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Abstract 
 

Redundancy optimization models are often NP-hard; nonetheless, there exist models of redundancy allocation that 

can be solved in polynomial time. This paper presents one of such models where for a positive integer   greater 

than 1, a series of   independent subsystems are all built from identical components; the subsystems fail only if all 
components in the subsystems fail. Particularly, this paper deals with the special case in which the objective vector 

takes the form             where   is an integer with    . 
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1.   Introduction 
 

NASA (2018) defines redundancy as the “use of more than one independent means to accomplish a given task.” 
Sullivan (1969) described for readers of The New York Times how redundancy sustained NASA’s Apollo 10 mission. 
When the spacecraft lost the use of a fuel cell, two additional fuel cells were available to provide electrical power and 
the mission continued. 
 

The trade-off in the design of a complex system is that stringent reliability goals may require high levels of 
redundancy while the added cost, weight or size may be inconsistent with the system’s purpose or infeasible given 
the system’s resources. Chern (1992) has shown that optimization models of such trade-offs may be difficult to 
solve. At the same time, he identified models of redundancy allocation that can be solved in polynomial time. One 
such model is 
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In the context of system design, this model represents a series of   independent subsystems, all built from 

identical components. The integer   is greater than 1. The parameter   represents the failure probability of the 

individual components; the objective coefficients            are positive integers. The integer variable    
represents the number of independent components arranged in parallel in the     subsystem. This subsystem fails 

only if all components fail, and so, its reliability is equal to        . Since the independent subsystems are 

arranged in series, the product          
    represents the reliability of the entire system (Durivage, 2017). The 

parameter   represents the reliability required of this system. If         , then no redundancy is required. 

So, the parameters   and   are rational numbers in       for which         . 
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Rice, Cassady and Wise (1999) have argued that special cases of redundancy allocation models may be solved 
relatively easily and that useful insights may be obtained from these solutions. This paper deals with a special case of 

Model (1) for which the search for an optimal solution can be limited to a relatively small          ) set of feasible 
solutions. Each of these candidates for the optimal solution can be represented by only three integers, and the size 

of each of these integers is             This special case, called Model (2), has the constraints of Model (1) and the 

objective vector  (c, 1, . . . ,1), where  c  is an integer and  c > 1.  Thus, the objective of (1) becomes 

                  

   

   

  

 

 
(2) 

A feasible solution of Model (2) is an  -vector of positive integers that satisfies the reliability constraint. An optimal 

solution,    
    
      

  , is a feasible solution for which  
   
     

  
           

 
    when              is feasible. The optimal objective value    

     
  

    

certainly increases as the coefficient   increases. However, it is possible to establish an upper bound on the 

coefficient   beyond which the coordinates of an optimal solution of Model (2) do not respond to changes in this 
coefficient. 

 

The next section deals with related work. Sections 3 and 4 present a characterization of a finite set that 
contains an optimal solution and a bound on the size of this set.  Each candidate for an optimal solution can be 

represented by three integers, and the size of each of these is           .  Section 5 presents a bound on the 

coefficient   beyond which only the objective value, but not the coordinates, of an optimal solution of Model (2) 
responds to changes in the coefficient. Section 6 provides examples, discussion and conclusions.   

 

2.   Related Work 
 

Reliability is a critical factor in the design of engineering systems, and active redundancy, used in Models (1) 
and (2), is only one of many ways in which redundant components can be configured to sustain the performance of 
a subsystem. Birolini (2017) and Elsayed (2021) give detailed accounts of how to design and test for conformance to 
reliability requirements; they also describe and analyze varied configurations of redundant components. Systems 
engineered for high reliability are often operated by people who provide critical services to their communities. Roe 
and Schulman (2016) study how management, regulation and political leadership can improve the reliability of 
interconnected infrastructures. They observe that experienced operators of these infrastructures have valuable 
information about the need for redundancy in plans to recover from unexpected events and about problems caused 
by lack of redundancy when a system is used in circumstances not considered in its design. Rueda and Pawlak (2004) 
offer a brief history of reliability theories, which include not only optimization, but also techniques and concepts 
from probability theory, statistics, stochastic processes and visual modeling methods. 
 

Tillman, Hwang and Kuo (1977) classified reliability optimization problems and reviewed the techniques of 
mathematical programming then available to solve these problems. They found that no single method was best 
suited to all problems and that the computing time and memory required to achieve exact solutions might be 
unrealistic in practice. Mohamed, Leemis and Ravindran (1992) classified optimization problems for redundancy 
allocation and reliability allocation according to the structure of the modeled system and whether or not 
components were repairable. They added heuristics to the list of optimization techniques and reported on 
computational experiments that compared optimization methods. Kuo and Prasad (2000) characterized the use of 
meta-heuristics, such as simulated annealing, genetic algorithms and tabu search, for redundancy allocation as 
possibly the most attractive development of the 1990’s. Kuo and Wan (2007) reported on new optimization 
methods, such as ant colony algorithms, and new modeling opportunities, such as modeling the type of redundancy 
as a decision variable. Coit and Zio (2019) discuss the prospect of improving the reliability of complex systems 
through upgrades developed by integrating optimization models with operational data about system performance. 

 

Moskowitz and McLean (1956) studied a variant of Model (1), in which the requirement that the values of 
decision variables are restricted to the positive integers is relaxed so that the values of the decision variables need 
only be positive. They obtained the optimal solution and proposed that rounding would provide an adequate, if not 
exact, solution of the discrete model. Chern (1992) proved that Model  
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(1) can be solved in polynomial time, although the related model with parameters            in place of 

the single parameter   is NP-hard. Nmah (2011) studied the continuous relaxation of this NP-hard model and 
obtained an explicit representation of the unique optimal solution. Bhattacharya and Roychowdhury (2014) studied 
a related model in which additional parameters allow the reliabilities of the redundant components to differ from the 
reliabilities of the components considered part of the original design. For Model (2), Nmah (2016) constructed 
examples to show that the distance between optimal solutions of the discrete redundancy allocation model and its 
continuous relaxation could be arbitrarily large. Kaufmann, Grouchko and Cruon (1977) developed an algorithm to 

produce an optimal solution of Model (1) for the objective vector          . Nmah (2017) developed a faster 
algorithm for the same problem. 
 

3.   Isolating an Optimal Solution 
 

A first step in the solution of Model (2) is to establish bounds on the possible values of   
 , the first 

coordinate of an optimal solution. 

Definition 1.  The positive integers  ,   , and   and are defined by 

                                         

            
                     

           

   
    if                   is feasible 

  otherwise 
 

 

 

Since              ; so   is, indeed, a positive integer. For some combinations of  ,   and  , it 

can happen that    . For example, consider   = 0.99,   = 0.1 and   = 1, 2, . . . , 90. In the next section, it will 

be convenient to use base-2 logarithms to compute   and    and to use natural logarithms to determine the order 

of magnitude of   . 
 

Proposition 1.  Model (2) has an optimal solution. If    
    
      

   is an optimal solution, then   
    

  for 

      and     
   . 

Proof.      The vector in which each coordinate is equal to    is feasible and its objective value is equal to 

         . The set of feasible solutions for which the objective value is no greater than           is finite 
and contains a feasible solution for which the objective value is minimal. Any such feasible solution is optimal.  

 

If the first coordinate of an optimal solution is not the smallest, then a feasible solution obtained by 

switching the first coordinate with a smaller coordinate would have a strictly smaller objective value because    . 
 

For an optimal solution,          
     

     
  

   . Since the vector                is feasible, 

         
            . If     , then   

    . If       ,          
            

 . In this case, since   
  is an integer,   

      . Nmah (2015) proved that   is a lower bound for each 

coordinate of any feasible solution.   
 

Among all feasible solutions for which     , the candidates for optimal solutions of  
Model (2) are limited to optimal solutions of this model 
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     The next definitions show how to construct an optimal solution of Model (3). 
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Definition 2.  For a positive integer,  , in the interval      , the function      is defined as                The 

function       is defined as                
                      If    , the function      is defined as 

                                 
 
          

     
        

Since               The    -vector in which each coordinate is equal to       is feasible for Model 

(3), so the set of indices that determine      includes      
Definition 3.  Let   be an integer in the interval      . If      then             If     and       , then the 

   -vector      is defined coordinate-wise by             for      . If     and       , then the   
 -vector      is defined coordinate-wise by 

       
                     

                    
  

Theorem 1.  The set {(x,y(x)): x an integer in [L,U]} contains an optimal solution of Model (2). 

Proof.      The vector          is feasible for Model (2) when   is an integer in          

If   = 2, then         when (    ) is feasible for Model (2). 

If    , Nmah(2017) showed that the     vector      is an optimal solution of Model (3) for the parameters 

     and  . 

That the set {(          an integer in [   ]} contains an optimal solution then follows from Proposition 1.   
 

4.   Establishing a Polylogarithmic Bound 
 

The computational effort to find an optimal solution depends on the number of integers in the interval 

      and on the effort to determine the vector     , given an integer   in      . 

Proposition 2.                                  . 

Proof.      By definition,                        . From the mean value theorem,          

             , so 

                                    

                                            
 

Theorem 2.  The size of the set {(x,y(x)): x an integer in [L,U]} is           . 

Proof.      The number of elements in the set is no greater than    Proposition 2 shows that the integer   is 

          .   

Proposition 3.  If   is an integer in      , then 

                                           

Proof.      If   is an integer in      , then            . Replace   with      and   with     in the 

inequalities of Proposition 2.   

Proposition 4.  If   is an integer in      , then the integer      can be computed in              steps. 

Proof. The configuration in which the subsystems numbered         each consist of       components 

conforms to the reliability constraint of (3). The configuration modelled by the vector      can be constructed by 
removing one component from as many of these subsystems as possible without violating the reliability constraint. 

The integer      is equal to the number of removed components, so            because, by definition, 

the configuration in which the subsystems, numbered         each, consist of         components is not 
feasible for Model (3). 
 

The binary expansion of      can be constructed as follows: 

Set     ; as long as        , set         ; stop as soon as        , and set 

     . Now, set                          . Set        . 

For              , if 

   
                    

   
       

set                
 ; otherwise,              . Then       belongs to the set of integers determining 

     and no integer in the set has a larger binary expansion, so           . 
Since            ,              and the length of the iterative procedure is             .   
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Proposition 5.  For an integer,  , in      , the integer       can be computed in               steps. 

Proof.      Modify the iterations of Proposition 4 as follows. Set     ; as long as         
   
       set 

        ; set       as soon as the inequality fails. Then set         
 . For              , set 

                 
  if 

              
 
 
   
     ; 

set                 otherwise. Then              and                .   

Theorem 3.  An optimal solution of Model (2) can be found in       
      steps. 

Proof.      The vector          can be constructed from the three integers         and     . These integers also 

determine the objective value of         ; in fact, 

                         

Theorem 2 shows that the number of candidates for the integer   is           . Propositions 3 and 4 show that 

number of steps to compute the integers       and      is           . Therefore, the overall effort is 

      
         

 

5.   Lack of Sensitivity of an Optimal Solution to Large Values of the Coefficient   
 

The study of the sensitivity of an optimal solution of Model (2) to the objective coefficient   begins with a 

few observations about the function        Throughout this section, it is assumed that     so that the set of 
candidates for an optimal solution has more than one element. 

Proposition 6.  If   is an integer in      , then               . If    is an integer in       and     , then 

            . 

Proof.      From the definition of      ,                  
   
     Since    , 

             , so                  
   
     Then, by definition of      , it follows that 

             For an integer    in [     with     , the same reasoning shows that 

               

     If       , then              
   
   and then           But the definition of    implies that 

           
 

. Thus,  
 

      
          

   
   and so,             Since       is an integer, it is 

equal to     If     , the definition gives the inequalities 

                              Thus,          But  

                                   , 

So,            and, also in this case,             

Definition 4.  If   is an integer in      , then         
 
        The objective value,     , of the vector          can 

be written as          
Proposition 7.  If   is an integer in      , then            If    is in       and     , then           . 
Proof.     Nmah (2017) showed that 

   

 

   

        

for any feasible solution,               of Model (2). For the feasible solution         , this result implies 

               and so          . By definition, 

                 

 

   

    

If    is an integer in       and     , then               , so           is feasible for Model 2. From 

the definition of      , it follows that           .   
 
 



Benedict Nmah                                                                                                31 
 
 

Proposition 8.  If   is an integer in        and                then            when 

    is an integer in        
Proof.      For an integer     in        write    =      for an integer   ,           . If 

            then                             The term    can be eliminated from each side of 

the inequality; from the previous proposition,               thus, 

                and                   Since    is an integer, 

                     . But the hypothesis of the proposition then shows that     , which is inconsistent 

with        
 

With these propositions, it is possible to show that as the objective coefficient   increases, the optimal 
vector(s) for Model (2) eventually fails to respond. 

Theorem 4.  If              , then          is optimal for Model 2. 

Proof.      Take     in Proposition 8.    
 

6.   Examples and Discussion 
 

The main result of this work is to limit the search for an optimal solution of Model (2) to a relatively small 

set          ) of candidates.  The test set contains         elements.  Since           and since   

does not depend on    the growth of the set of candidates can be assessed from the growth of     Table 1 shows 

   as a function of the parameters   and  . For components of even moderate reliability, the set of candidates for 
an optimal allocation of redundancy is not large. 
 

Table 1:     as a function of  n  and  ρ  for  R = 0.99 

                                 

n 2 4 8 16 32 64 128 256 512 1024 

           ρ = 0.1 3 3 3 4 4 4 5 5 5 6 

ρ = 0.5 8 9 10 11 12 13 14 15 16 17 

ρ = 0.9 51 57 64 70 77 84 90 97 103 110 

                      
 

For some combinations of the parameters       and  , Model (2) may have multiple optimal solutions, 

including some not in the set of candidates identified in Section 3. For example, for               and 

        the test set of Section 3 includes four optimal solutions corresponding to            and     
However, the permutations of optimal test vector               such as               and               are 

also optimal. In fact, if    determines an optimal solution for which        , then there are at least     
     
  

optimal solutions. In addition, Model (3) often has optimal solutions for which the difference between the largest 
and smallest coordinates is greater than 1; these, in turn, lead to solutions of Model (2) that are not included in the 
test set. So, in our example, the vector (52, 58, 60, 60) is optimal. 

 

The continuous relaxation of Model (2) is the optimization problem with the objective and reliability 
constraint of Model 2, but defined for variables that take positive, real values. One of the original approaches for 
solving Model (2) is to solve the continuous relaxation and use that solution to approximate an optimal solution of 
the discrete model (Moskowitz and McLean(1956)). Nmah (2015) showed that the optimal solution of the 

continuous relaxation of Model (2) has the form                    with            

                    and                 . (Here, the function      is the extension to the positive 

reals of the corresponding function in Definition 2). The value    is determined by finding the unique positive 

root of a polynomial of degree    When the objective coefficient   is large,      and              so the 

feasible solution                          of Model 2 may be far from optimal (Nmah (2016). Theorem 4 

provides an alternative for solving Model (2) for large values of    
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