2542 98,730 0,3283 99,261 0,2747 

38 30 0,000421 99,239 0,2539 98,734 0,3277 99,260 0,2747 

37 23 0,000422 99,236 0,2543 98,738 0,3272 99,248 0,2767 

36 40 0,000372 99,227 0,2559 98,756 0,3247 99,157 0,2929 

35 16 0,000352 99,227 0,2559 98,753 0,3253 99,159 0,2927 

34 20 0,000359 99,202 0,2600 98,779 0,3216 99,027 0,3153 

33 3 0,000383 99,202 0,2600 98,786 0,3207 99,028 0,3152 

32 13 0,000385 99,196 0,2610 98,774 0,3224 99,041 0,3126 

31 36 0,000527 99,195 0,2611 98,787 0,3206 99,044 0,3123 

30 5 0,000513 99,195 0,2611 98,775 0,3223 99,043 0,3124 

29 39 0,000500 99,195 0,2611 98,769 0,3230 99,043 0,3124 

28 10 0,000500 99,195 0,2611 98,772 0,3226 99,043 0,3124 

27 32 0,000501 99,188 0,2623 98,773 0,3225 99,056 0,3108 

26 38 0,000829 99,171 0,2650 98,766 0,3234 99,087 0,3051 

25 33 0,000823 99,141 0,2697 98,753 0,3251 99,100 0,3039 

24 31 0,002614 99,104 0,2755 98,716 0,3298 98,960 0,3275 

23 22 0,003089 99,088 0,2780 98,713 0,3301 98,863 0,3422 

22 1 0,002228 99,069 0,2808 98,710 0,3306 98,875 0,3385 

21 29 0,001071 99,019 0,2883 98,664 0,3363 98,602 0,3790 

20 25 0,001067 98,954 0,2977 98,588 0,3458 98,736 0,3593 

19 11 0,000675 98,882 0,3077 98,493 0,3573 98,491 0,3924 

18 24 0,000149 98,881 0,3079 98,517 0,3544 98,473 0,3949 

17 7 0,000422 98,592 0,3453 98,225 0,3877 98,342 0,4139 

16 9 0,000353 98,054 0,4060 97,535 0,4570 98,482 0,3998 

15 35 0,000195 97,585 0,4523 97,009 0,5034 98,131 0,4414 
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Figure 4. The values of st were obtained for RR and PLS at the backwards deletion of variables.  
.- is those from PLS, -- from RR. 

Consider now the residual standard deviation for the test set, st, given by 9). Figure 4 shows the values of st 
for both RR and PLS, which is obtained at each deletion, from 1 to 26 (40 down to 15) deleted variables. When 
cross-validation is used, RR suggests that 9 variables should be deleted, while PLS 11. For these numbers the values 
of st are close to equal. Otherwise, there is some difference between RR and PLS. RR gives smaller values from 1 to 
7 and 12 to 18 deleted variables, while PLS gives smaller values for 19 and more are deleted. As mentioned above, 
the application of PLS to test set is sensitive to the dimension used in PLS. Therefore, further study is needed in 
order to find out, which is better, RR or PLS, when applied to test set. This is not considered here. 

 

10 Forward selection of variable 
 

Similar analysis like in in previous section can be carried out for forward selection of variables. The steps 
are: 

0. Select the variable having the largest correlation coefficient with y. Initially the pool of variable consists 
of this variable. 
1a. In case of RR, compute the Ridge constant k for variables in the pool. 
1b. Determine the dimension to use for PLS for variables in the pool. 
For each variable not in the pool, compute 4) to 9) of previous section 
1. Add a variable to the pool of variable. Carry out cross-validation using the variables in the pool and this variable. 
Carry this out for all variables not in the pool, one at a time. PLS/RR is used in each regression. 

2. Add the variable permanently to the pool, which gives the largest value of   
 , the squared correlation coefficient 

between y and average yc. 
3. If there are variables left not on the pool, go to 1a. for RR and 1b. for PLS. 
In all cross-validations the average of 20 cross-validations is used. Like at backward deletion of variables, the Ridge 
constant is computed and the dimension used in PLS are computed for a given pool of variables and before 
selection of variables. We get as output from the computations that is similar to Table 2, except the they start with 

smaller values of   
 . It is not shown here. 

 

In Figure 5 is shown the values of   
  , the upper figure, and of   

 , the lower figure. 
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When selecting 27th or later variables, the values of   
  are practically the same for PLS and RR.   

  and 

  
  increase in the beginning faster for PLS than for RR. The largest values of   

  are obtained around 30 variables 
for both PLS and RR. Thus, almost the same conclusion is obtained for forward selection of variables as for 
backwards deletion. This holds for both PLS and RR.  

 

In conclusion, the difference between PLS and RR is small. For the test set there are differences until 
around 26 selected variables. However, as mentioned earlier, there are some uncertainties in the results for test set, 

when PLS is used due to the criterion used, the maximal   
 -value.  

 

 
Figure 5. Upper figure   

 -values obtained for RR and PLS at forward selection of variables. Lower figure the 

  
 -values for test set. .- is those from PLS, -- from RR. 

 
11 RR estimation as OLS 
 

When working with different analysis of RR, we get a clear impression that the total variance of RR, (8), is 
too small. We shall consider this closer. 

 

The variance matrix for the OLS regression coefficients is                   . When there is 

collinearity in data, the precision matrix,        , tends to be large. Even if the precision matrix is far from being 
singular, there may be problems in using OLS. This is the case, when the there are many variables and correlation 
among all or most of the variables, OLS may give wrong or misleading results, like e.g., declare a variable significant, 
although it is not. For the process data, this happens already at 10 variables. (It is a serious problem in industry that 
popular program packages in statistics use OLS as a standard for regression analysis). By replacing the estimate of bO 

by                 , we get both smaller regression coefficients and smaller variance matrix for bR.  
 

A question is: Is there a matrix Z containing small values derived from (X,y), so that the RR estimate bR is 
equal to the OLS estimate, when using X1=X+Z instead of X? This is an important question, because if affirmative, 
would allow us to evaluate the RR solution by using the theory of OLS. In RR we search for a good value of k, but 
treat the results as if the value is fixed and given beforehand.  
The answer is in fact affirmative. For a given value of k, we can use (X,y) to determine Z so that for X1=X+Z we 
have 

(21)   
                           , where d is some constant 

 
It follows from (21) that the OLS solution using X1 is the same as the one of RR. When k is small, the values in Z are 
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also small. The values in Z can be viewed as ‘noise’ values derived from (X,y), which are added to X. 
The derivation of Z is somewhat technical. 
Instead of going through the details, we show 
in Box 1 a Matlab program that carries out the 
computations. First, the matrix Q contains y 
and X. W is an orthogonalization of Q. C is 
lower triangular. B2 is determined so that 
B1

TB1+B2
TB2=I. The matrix Z=A×B is the 

desired matrix. 
The chol.m subroutine requires that the matrix 
is non-singular. An error message is given, if 
the matrix is too close to being singular. The 
subroutine can be modified to allow zero 
diagonal elements in F. 
From the algorithm it can be seen that the 
number of samples needs to be large enough, 
(N-1)>2K, where X is N×K. 
Let us summarize the procedure. For a given 
value of the Ridge constant, k, a ‘noise’ matrix 
Z is added to X so that the OLS solution using 
X1=X+Z gives the same estimates of the 
regression coefficients as RR. Z has the 
property that it is orthogonal to y, ZTy=0.   
These results are illustrated by the spectral data, 
where the first 19 variables are used. (More 
than 19 variables gives an error message in 
Matlab, when using chol.m). 
The upper figure in Figure 6 shows the values 

of |y-     | around the minimum value.       
is computed by Leave-one-out regression as 
explained earlier. The minimum is found at 
k=0.0001476. For this value of k, the matrix X1 
is found. The sizes of OLS precision matrix for 
X1 and similar for RR (divided by s2) are plotted 
in the lower figure of Figure 6. 

 
Figure 6. Upper figure a plot of |y-     | versus k. k=i×10-7, i=1,2, … , 5000. x-axis is the i-values. Lower figure 
are plots of (22) and (23). Upper curve for the revised OLS, (22), lower curve for RR, (23). 

function [Z]=nois(X,Y, kb) 

[n,k]=size(X); 

Q=zeros(n,n);       % Q is square 

Q(:,1)=Y;       % First columns are Y 

Q(:,2:(k+1))=X;    % Next columns are X 

n1=n-k-1; 

k2=k+2; 

Q(k2:n,k2:n)=eye(n1);% Remaining columns 0 and unit 

S=Q'*Q; 

F=(chol(S))'; % F=lower triangular. 

R=inv(F); 

W=Q*R'; % Columns of W orthogonal 

A=W(:,2:n);  % Y'*A=0 

C=X'*A; % C=lower triangular + 0 

X1=C(1:k,1:k);% X1=the lower triangular part 

B1=inv(X1); % Implies X'*Z=I 

B0=B1'*B1; 

e1=sum(diag(B0));% e1 any number such that B3>0 

B3=e1*eye(k)-B0;% B3 must be positive definite 

B2=chol(B3);  % B2=upper triangular 

B=zeros((n-1),k); 

B(1:k,1:k)=B1;% Determined from X'*Z=I 

B((k+1):2*k,1:k)=B2;% From Z'Z=diagonal 

Z=A*B; 

Z2=Z'*Z; 

d=Z2(1,1); 

c0=sqrt(1+kb*d); 

d1=-(1+c0)/d; 

d2=-(1-c0)/d; 

d0=d1; 

if abs(d2)<abs(d1) 

  d0=d2; 

end 

Z=d0*Z;    % (X+Z)'(X+Z)=X'X+kb*I, X'Z=dI, Z'Y=0 

% Control of computations 

%XZ0=X'*Z          % Is diagonal 

%ZY0=Z'*Y          % Zero matrix 

%kbI=(X+Z)'*(X+Z)-X'*X % kb in diagonal 

 

Box1. Matlab code for determining Z 
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We have   
     

    
    

   is the revised OLS solution. The upper curve is computed from 
 

(22)            
            

    
                    

      
     

 
The lower curve from 
 

(23)                     
   

     
      

 

Here (    are the singular values of X. The difference between (22) and (23) is 
 

(24)       
      

      
 

Thus, (23) is always smaller than (22). The RR approach is somewhat not satisfactory. A linear model is assumed, 

y~N(X ,σ2I), which might not be correct, because a low rank X places some restrictions on  . The RR method does 
not use this model. It uses the same way (regularization) of computing the solution, but uses the model to compute 
the variances of the solution.  

 

When working with data, it is clear that the OLS variances from the modified X are more reliable than those of RR. 
Thus, there is a clear indication of that the variances of the RR solution are too small. The size of the difference is 
given by (24).  

 

12 Graphic analysis of data in RR 
 

The same algorithm can be used for RR as for PLS, see Höskuldsson (2015). The only difference is that at 
entry we use S=XTX+kI as covariance matrix instead of S=XTX for PLS. This allows us to carry out graphic analysis 
of data for RR in much the same way as for PLS. 

 

We shall use spectral data for illustration. The Ridge constant is k=0.0001476. The upper most two figures 
in Figure 7 show the y-values plotted against the first two score vectors. The explained y-variation for the first 
X-score vector t1 is 33.73% and for the second t2 it is 36.25%. A line through (0,0) is inserted (b=(yTt1)/(t1

Tt1) for 
the first line and b=(yTt2)/(t2

Tt2) for the second line). We use the scatter plots to study linearity, extreme samples and 
special features in data like scatters at small y-values (compared to detection limit) or large y-values (sometimes 
instrumental error). We may get a score vector that gives a better fit than the one t1 given here. However, the present 
score vector t1 is both extracting variation for X and explaining variation of y. This explains also that t2 describes 
more of the variation of y than t1. 

 

Note, that the score vectors are not orthogonal for RR. However, here they are very close to being orthogonal, 
because the Ridge constant is so small. 

 

In the middle two figures we consider the plots of loading vectors. We study the grouping of variables and the sizes 
of the loadings. The basis for the interpretation is the case, when S=XTX is the correlation matrix and the rank is 

two. In this case       
      

 . If points are far from zero and next to each other, we say that the associated 
variables are closely related. The points are shown with variable numbers to ease the interpretation. The reliability of 
this way of looking at the loading plots depends on the percentage explained. The higher they are the more reliable 
it is. For low percentages, like here, it is for guidance only. 

 

The lowest two figures show scatter plots of score vectors. The first score vector t1 explains 56.50% of the 
variation of X, t2 25.79% and t3 5.54%. We are looking for special features in the X-samples, like for instance, 
groups, gaps and dependence between the score vectors. For process data, e.g., we sometimes see ‘movements’ of 
points. By numbering the points, we can see when and how samples ‘develop’. Here again, we use the percentage as 
guidance for the conclusions. For instance, if we detect groups in data, when we look at e.g., the plot of the 6th score 
vector versus the 5th, the interpretation may not be reliable, if the percentages are small, say less than 1%. We 
validate signals of grouping in data by appropriate cross-validation. It should be emphasized that in chemometrics 
the study of the score plots is important for learning to know the variation in data. 

 

Same figures can be made by a PLS analysis. The figures are almost alike, because the Ridge constant is so 
small, k=0.0001476. 
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Figure 7. Ridge Regression. Upper most two plots are plot of y versus the first two score vector, t1 and t2. The middle 
two plots are scatter plots of the loading vectors, p2 vs p1 and p3 vs p1. The lowest two figures are the scatter plots of 
score vectors, t2 vs t1 and t3 vs t1. 

 
  13. Discussion  

 

The data sets that have been used here are typical in chemometric work. The process data have a 25 
variables and practical rank 13. The spectral data have 40 variables and rank around 19. 

 

When comparing RR with PLS we use the average of 20 10-fold cross-validation. The average 
cross-validated y, yc, is a stable measure. When RR and PLS are used for these data, we do not find significant 

difference. The values of   
  and sc at average cross-validation are approximately equal. The reason for that the 

values obtained by RR and PLS are almost equal, is that the values of RR, when SVD of X is used, do not change at 
the dimension used for PLS, as shown in Table 1. When applied to test set, which is 20% of the data, the values of 

  
  and st are often similar. However, these numbers can be different for these two methods. RR and PLS were 

applied to stepwise selection/deletion of variables, which is based on average cross-validation. Here we find that RR 
performs equally well as PLS. When applied to test sets, there can be some difference in the results of RR and PLS. 

In PLS the largest value of   
  may not be appropriate for test sets. 

 

In industry, selection of variables is an important issue. yc, which is the average of yc,i’s from 20 
cross-validations, is a stable magnitude. By using it in variable selection/deletion, we get efficient methods for 
finding the variables that should be used. 
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A test set that is 20% of data is relatively large. It is known that for spectral data there are uncertainties in 
the X-values. Therefore, we may expect slightly different results for different test sets. RR can be carried out by the 
same algorithm as PLS. The Ridge constant k is added to the diagonal of the covariance matrix before analysis. It is 
the experience in chemometrics that one should not use the full rank solution. This indicates that one should study 
the feasibility of using a solution that is not of full rank. It is a disadvantage of RR to use terms in (5) that have very 
small or zero singular values, or small score vectors. 

 

We see from Figure 1 that the total variance (8) can be very sensitive to the choice of k. Here, a small 
increase in k may give (8) close to zero. It is shown that RR amounts to adding small ‘noise’ values to X. The OLS 
solution of the modified X gives the same solution as RR. The theory of OLS confirms the impression from the 
empirical work that the total variance (8) is too small.  

 

14. Conclusion 
 

We have studied RR and PLS for data that are typical in chemometric work. There is a unique Ridge 

constant k, that gives the minimum value of |y-     |, where       is obtained by Leave-one-out RR. The Ridge 

constant k obtained in this way is typically very small. When maximal value of   
  for the average of 20 

cross-validations, yc, the results obtained by RR and PLS are close to equal. This also holds, when RR and PLS are 

used for variable selection/deletion, and dimension of PLS are at the maximal values of   
 . It is shown that RR 

amounts to adding small ‘noise’ values to X. OLS applied to the modified X gives the same solution as RR. The 
theory of OLS tells us that the theory of RR cannot be applied to data. We find RR efficient in modelling 
chemometric data. It also efficient in variable selection/deletion procedures. However, we cannot recommend using 
the theory of RR in analyzing the parameter estimates. 
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