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On Pre-Hilbert Algebras Containing a nonzero Central Idempotent f such that
Ifall=llall and ||la?|| < llal®

Noureddine Motya', Hakima Mouanis’ & Abdelhadi Moutassim’

Abstract

Let A be a real pre-Hilbert algebra without divisors of zero, we prove that if A has dimension two and
satisfying ||a?|| = ||a||?, for all @ € A, Then A is isomorphic to a new classes of two dimensional
pre-Hilbert algebras. We also characterize the pre-Hilbert algebraic algebras without divisors of zero and
containing a nonzero central idempotent f such that ||fa|| = ||al| and ||a?]| < ||a]|?, to be flexible algebras.
Furthermore, we prove that if A contains a nonzero central idempotent f such that ||fall = |[a|l and
lla?|| < ||lal|?® forall a in A, then the following statements are equivalent:

1. A is power commutative
2. A is third power associative
3. A is algebraic of degree two.

Key Words: Pre-Hilbert algebras, flexible, central idempotent, third power associative algebras.

1 - Introduction

Let A be a non-necessatily associative real algebra which is normed as real vector space. We say that a real

algebra is a pre-Hilbert algebra, if it’s norm ||. || come from an inner product (.|.), and it’s said to be absolute valued
algebras, if it’s norm satisfy the equality ||ab|| = [|a||||b||, for all a,b € A. We recall that the set of pre-Hilbert
absolute valued algebras is contained in the set of pre-Hilbert algebras satisfying the identity ||a?|| = ||al|? for all

a € A. Note that, the norm of any absolute valued algebras containing a nonzero central idempotent (or finite
dimensional) come from an inner product [2] and [3]. We assume that 4 is pre-Hilbert algebra, without divisors of
zero and satisfying ||a?|| = |lal|> for all @ € A. An interesting Rodriguez’s theorem [6] assert that every

two-dimensional real absolute valued algebra is isomorphic to C,C*, * € or C (the real algebras obtained by endowing
the space € with the product x *y =Xy, x*y =xy, and x*y =Xy respectively). We extend the above
mentioned theorem to more general situation, indeed, we prove that if A has dimension two, then A is isomorphic to a
new classes of two-dimensional pre-Hilbert algebras (section 3). Also we show, in section 4, thatif A is algebraic algebra
and contains a nonzero central idempotent f such that ||fall = ||a|| and ||a®|| < ||a||? for all a € A, then the
following assertion are equivalent:

i) A is flexible.
ii)A has degree two and if {f,u,v} is an orthogonal family, then {f,u,v,uv} is too, where u,v €V =

{weA|(wlf) =0}
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And the counter example is given. Moreover, we prove that if A contains a nonzero central idempotent f such that
lIfall = lla|l and [|a?|| < ||al|? forall a € A, then the following statements are equivalent:

1.A is power commutative

2. A is third power associative

3.4 is algebraic of degree two.

2 — Notation and preliminaries results
In this paper all the algebras are considered over the real numbers field R.

Definition 2.1 Let B be an arbitrary algebra.

i - B is called flexible, if it’s satisfy the identity (x,y,x) =0 for all x,y € B (where (.,.,.) = 0 denote the
associatore).

ii - We say that B is third power associative, if it’s satisfy the identity (x,x,x) = 0 forall x € B.

iii - B is said power commutative if any sub-algebras generated by a single element is commutative.

iv - B is called a division algebra if the operators Ly and R, of left and right multiplication by x are bijective for all

x € B\ {0}.

v - An element a in B is said to be algebraic (of degree n) if the sub-algebra B(a) generated by a is finite
dimensional (of dimension n ). We say that B is algebraic if all its elements ate algebraic. B is said to be algebraic of
bounded degree if there exist a non-negative integer number n such that dim B < m for any element a in B. If this
is the case, then the small such number m is called the degree of B. Cleatly every finite-dimensional algebra is algebraic
of bounded degtee. The (1,2,4,8) theorem show that the degree of every finite-dimensional real division algebra is
1,2,4 or 8.

We need the following relevant results:

Proposition 2.2 [1] If {x;} sia set of commuting element in a flexible algebra A over a field charactetistic not two.
Then the sub-algebra generated by the {X;} is commutative.

Theorem 2.3 [5]. Let A be a real commutative algebraic algebra without divisors of zero, then dimA < 2.
Lemma 2.4 [7]. Every algebra in which x2=0 only if x = 0, contains a nonzero idempotent.

3 — Two dimensional pre-Hilbert algebras, satisfying ||a?|| = ||a||?

Firstly, we would like to consider the general situation of a two-dimensional real algebra A. let {e1,e,} be a basis of A
anda, B, 4,y ; B A ' € R . The productin A is determined by the multiplication table

€1 5]
eq ae; + fey Aeq + ue;y
ey a'e; +f'ey Ae; +u'e)
M

Theorem 3.1. The algebra A determined by the table (1) is division algebra if and only if
dap — f2) (@) = F2) > (@p+ aal = B2~ B
4(ap’— pa’) (' —pd') > (a p—ap —f 1+ )"
Proof. Let {e1, e} be a basis of A such that the multiplication of A is given by the table (1). Then for an arbitrary
element a = xeq +ye, in A, we have
Ly(ey) = (xa+ya')e; + (xB+yB )e; and Ly(ey) = (xA+yA)e; + (xu + yu' e,
So the matrix of L, in the above basis can be expressed as follow
_ (xa +ya" xA+ y/l’)
fa = \xB +yB" xu+yu'
We have
det(My,) = x*(ap—pA) +xy(@'n+ap' = f'A—pA) + y*(a'y' = ')
So A is a division algebra if and only if det(My, ) # 0, which is equivalent to
4(ap — BA) (@'w = B'A) > (a'u + ap' — B'A — BA)2.
By the same way we have the right multiplication of a, R, is invertible if and only if det(Mg ) # 0, which is



)
2

D
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equivalent to 4(af —Ba YA —ur) > (@ p—au —B A+ BA)% |:|

Let A1(y,6),A2(y,8),and A3(y, d), be the real pre-Hilbert algebras defined by the multiplication tables (2), (3) and (4)
respectively, with (y,8) € R X R* (R™: the set of nonzero real numbers). And let {e,u} be an orthonormal basis
(where e is a nonzero idempotent)

e u
e e ye + éu
—ye - 6u e
(2)
A1(,9)
e u
e e ye + du
—ye+ (2 —-56)u —e
(3)
Az (v, 8)
e u
e e ye + du
—ve—(2+6u —e
(4)
A3 (. 9)

Remark 3.2

i) The real algebra given by table (2) is a division algebra for all (y,8) € R X R”

ii) The real algebra given by table (3) is a division algebra, if and only if, 2 + 8% < 26

iiil) The real algebra given by table (4) is a division algebra, if and only if Y2 + §2 < =28

Proof. Consequence of the theorem 3.1 I:I

Lemma 3.3 The algebras A7 (¥, 8),A2(y,8), and A3(y,8) satisfies the identity ||a2]| = ||a]|? for all @ € A and
r,6) e RxR"

Proof. According to remark 3.2, A{(y,6), with y,6 € R*, is a two-dimensional real division algebra. And let
a € Ay(y,0), can be written as a = €e + {u (where {e,u} is an orthonormal basis of A;(y, §)). So by a simple

calculation we have ||a?|| = ||al|?, similarly proof for the others cases A, (y, ), and A3 (¥, §). I:I
Lemma 3.4 Let A be a real pre-Hilbert algebra, without divisors of zero, and satisfying ||a®|| = ||a]|? forall a € A.
Then the following equalities hold for all orthogonal elements x,y € A:
(x%lxy + yx) = 0
llxy + yxll* + 2(x*|y?) = 2]|x|?||y||®
Proof. The equality [|x?]|2 = (||x||?)? gives meaning to a polynomial P with real coefficients of degree < 3 in A,
identically null, such that:
P() = 2(x*|xy + yx)2° + (llxy + yx|I> + 2(c*|y?) = 2%l Myl )A% + 2(y*|xy + yx)A.

Thus
(x%|xy + yx) = 0
llxy + yxlI> + 2(x%|y?) = 2|lxI*llyl>. O

Now we can state our main result in this section

Theorem 3.5 Let A be a two-dimensional real pre-Hilbert algebra, without divisors of zero, and satisfying
la?]] = ||a]|? forall @ € A.Then, A is isomorphic to A1 (¥, 8), A2 (¥, 8), or As(y,8) forall (y,8) € R x R, such
that y? + 62 < +26.
Proof. According to lemma 2.4, A is a two-dimensional real division algebra, containing a nonzero idempotent e. And
let {e,u} be an orthonormal basis of A. Then there exists ¥,7’ € R and §,6" € R*, such that

eu = ye + du and ue = y'e + S'u.
We have
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eu+ue = (y + y)e + (6 + 6)u, which means by lemma 3.4 (1) That y = —y'and eu + ue = (6 + §)u.
Since
0 = (u?leu + ue) = (6§ + 8)(W?|w),
Then eu + ue = 0 or u® = xe, we distinguish the following cases.
case 1: If ue + eu = 0, then by lemma 3.4 (2) we have (e|u?) = 1,s0 |[u? —e||? = 2 —2 = 0. Consequently
u? = e, thus A is isomorphic to 41 (¥, 8).
case 2: If u> = — e, then (§ + &)? = 4 (lemma 3.4 (2)). Thatis & + 8 = 20r8§ + & = -2
DIf6 + & = 2 then & = 2 — §.So A is isomorphic to A, (y, 5).

i) If§+6 = —2 then § = —2 —§.So A is isomorphic to Az(y, §). I:l

2

We get the following results.
Corollary 3.6 Let A be a two-dimensional real pre-Hilbert algebra, containing a nonzero central idempotent e, without
*

divisors of zero and satisfying lla%]| = ||a||?® forall a € A. Then 4 is isomotphic to C or C.

Proof. According to theorem 3.5, the algebra A is isomorphic to A1(y,6),4,(y,8), or A3(y,8) for all
(¥,8) € Rx R* such that y2 + §% < £24. Since e is a central idempotent, then we have the following cases:

i) If A is isomorphic to Ay (¥, 6), then eu = —ue which is absurd.

i) If A is isomorphic to Ay(y,6),then y = 0 and § = 1. So A is isomorphic to C

iii) If A is isomotphic to A3(y,8),then y = 0 and § = —1.So A is isomorphic to C. I:l
Corollary 3.7 Let A be a two-dimensional real third power associative pre-Hilbert algebra, without divisors of zero and

satisfying ||a?|| = ||al|?forall @ € A.Then A is isomorphic to C or C.
Proof. According to theorem 3.5, the algebra A is isomorphic to Aq(y,6),A,(y,6), or A3(y,6) for all
(¥,8) € RXR* such that y? + §2 < £248. The identity (w,u,u) = 0 imply that eu = ue, so e is a nonzero

central idempotent. We conclude that A is isomorphic to € or € (Corollary 3.0). I:l
Now we conclude the theorem of A. Rodriguez

Corollary 3.8 Let A be a two-dimensional real absolute valued algebra. Then A is isomorphic to C,C*, * C or C.
Proof. Since A is a finite-dimensional real absolute valued algebra, then A satisfying [|a?|| = ||a||? forall @ € A.and
it’s norm comes from an inner product [2]. Using theorem 3.5, the algebra A is isomorphic to A1(y,6), A4, (v, d), ot
As(y,8)forall (¥,8) € R X R*, such that y? + 6% < +2. We have

(uele) = +(uelu®) = +(ule) = 0 and (eule) = +(eu|u?) = +(ule) = 0
This imply that the two elements ue and u (respectively eu and ) are linearly dependent, thus y = 0. Therefore

i) If A is isomorphic to A1(y, §), then the identity eu = —ue = Fu imply that A is isomorphic to C* or * C
ii) If A is isomorphic to A, (¥, d), then the identity ||eu|| = |lue|| = ||ul||le]] = 1, imply that, § = 1 which means
that A is isomorphic to C.
iii) If A is isomorphic to A3(y, §), then the identity |leul|| = [lue|| = ||u]|||e|| = 1, imply that, § = —1 which means
that A is isomorphic to C. I:I
4 - Pre-Hilbert algebras containing a nonzero central idempotent f such that ||fall = |la|| and
la* < llall®

a s |la

We begin with the following preliminary results.

Proposition 4.1 Let A be real pre-Hilbert algebra containing a nonzero central idempotent f such that ||fa|| = ||a]|
and ||a?|| < ||a]|? forall @ € A. Then the following equalities hold:
D) lla®|l = llall®

i) a® = 2(alf)fa + llall> = 0
Proof. i) Let a € A, having an orthogonal sum decomposition Af + u, the equality [|a?||?> < (]|a||?)? can be written
142 + 22f + | < (2% + [|ul?)? M
As ||fx|| = [|x]|, then (fx|f) = (f|x) forall x € A.The development of (1) gives
225 ((Flu®) + llull?) + 4A(fulu®) + u® 1> = flull*< 0 ((flw) = 0) @)
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We replace A by —\ we get

222((f1u?) + llull?) — 42¢Fulu?) + [l 1% = Jlull* < 0 ©)
We add (2) and (3), we have
2% ((F1e?) + lull®) + 11e?1? — llull* < 0 )

Since (4) hold forall A € R and |[u?||? — |[u]|®> € 0, then (flu?) < —|ull?.
According to the Cauchy-Schwarz inequality, we have
|Fle®] < A< Dl
Then (flu?) = — |lull* also |[u?|| = |jul|?, thus
llu? + [lull® £II* = ||u||i+ 2||u||i(u2|f);|' lul? 1112
= Nlull® = 2lull® + [lull
=0
hence u? = —||u||? f. On the other hand a® = A2f + 2Afu + u?, then
lla?|I?* = ||(£12 - ||u|2|22)f + Zzﬂtfullz2
= (A% = lull®)" + 42%||ul ((fulf) = (flw) = 0)
= (& + |lull®)?
= la|*
Therefore ||a?|| = ||al|?
i) We have
a? = 2°f +22fu+u?
= f + 2Af(Af + w) — ||u||® f
22fQAf +uw) — (B + Ilull®)f
= 2(fla)fa — |lall* f. []
Remark 42 Let V = {u € A| (u|f) = 0}, then the following equalities hold:
DV = (uedlu? = —ul’f}
i) uv + vu = =2(u|v)f foral u,vEV .
iii) The product x Ay = xy — (xy|f)f forall x,y € V endows V of an anti-commutative algebra structure
Proof.
i) According to proposition 4.1 (i).
ii) Let x,y € V,wehave x +y € V.Then (x +y)?> = —|lx +y||* f thus xy + yx = =2(x|y)f.
i) Let x,y €V , we have

XAy +y Ax = xy — (I)f + yx — Ox|H)Hf
= xy + yx — (xy + yx|f)f
= =2(xIy)f + 2(xIy)f
=0 []
Lemma 4.3. Let A be a real pre-Hilbert algebraic algebra of degree two, without divisors of zero and containing a
nonzero central idempotent f such that ||fa|| = ||a]| and ||a?|| < ||a||? forall a € A. Then A (f,v) = A (V) is

isomorphic to C or C, forevery v € V.
Proof. It suffices to prove that fv = vor fv = —v forevery v € V, withoutloss of generality we will assume that
v # 0, according to remark 4.2 (i), v2 = —||v||? f. since A is algebraic algebra of degree two and satisfying
lla?|| = |la||*forall @ € A (proposition 4.1 (i)), then by corollary 3.6 A is power-commutative algebra. It is well
known that (aa®)a = a(a®a) for any element a in A, hence

v(v?v) = —|lvl*v(fv) and (v?v)v = -Vl (fr)v.
Sov(fv) = (wfvasllvfll = llfvll = llvll and (fvIf) = @flf) = @If) = 0, then wf)? = v’ =
—|IvlI2 f. So fv = vor fv = —v, thus A(v) is isomorphic to € or C. [ ]

In the next theorem we give some conditions implying that the real pre-Hilbert algebra to be flexible algebra.

Theorem 4.4. Let A be a real pre-Hilbert algebraic algebra, without divisors of zero and containing a nonzero central
idempotent f such that ||fa|| = ||la|| and ||a?|| < ||a||*forall @ € A.Then the following assertions are equivalent:

i) A is flexible;
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ii) A has degree two and if {f, u, v} is an orthogonal family, then {f,u, v,uv} is too, where u,v €V .
Proof. i) = ii) Assume that A is flexible algebra, according to proposition 2.2 and theorem 2.3, A has degree two.
Let wi=uv — (w|f)f — (w|wu — (uv|v)v, where u,v €V, without loss of generality we assume that
w # 0. We have

wlf) = W) = (wlv) =0
Since A is flexible and uv + vu 0 (remark 4.2 (ii)), then

0

uw + wu = 2(wv|u)f + 2(uv|f)u
This gives us (uv|u) = (uv|f) = 0, similatly (uv|v) = 0. Thus {f,u, v,uv} is an orthogonal family.
ii) > i) Let x,y €V suchthat ||x|| = |ly]| = 1 and z := y — (¥]x)x, without loss of generality we can assume
that z # 0, wehave (z|f) = (z|x) = 0. Then
0 = (xz|x)

= (x(y — Glx)x)|x)
= (xy + OIOflx)  (x* = —f, (remark 4.2 (i))
= (xy|x)
The equality ||fa|| = ||a|| imply that (fa|f) = (f|a), forall a € A. On the other hand
0 = (xzIf)
= (x(@y — l)0)If)
(xy + OIfIf)
= (xylf) + (xly)
This means that (xy|f) = —(x|y), in the same way, we get (yx|f) = —(x|y). Moreover, we have
(xy)x — x(yx) = (x Ay + (y|H)x — x(y Ax + (x|)f)
= (x Ay)x + x(x Ay) + (CyIf)f — x|f)f)x
—2(x|x AV + (Y1) — xIHf)x  (remark 4.2 (ii))
((yIHf — xIH)x.
0

Since A is algebraic algebra of degree two, then the sub-algebras A(f,x) and A(f,y) are of dimension two and

isomorphic to € or € (lemma 4.3). We have the following cases:
1) If f is the only idempotent of A, then xf = fx = x forall x € A. Which means that A is a unit algebra, hence
foralla = Af + xandb = yf + y in A, we have
(ab)a — a(ba) = [(Af + )0f + MIASf + x) = Af + O[S + »Af + x)]
= (xy)x — x(yx)
=0
Then A is flexible.
2) If f is notunique, then xf = fx = —x forall x € V. Otherwise, if there exist a nonzero element y € V such

that yf = fy = y.Then
fx +y) = x(x + ) (Lemma 4.3)
-x +y =3+ y)

This imply that x = 0 or y = 0, which is absurd. Therefore forall a = Af + x and b = yf + yin A, we have

(a,b,a) = (Af + x,vf + y,Af + x)

= A ,vfox) + (Af,y,x) + v, Af) + (Y, Af) + (xy,x)
Or (x,y,x) = 0 and (Af,vf,x) + (x,¥f,Af) = 0. Then
(a,b,a) = (Af,y,x) + (x,¥,4f)

ALU»)x — fyx) + y)f — x(f)]
Al=yx = fy Ax + Cy|)f) + (x Ay + (yI)f + xy]
= g[—yx +yAx —x Ay +xy] ((xylf) = xlf) = —(x| = Ax|»)f — &S]

Then A is flexible. O

Remark 4.5. In [4], we constructed an example of four-dimensional absolute valued algebra containing a nonzero
central idempotent of degree four which is not flexible. The last imply that the condition algebraic algebra of degree two
is necessary for A to be flexible.
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In the rest of this section, we prove that, if A is a real pre-Hilbert algebra, without divisors of zero and contains
a nonzero central idempotent f such that ||fa|| = ||a|| and ||a®|| < ||a||? for all @ € A. Then the following
statements are equivalent:
1. A is power commutative.
2. A is third power associative.
3. A is algebraic of degree two.

We need the following preliminary result.

Lemma 4.6. Let A be a real third power associative pre-Hilbert algebra, without divisors of zero and contains a
nonzero central idempotent f such that ||[fal| = ||a|| and ||a?|| < ||a||? for all @ € A, then A(V) is isomorphic

toCor C forevery v € V.
Proof. It suffices to prove that ev = v orev = —v forevery v € V, without loss of generality we will assume that
v # 0. According to remark 4.2 (i), v? = — ||[v||>f as A is a third-power associative algebra. Then a linearization of
the identity (x,x,x) = 0 gives

[x%,y] + [xy + yx,x] = 0 ®)
where [x,y] denotes the quantity xy - yx.
By putting ¥ = x? in the equality (5), we get the well-known identity (x,x2,x) = 0.So (aa?)a = a(a’a) for
any element a in A, hence

v(w?v) = —|lvlI*v(fv) and (v*v)v = —|vI*(fr)v
So v(fv) = (vf)v = (fv)v, on the other hand ||vf|| = ||fv|| = ||v|| and (fv|f) = (vfIf) = (w|f) = 0. Then
(wf)? =v? = —||v||? f. This imply fv = vor fv = —v, thus A(V) is isomorphic to C or C.

Note that in the general case, if the algebra A is power commutative. We have for every a € A the
sub-algebra A(a) is commutative, so a’a = aa? which means that (a,a,a) = 0, then A is third power

associative. I:I

In the next theorem we have the reciprocally case.

Theorem 4.7. Let A is a real pre-Hilbert algebra, without divisors of zero and containing a nonzero central idempotent
f such that ||fa|| = ||a|| and ||a?|| < ||a||? for all @ € A. Then the following statements are equivalent:

1. A is power commutative;

2. A is third power associative;

3. A is algebraic of degree two.

Proof. (1) = (2) By definition.

(2) = (3) Assume that A is third power associative and let v € V, we have v2 = —||v||? f (proposition 4.1 (i)). By
lemma 4.6, A(a) is isomorphic to C or C, and consequently A is algebraic of degtee two.

(3) = (1) Using lemma 4.3. I:l
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