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On Pre-Hilbert Algebras Containing a nonzero Central Idempotent 𝒇 such that 

 𝒇𝒂 = 𝒂  and  𝒂𝟐 ≤  𝒂 𝟐 
 

 
Noureddine Motya1, Hakima Mouanis2 & Abdelhadi Moutassim3 

 
Abstract 
 

Let 𝐴 be a real pre-Hilbert algebra without divisors of zero, we prove that if 𝐴 has dimension two and 

satisfying  𝑎2 =  𝑎 2 , for all 𝑎 ∈  𝐴 , Then 𝐴  is isomorphic to a new classes of two dimensional 
pre-Hilbert algebras. We also characterize the pre-Hilbert algebraic algebras without divisors of zero and 

containing a nonzero central idempotent 𝑓 such that  𝑓𝑎 =  𝑎  and  𝑎2 ≤  𝑎 2, to be flexible algebras. 

Furthermore, we prove that if 𝐴  contains a nonzero central idempotent 𝑓  such that  𝑓𝑎 =  𝑎  and  

 𝑎2 ≤  𝑎 2 for all 𝑎 in 𝐴, then the following statements are equivalent: 
 

1. 𝐴 is power commutative  

2. 𝐴 is third power associative  

3. 𝐴 is algebraic of degree two. 

 
Key Words: Pre-Hilbert algebras, flexible, central idempotent, third power associative algebras. 

 
1 – Introduction 
 

Let 𝐴 be a non-necessarily associative real algebra which is normed as real vector space. We say that a real 

algebra is a pre-Hilbert algebra, if it’s norm  .   come from an inner product  .  .  , and it’s said to be absolute valued 

algebras, if it’s norm satisfy the equality  𝑎𝑏 =  𝑎  𝑏 , for all 𝑎, 𝑏 ∈ 𝐴. We recall that the set of pre-Hilbert  

absolute valued algebras is contained in the set of pre-Hilbert algebras satisfying the identity  𝑎2 =  𝑎 2 for all  

𝑎 ∈  𝐴. Note that, the norm of any absolute valued algebras containing a nonzero central idempotent (or finite 

dimensional) come from an inner product  2  and  3 . We assume that 𝐴 is pre-Hilbert algebra, without divisors of 

zero and satisfying  𝑎2 =  𝑎 2  for all 𝑎 ∈ 𝐴 . An interesting Rodriguez’s theorem  6  assert that every 

two-dimensional real absolute valued algebra is isomorphic to ℂ, ℂ∗, ∗ ℂ or ℂ
∗

 (the real algebras obtained by endowing 

the space ℂ  with the product 𝑥 ∗ 𝑦 = 𝑥 𝑦, 𝑥 ∗ 𝑦 = 𝑥𝑦 , and 𝑥 ∗ 𝑦 = 𝑥  𝑦  respectively). We extend the above 

mentioned theorem to more general situation, indeed, we prove that if 𝐴 has dimension two, then 𝐴 is isomorphic to a 

new classes of two-dimensional pre-Hilbert algebras (section 3). Also we show, in section 4, that if 𝐴 is algebraic algebra 

and contains a nonzero central idempotent 𝑓 such that  𝑓𝑎 =  𝑎  and  𝑎2 ≤  𝑎 2  for all 𝑎 ∈ 𝐴, then the 
following assertion are equivalent: 
 

i) 𝐴 is flexible. 

ii) 𝐴  has degree two and if  𝑓, 𝑢, 𝑣  is an orthogonal family, then  𝑓, 𝑢, 𝑣, 𝑢𝑣  is too, where 𝑢, 𝑣 ∈ 𝑉 ≔
 𝑤 ∈ 𝐴| 𝑤 𝑓 = 0  . 
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And the counter example is given. Moreover, we prove that if 𝐴 contains a nonzero central idempotent 𝑓 such that 

 𝑓𝑎 =  𝑎  and  𝑎2 ≤  𝑎 2 for all 𝑎 ∈ 𝐴, then the following statements are equivalent: 

1. 𝐴 is power commutative  

2. 𝐴 is third power associative  

3. 𝐴 is algebraic of degree two. 
 

2 – Notation and preliminaries results  
 

In this paper all the algebras are considered over the real numbers field ℝ. 
 

Definition 2.1 Let 𝐵 be an arbitrary algebra. 

i - 𝐵  is called flexible, if it’s satisfy the identity (𝑥, 𝑦, 𝑥)  = 0  for all 𝑥, 𝑦 ∈  𝐵  (where (. , . , . ) = 0  denote the 
associatore). 

ii - We say that 𝐵 is third power associative, if it’s satisfy the identity (𝑥 , 𝑥, 𝑥)  = 0 for all 𝑥 ∈  𝐵. 

iii - 𝐵 is said power commutative if any sub-algebras generated by a single element is commutative. 

iv - 𝐵 is called a division algebra if the operators 𝐿𝑥  𝑎𝑛𝑑 𝑅𝑥  of left and right multiplication by 𝑥 are bijective for all 

𝑥 ∈ 𝐵 ∖ {0}. 
 

v - An element 𝑎 in 𝐵 is said to be algebraic (of degree 𝑛) if the sub-algebra 𝐵(𝑎) generated by a is finite 

dimensional (of dimension 𝑛 ). We say that 𝐵 is algebraic if all its elements are algebraic. 𝐵 is said to be algebraic of 

bounded degree if there exist a non-negative integer number 𝑛 such that 𝑑𝑖𝑚 𝐵 ≤ 𝑚 for any element 𝑎 in 𝐵. If this 

is the case, then the small such number m is called the degree of 𝐵. Clearly every finite-dimensional algebra is algebraic 

of bounded degree. The (1, 2, 4, 8)  theorem show that the degree of every finite-dimensional real division algebra is 

1, 2, 4 𝑜𝑟 8.   
We need the following relevant results: 
 

Proposition 2.2  𝟏  If {𝑥𝑖} si a set of commuting element in a flexible algebra 𝐴 over a field characteristic not two. 

Then the sub-algebra generated by the {𝑥𝑖} is commutative. 

Theorem 2.3  𝟓 . Let 𝐴 be a real commutative algebraic algebra without divisors of zero, then 𝑑𝑖𝑚 𝐴 ≤   2. 

Lemma 2.4  𝟕 . Every algebra in which 𝑥2 = 0 only if 𝑥 = 0, contains a nonzero idempotent. 
 

3 – Two dimensional pre-Hilbert algebras, satisfying  𝒂𝟐 =  𝒂 𝟐 
 

Firstly, we would like to consider the general situation of a two-dimensional real algebra 𝐴. let  𝑒1 , 𝑒2  be a basis of 𝐴 

and 𝛼, 𝛽, 𝜆, 𝜇, 𝛼 ′, 𝛽′, 𝜆′, 𝜇′ ∈ ℝ . The product in 𝐴 is determined by the multiplication table 
 

 𝑒1 𝑒2 

𝑒1 𝛼𝑒1 + 𝛽𝑒2 𝜆𝑒1 + 𝜇𝑒2 

𝑒2  𝛼′𝑒1 + 𝛽′𝑒2 𝜆′𝑒1 + 𝜇′𝑒2 
(1) 

Theorem 3.1. The algebra 𝐴 determined by the table (1) is division algebra if and only if 

1) 4(𝛼𝜇 − 𝛽𝜆) (𝛼′𝜇′ − 𝛽′𝜆′) > (𝛼′𝜇 + 𝛼𝜇′ − 𝛽′𝜆 − 𝛽𝜆′)2 . 
2) 4(𝛼𝛽′ − 𝛽𝛼′) (𝜆𝜇′ − 𝜇𝜆′) > (𝛼′𝜇 − 𝛼𝜇′ − 𝛽′𝜆 + 𝛽𝜆′)2 . 

Proof. Let  𝑒1 , 𝑒2  be a basis of 𝐴 such that the multiplication of 𝐴 is given by the table (1). Then for an arbitrary 

element 𝑎 =  𝑥𝑒1 + 𝑦𝑒2  in 𝐴, we have  

𝐿𝑎 𝑒1  =  𝑥𝛼 + 𝑦𝛼 ′ 𝑒1 + (𝑥𝛽 + 𝑦𝛽′ )𝑒2 and  𝐿𝑎 𝑒2  =  𝑥𝜆 + 𝑦𝜆′ 𝑒1 + (𝑥𝜇 + 𝑦𝜇′ )𝑒2 

So the matrix of  𝐿𝑎  in the above basis can be expressed as follow  

𝑀𝐿𝑎
=  

𝑥𝛼 + 𝑦𝛼′ 𝑥𝜆 + 𝑦𝜆′

𝑥𝛽 + 𝑦𝛽′ 𝑥𝜇 + 𝑦𝜇′  

We have  

𝑑𝑒𝑡(𝑀𝐿𝑎
)  =  𝑥2(𝛼𝜇 − 𝛽𝜆) + 𝑥𝑦(𝛼′𝜇 + 𝛼𝜇′ − 𝛽′𝜆 − 𝛽𝜆′) + 𝑦2(𝛼′𝜇′ − 𝛽′𝜆′) 

So 𝐴 is a division algebra if and only if 𝑑𝑒𝑡(𝑀𝐿𝑎
) ≠ 0, which is equivalent to  

4(𝛼𝜇 − 𝛽𝜆) (𝛼′𝜇′ − 𝛽′𝜆′) > (𝛼′𝜇 + 𝛼𝜇′ − 𝛽′𝜆 − 𝛽𝜆′)2. 
By the same way we have the right multiplication of a,  𝑅𝑎  is invertible if and only if 𝑑𝑒𝑡(𝑀𝑅𝑎

) ≠ 0, which is 
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equivalent to         4 𝛼𝛽′ − 𝛽𝛼′  𝜆𝜇′ − 𝜇𝜆′ >  𝛼′𝜇 − 𝛼𝜇′ − 𝛽′𝜆 + 𝛽𝜆′ 2.                                 

Let 𝐴1(𝛾, 𝛿), 𝐴2(𝛾, 𝛿), and 𝐴3(γ, δ), be the real pre-Hilbert algebras defined by the multiplication tables (2), (3) and (4) 

respectively, with (𝛾, 𝛿)  ∈ ℝ × ℝ∗ (ℝ∗: the set of nonzero real numbers). And let {𝑒, 𝑢} be an orthonormal basis 

(where 𝑒 is a nonzero idempotent) 
 

 𝑒 𝑢 
𝑒 𝑒 𝛾𝑒 +  𝛿𝑢 
𝑢 −𝛾𝑒 –  𝛿𝑢 𝑒 

(𝟐) 
𝐴1(𝛾, 𝛿) 

 
 𝑒 𝑢 
𝑒 𝑒 𝛾𝑒 +  𝛿𝑢 
𝑢 −𝛾𝑒 + (2 − 𝛿)𝑢 −𝑒 

  𝟑  

𝐴2(𝛾, 𝛿) 

 
 𝑒 𝑢 
𝑒 𝑒 𝛾𝑒 +  𝛿𝑢 
𝑢 −𝛾𝑒 − (2 + 𝛿)𝑢 − 𝑒 

  𝟒  

𝐴3(𝛾, 𝛿) 
 

Remark 3.2                                                                                                                                             

i) The real algebra given by table (2) is a division algebra for all (𝛾, 𝛿) ∈  ℝ × ℝ∗ 
ii) The real algebra given by table (3) is a division algebra, if and only if,   𝛾2 + 𝛿2 <  2𝛿 
iii) The real algebra given by table (4) is a division algebra, if and only if   𝛾2 + 𝛿2 < −2𝛿 

Proof. Consequence of the theorem 3.1                                                           

Lemma 3.3 The algebras 𝐴1(𝛾, 𝛿), 𝐴2(𝛾, 𝛿), and 𝐴3(𝛾, 𝛿) satisfies the identity  a2 =  a 2  for all 𝑎 ∈ 𝐴 and 

(𝛾, 𝛿)  ∈ ℝ × ℝ∗. 

Proof. According to remark 3.2, 𝐴1(𝛾, 𝛿) , with 𝛾, 𝛿 ∈  ℝ∗ , is a two-dimensional real division algebra. And let 

𝑎 ∈  𝐴1(𝛾, 𝛿), can be written as 𝑎 =  휀𝑒 +  휁𝑢 (where {𝑒, 𝑢} is an orthonormal basis of 𝐴1(𝛾, 𝛿)). So by a simple 

calculation we have  𝑎2 =  𝑎 2, similarly proof for the others cases 𝐴2(𝛾, 𝛿), and 𝐴3(𝛾, 𝛿).    

Lemma 3.4 Let 𝐴 be a real pre-Hilbert algebra, without divisors of zero, and satisfying  a2 =  a 2 for all 𝑎 ∈  𝐴. 

Then the following equalities hold for all orthogonal elements 𝑥, 𝑦 ∈ 𝐴: 

1) (𝑥2|𝑥𝑦 +  𝑦𝑥)  =  0 
2)  𝑥𝑦 + 𝑦𝑥 2 + 2 𝑥2 𝑦2 = 2 𝑥 2 𝑦 2 

Proof. The equality  𝑥2 2 = ( 𝑥 2)2 gives meaning to a polynomial 𝑃 with real coefficients of degree ≤  3 in 𝜆, 
identically null, such that:                                                                                                                                             

𝑃(𝜆)  =  2(𝑥2|𝑥𝑦 +  𝑦𝑥)𝜆3 + ( 𝑥𝑦 + 𝑦𝑥 2 + 2 𝑥2 𝑦2 − 2 𝑥 2 𝑦 2 )𝜆2 + 2(𝑦2|𝑥𝑦 +  𝑦𝑥)𝜆. 
Thus 

1) (𝑥2|𝑥𝑦 +  𝑦𝑥)  =  0 

2)   𝑥𝑦 + 𝑦𝑥 2 + 2 𝑥2 𝑦2 = 2 𝑥 2 𝑦 2.                                                          

 

Now we can state our main result in this section 
 

Theorem 3.5 Let 𝐴  be a two-dimensional real pre-Hilbert algebra, without divisors of zero, and satisfying      

 a2 =  a 2 for all 𝑎 ∈ 𝐴. Then, 𝐴 is isomorphic to 𝐴1(𝛾, 𝛿), 𝐴2(𝛾, 𝛿), or 𝐴3(𝛾, 𝛿) for all  𝛾, 𝛿 ∈  ℝ × ℝ∗, such 

that  𝛾2 + 𝛿2 <  ±2𝛿. 

Proof. According to lemma 2.4,  𝐴 is a two-dimensional real division algebra, containing a nonzero idempotent 𝑒. And 

let {𝑒, 𝑢} be an orthonormal basis of 𝐴. Then there exists 𝛾, 𝛾’ ∈  ℝ and 𝛿, 𝛿′ ∈  ℝ∗, such that                                                                 

𝑒𝑢 =  𝛾𝑒 +  𝛿𝑢  and  𝑢𝑒 =  𝛾′𝑒 +  𝛿′𝑢. 
We have                                                                                                            
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𝑒𝑢 + 𝑢𝑒 = (𝛾 +  𝛾′)𝑒 + (𝛿 + 𝛿′)𝑢, which means by lemma 3.4 (1) That 𝛾 =  − 𝛾′ and  𝑒𝑢 +  𝑢𝑒 =  (𝛿 +  𝛿′)𝑢. 
Since 

0 =  (𝑢2|𝑒𝑢 +  𝑢𝑒)  =  (𝛿 +  𝛿′)(𝑢2|𝑢), 

Then  𝑒𝑢 +  𝑢𝑒 =  0 or  𝑢2 =  ±𝑒,  we distinguish the following cases. 

case 1: If 𝑢𝑒 +  𝑒𝑢 =  0, then by lemma 3.4 (2) we have (𝑒|𝑢2)  =  1, so  𝑢2 − 𝑒 2 =  2 − 2 =  0. Consequently  

𝑢2 =  𝑒, thus 𝐴 is isomorphic to 𝐴1(𝛾, 𝛿).                                                                                                    

case 2: If 𝑢2 = − 𝑒, then (𝛿 +  𝛿′)2 =  4 (lemma 3.4 (2)). That is   𝛿 +  𝛿′ =  2 𝑜𝑟 𝛿 +  𝛿′ =  −2 

i) If 𝛿 +  𝛿′ =  2 then 𝛿′ =  2 −  𝛿. So 𝐴 is isomorphic to 𝐴2(𝛾, 𝛿). 

ii) If 𝛿 + 𝛿′ =  − 2 then 𝛿′ =  −2 − 𝛿. So 𝐴 is isomorphic to 𝐴3(𝛾, 𝛿).                         
 

We get the following results. 
 

Corollary 3.6 Let 𝐴 be a two-dimensional real pre-Hilbert algebra, containing a nonzero central idempotent 𝑒, without 

divisors of zero and satisfying  a2 =  a 2 for all 𝑎 ∈ 𝐴. Then 𝐴 is isomorphic to ℂ or ℂ
∗

. 

Proof. According to theorem 3.5, the algebra 𝐴  is isomorphic to 𝐴1(𝛾, 𝛿), 𝐴2(𝛾, 𝛿) , or 𝐴3(𝛾, 𝛿)  for all       

(𝛾, 𝛿)  ∈ ℝ × ℝ∗, such that 𝛾2 + 𝛿2 < ±2𝛿. Since 𝑒 is a central idempotent, then we have the following cases: 

i) If 𝐴 is isomorphic to 𝐴1(𝛾, 𝛿), then 𝑒𝑢 =  −𝑢𝑒 which is absurd. 

ii) If 𝐴 is isomorphic to 𝐴2(𝛾, 𝛿), then 𝛾 =  0 and 𝛿 =  1. So 𝐴 is isomorphic to ℂ 

iii) If 𝐴 is isomorphic to 𝐴3(𝛾, 𝛿), then 𝛾 =  0 and 𝛿 =  −1. So 𝐴 is isomorphic to ℂ
∗

.          
 

Corollary 3.7 Let 𝐴 be a two-dimensional real third power associative pre-Hilbert algebra, without divisors of zero and 

satisfying  a2 =  a 2for all 𝑎 ∈  𝐴. Then 𝐴 is isomorphic to ℂ or  ℂ
∗

. 

Proof. According to theorem 3.5, the algebra A is isomorphic to 𝐴1(𝛾, 𝛿), 𝐴2(𝛾, 𝛿) , or 𝐴3(𝛾, 𝛿)  for all       

(𝛾, 𝛿)  ∈ ℝ × ℝ∗, such that 𝛾2 + 𝛿2 < ±2𝛿. The identity (𝑢, 𝑢, 𝑢)  =  0 imply that 𝑒𝑢 =  𝑢𝑒, so 𝑒 is a nonzero 

central idempotent. We conclude that 𝐴 is isomorphic to ℂ or ℂ
∗

 (Corollary 3.6).                   
 

Now we conclude the theorem of A. Rodriguez 

Corollary 3.8 Let 𝐴 be a two-dimensional real absolute valued algebra. Then 𝐴 is isomorphic to ℂ, ℂ∗, ∗ ℂ or ℂ
∗

. 

Proof. Since 𝐴 is a finite-dimensional real absolute valued algebra, then 𝐴 satisfying  a2 =  a 2 for all 𝑎 ∈  𝐴. and 

it’s norm comes from an inner product [2]. Using theorem 3.5, the algebra 𝐴 is isomorphic to 𝐴1(𝛾, 𝛿), 𝐴2(𝛾, 𝛿), or 

𝐴3(𝛾, 𝛿)for all (𝛾, 𝛿)  ∈ ℝ × ℝ∗, such that 𝛾2 + 𝛿2 < ±2. We have                                                                                                                                                                                                                                                 

 𝑢𝑒 𝑒 = ± 𝑢𝑒 𝑢2 =  ± 𝑢 𝑒 =  0  𝑎𝑛𝑑  (𝑒𝑢|𝑒)  =  ±(𝑒𝑢|𝑢2)  =  ±(𝑢|𝑒)  =  0 

This imply that the two elements 𝑢𝑒 𝑎𝑛𝑑 𝑢 (respectively 𝑒𝑢 𝑎𝑛𝑑 𝑢) are linearly dependent, thus γ = 0. Therefore 

i) If 𝐴 is isomorphic to 𝐴1(𝛾, 𝛿), then the identity 𝑒𝑢 =  −𝑢𝑒 = ±𝑢 imply that 𝐴 is isomorphic to  ℂ∗ or ∗ ℂ 

ii) If 𝐴 is isomorphic to 𝐴2(𝛾, 𝛿), then the identity  𝑒𝑢 =  𝑢𝑒 =  𝑢  𝑒 = 1, imply that, 𝛿 =  1 which means 

that 𝐴 is isomorphic to ℂ. 

iii) If 𝐴 is isomorphic to 𝐴3(𝛾, 𝛿), then the identity  𝑒𝑢 =  𝑢𝑒 =  𝑢  𝑒 = 1, imply that, 𝛿 = −1 which means 

that 𝐴 is isomorphic to  ℂ
∗

.                                                                         
 

4 - Pre-Hilbert algebras containing a nonzero central idempotent 𝒇 such that  𝒇𝒂 =  𝒂  and       

 𝒂𝟐 ≤  𝒂 𝟐 
 

We begin with the following preliminary results.                                                                                                         
 

Proposition 4.1 Let 𝐴 be real pre-Hilbert algebra containing a nonzero central idempotent 𝑓 such that  𝑓𝑎 =  𝑎   

and   a2 ≤  a 2 for all 𝑎 ∈ 𝐴. Then the following equalities hold:  

𝑖)  𝑎2 =  𝑎 2 
𝑖𝑖)  𝑎2 −  2(𝑎|𝑓)𝑓𝑎 +   𝑎 2 =  0 

Proof. i) Let 𝑎 ∈ 𝐴, having an orthogonal sum decomposition 𝜆𝑓 + 𝑢, the equality  𝑎2 2 ≤ ( 𝑎 2)2 can be written                                                                                                         

                                      𝜆2 + 2𝜆𝑓 + 𝑢2 2 ≤ (𝜆2 +  𝑢 2)2                                   (1) 

As  𝑓𝑥 =  𝑥 , then (𝑓𝑥|𝑓)  =  (𝑓|𝑥) for all 𝑥 ∈  𝐴. The development of (1) gives  

                 2𝜆2  𝑓 𝑢2 +  𝑢 2 + 4𝜆 𝑓𝑢 𝑢2 +  𝑢2  2 −  𝑢 4 ≤  0        ((𝑓|𝑢)  =  0)                (2) 
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We replace λ by –λ we get 

                 2𝜆2  𝑓 𝑢2 +  𝑢 2 − 4𝜆 𝑓𝑢 𝑢2 +  𝑢2  2 −  𝑢 4 ≤  0                                      (3) 

We add (2) and (3), we have 

                 2𝜆2 ((𝑓|𝑢2) +  𝑢 2) +  𝑢2 2  −  𝑢 4 ≤ 0                                                  (4) 

Since (4) hold for all 𝜆 ∈ ℝ and  𝑢2 2 −  𝑢 2 ≤  0, then  (𝑓|𝑢2) ≤  − 𝑢 2. 
According to the Cauchy-Schwarz inequality, we have 

|(𝑓|𝑢2)|  ≤   𝑓  𝑢2 ≤  𝑢 2. 
Then (𝑓|𝑢2)  =  −  𝑢 2 also   𝑢2 =   𝑢 2, thus 

 𝑢2 +  𝑢 2 𝑓 2 =  𝑢 2 +  2 𝑢 2(𝑢2|𝑓) +  𝑢 2 𝑓 2 
                                =  𝑢 4 −  2 𝑢 4 +  𝑢 4 
                                =  0 

hence 𝑢2 = − 𝑢 2 𝑓. On the other hand 𝑎2 =  𝜆2𝑓 + 2𝜆𝑓𝑢 + 𝑢2, then 

                                 𝑎2 2 =  (𝜆2 −  𝑢 2)𝑓 + 2𝜆𝑓𝑢 2 
                                      = (𝜆2 −  𝑢 2)2 +  4𝜆2 𝑢 2         ((𝑓𝑢|𝑓)  =  (𝑓|𝑢)  =  0) 
                                      = (𝜆2 +  𝑢 2)2 

                                        =  𝑎 4 
Therefore  𝑎2 =  𝑎 2 
ii) We have 

                                         𝑎2 =  𝜆2𝑓 + 2𝜆𝑓𝑢 + 𝑢2 
            = −𝜆2𝑓 +  2𝜆𝑓(𝜆𝑓 +  𝑢)  −  𝑢 2 𝑓 
            =  2𝜆𝑓(𝜆𝑓 +  𝑢)  −  (𝜆2 +  𝑢 2)𝑓 

                                                                           =  2(𝑓|𝑎)𝑓𝑎 −   𝑎 2 𝑓.                                 
 

Remark 4.2  Let 𝑉 =  {𝑢 ∈ 𝐴 | (𝑢|𝑓)  =  0}, then the following equalities hold:  

i) 𝑉 =  {𝑢 ∈ 𝐴 | 𝑢2 = − 𝑢 2𝑓 } 

ii) 𝑢𝑣 +  𝑣𝑢 =  −2(𝑢|𝑣)𝑓 for all 𝑢, 𝑣 ∈ 𝑉 . 

iii) The product  𝑥 ∧ 𝑦 =  𝑥𝑦 −  (𝑥𝑦|𝑓)𝑓 for all 𝑥, 𝑦 ∈  𝑉 endows 𝑉 of an anti-commutative algebra structure 
Proof. 
i) According to proposition 4.1 (i). 

ii) Let 𝑥, 𝑦 ∈  𝑉, we have 𝑥 + 𝑦 ∈  𝑉. Then (𝑥 + 𝑦)2 = − 𝑥 + 𝑦 2 𝑓   thus 𝑥𝑦 +  𝑦𝑥 =  −2(𝑥|𝑦)𝑓. 
iii) Let 𝑥, 𝑦 ∈ 𝑉 , we have 

𝑥𝑥 ∧ 𝑦 + 𝑦 ∧ 𝑥 =  𝑥𝑦 −  (𝑥𝑦|𝑓)𝑓 +  𝑦𝑥 −  (𝑦𝑥|𝑓)𝑓 
                              =  𝑥𝑦 +  𝑦𝑥 −  (𝑥𝑦 +  𝑦𝑥|𝑓)𝑓 
                              =  −2(𝑥|𝑦)𝑓 +  2(𝑥|𝑦)𝑓 

                                                              =  0                                                 

Lemma 4.3. Let 𝐴 be a real pre-Hilbert algebraic algebra of degree two, without divisors of zero and containing a 

nonzero central idempotent 𝑓 such that  𝑓𝑎 =  𝑎  and  𝑎2 ≤  𝑎 2 for all 𝑎 ∈ 𝐴. Then 𝐴 (𝑓, 𝑣)  =  𝐴 (𝑣) is 

isomorphic to ℂ or ℂ
∗

, for every  𝑣 ∈  𝑉. 

Proof. It suffices to prove that 𝑓𝑣 =  𝑣 𝑜𝑟 𝑓𝑣 =  −𝑣 for every 𝑣 ∈  𝑉, without loss of generality we will assume that 

𝑣 ≠  0, according to remark 4.2 (i), 𝑣2 = − 𝑣 2 𝑓. since 𝐴 is algebraic algebra of degree two and satisfying 

 𝑎2 =  𝑎 2for all 𝑎 ∈ 𝐴 (proposition 4.1 (i)), then by corollary 3.6 𝐴 is power-commutative algebra. It is well 

known that (𝑎𝑎2)𝑎 =  𝑎(𝑎2𝑎) for any element 𝑎 in 𝐴, hence                           

𝑣(𝑣2𝑣) = − 𝑣 2𝑣(𝑓𝑣)  𝑎𝑛𝑑  (𝑣2𝑣)𝑣 = − 𝑣 2(𝑓𝑣)𝑣.  

So 𝑣(𝑓𝑣)  =  (𝑣𝑓)𝑣, 𝑎𝑠  𝑣𝑓 =  𝑓𝑣 =  𝑣  𝑎𝑛𝑑 (𝑓𝑣|𝑓)  =  (𝑣𝑓|𝑓)  = (𝑣|𝑓)  =  0, then (𝑣𝑓)2 =  𝑣2 =

− 𝑣 2 𝑓.  𝑆𝑜 𝑓𝑣 =  𝑣 𝑜𝑟 𝑓𝑣 =  −𝑣, thus 𝐴(𝑣) is isomorphic to ℂ or ℂ
∗

.                           
 

In the next theorem we give some conditions implying that the real pre-Hilbert algebra to be flexible algebra. 
 

Theorem 4.4. Let 𝐴 be a real pre-Hilbert algebraic algebra, without divisors of zero and containing a nonzero central 

idempotent 𝑓 such that  𝑓𝑎 =  𝑎   𝑎𝑛𝑑   𝑎2 ≤  𝑎 2for all 𝑎 ∈  𝐴. Then the following assertions are equivalent: 
 

i) 𝐴 is flexible; 
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ii) 𝐴 has degree two and if {𝑓, 𝑢, 𝑣} is an orthogonal family, then {𝑓, 𝑢, 𝑣, 𝑢𝑣} is too, where 𝑢, 𝑣 ∈ 𝑉 . 

Proof. 𝑖) ⇒ 𝑖𝑖) Assume that 𝐴 is flexible algebra, according to proposition 2.2 and theorem 2.3, 𝐴 has degree two. 

Let 𝑤: = 𝑢𝑣 −  (𝑢𝑣|𝑓)𝑓 −  (𝑢𝑣|𝑢)𝑢 −  (𝑢𝑣|𝑣)𝑣 , where 𝑢, 𝑣 ∈ 𝑉 , without loss of generality we assume that 

𝑤 ≠ 0. We have                                                                                                  

(𝑤|𝑓)  =  (𝑤|𝑢)  =  (𝑤|𝑣)  =  0 

Since 𝐴 is flexible and 𝑢𝑣 +  𝑣𝑢 =  0 (remark 4.2 (ii)), then 

0 =  𝑢𝑤 +  𝑤𝑢 =  2(𝑢𝑣|𝑢)𝑓 +  2(𝑢𝑣|𝑓)𝑢 
This gives us (𝑢𝑣|𝑢)  =  (𝑢𝑣|𝑓)  =  0, similarly (𝑢𝑣|𝑣)  =  0. Thus {𝑓, 𝑢, 𝑣, 𝑢𝑣} is an orthogonal family. 

𝑖𝑖) ⇒  𝑖) Let 𝑥, 𝑦 ∈ 𝑉 such that  𝑥 =   𝑦 =  1 and 𝑧 ∶=  𝑦 −  (𝑦|𝑥)𝑥, without loss of generality we can assume 

that 𝑧 ≠ 0, wehave (𝑧|𝑓)  =  (𝑧|𝑥)  =  0. Then 

0 =  (𝑥𝑧|𝑥) 
    =  (𝑥(𝑦 −  (𝑦|𝑥)𝑥)|𝑥) 
    =  (𝑥𝑦 +  (𝑦|𝑥)𝑓|𝑥)      (𝑥2 = −𝑓, (𝑟𝑒𝑚𝑎𝑟𝑘 4.2 (𝑖)) 
    =  (𝑥𝑦|𝑥) 

The equality  𝑓𝑎 =  𝑎  imply that (𝑓𝑎|𝑓)  =  (𝑓|𝑎), for all 𝑎 ∈ 𝐴. On the other hand 

0 =  (𝑥𝑧|𝑓) 
     =  (𝑥(𝑦 −  (𝑦|𝑥)𝑥)|𝑓) 
     =  (𝑥𝑦 +  (𝑦|𝑥)𝑓|𝑓) 
     =  (𝑥𝑦|𝑓)  +  (𝑥|𝑦) 

This means that (𝑥𝑦|𝑓)  =  −(𝑥|𝑦), in the same way, we get (𝑦𝑥|𝑓)  = −(𝑥|𝑦). Moreover, we have 

(𝑥𝑦)𝑥 −  𝑥(𝑦𝑥)  =  (𝑥 ∧ 𝑦 + (𝑥𝑦|𝑓)𝑓)𝑥 −  𝑥(𝑦 ∧ 𝑥 +  (𝑦𝑥|𝑓)𝑓) 
                                =  (𝑥 ∧ 𝑦)𝑥 +  𝑥(𝑥 ∧ 𝑦)  + ((𝑥𝑦|𝑓)𝑓 −  (𝑦𝑥|𝑓)𝑓)𝑥 
                               =  −2(𝑥|𝑥 ∧ 𝑦)𝑓 +  ((𝑥𝑦|𝑓)𝑓 −  (𝑦𝑥|𝑓)𝑓)𝑥       (𝑟𝑒𝑚𝑎𝑟𝑘 4.2 (𝑖𝑖)) 
                               =  ((𝑥𝑦|𝑓)𝑓 −  (𝑦𝑥|𝑓)𝑓)𝑥. 
                               =  0 

Since 𝐴 is algebraic algebra of degree two, then the sub-algebras 𝐴(𝑓, 𝑥) and 𝐴(𝑓, 𝑦) are of dimension two and 

isomorphic to ℂ or ℂ
∗

 (lemma 4.3). We have the following cases: 

1) If 𝑓 is the only idempotent of 𝐴, then 𝑥𝑓 =  𝑓𝑥 =  𝑥 for all 𝑥 ∈ 𝐴. Which means that 𝐴 is a unit algebra, hence 

for all 𝑎 =  𝜆𝑓 +  𝑥 𝑎𝑛𝑑 𝑏 =  𝛾𝑓 +  𝑦 in 𝐴, we have 

            (𝑎𝑏)𝑎 −  𝑎(𝑏𝑎)  =  [(𝜆𝑓 +  𝑥)(𝛾𝑓 +  𝑦)](𝜆𝑓 +  𝑥)  −  (𝜆𝑓 +  𝑥)[(𝛾𝑓 +  𝑦)(𝜆𝑓 +  𝑥)] 
                                 =  (𝑥𝑦)𝑥 −  𝑥(𝑦𝑥) 
                                  =  0 
Then 𝐴 is flexible.                

2) If 𝑓 is not unique, then 𝑥𝑓 =  𝑓𝑥 =  −𝑥 for all 𝑥 ∈  𝑉. Otherwise, if there exist a nonzero element 𝑦 ∈  𝑉 such 

that 𝑦𝑓 =  𝑓𝑦 =  𝑦. Then  

    𝑓(𝑥 +  𝑦)  =  ±(𝑥 +  𝑦)        (Lemma 4.3) 

                                        −𝑥 +  𝑦 =  ±(𝑥 +  𝑦) 

This imply that 𝑥 =  0 or 𝑦 =  0, which is absurd. Therefore for all 𝑎 = 𝜆𝑓 +  𝑥 and 𝑏 =  𝛾𝑓 +  𝑦 in 𝐴, we have 

(𝑎, 𝑏, 𝑎)  =  (𝜆𝑓 +  𝑥, 𝛾𝑓 +  𝑦, 𝜆𝑓 +  𝑥) 
                 =  (𝜆𝑓, 𝛾𝑓, 𝑥)  + (𝜆𝑓, 𝑦, 𝑥)  +  (𝑥, 𝛾𝑓, 𝜆𝑓)  + (𝑥, 𝑦, 𝜆𝑓)  +  (𝑥, 𝑦, 𝑥) 

Or  (𝑥, 𝑦, 𝑥)  =  0 and (𝜆𝑓, 𝛾𝑓, 𝑥)  +  (𝑥, 𝛾𝑓, 𝜆𝑓)  =  0. Then 

        (𝑎, 𝑏, 𝑎)  =  (𝜆𝑓, 𝑦, 𝑥)  + (𝑥, 𝑦, 𝜆𝑓) 
                               =  𝜆[(𝑓𝑦)𝑥 −  𝑓(𝑦𝑥)  +  (𝑥𝑦)𝑓 −  𝑥(𝑦𝑓)] 
                               =  𝜆[−𝑦𝑥 −  𝑓(𝑦 ∧ 𝑥 +  (𝑥𝑦|𝑓)𝑓)  + (𝑥 ∧ 𝑦 + (𝑥𝑦|𝑓)𝑓)𝑓 +  𝑥𝑦] 

                            =  𝜆[−𝑦𝑥 +  𝑦 ∧ 𝑥 −  𝑥 ∧ 𝑦 +  𝑥𝑦]       ((𝑥𝑦|𝑓)  =  (𝑦𝑥|𝑓)  =  −(𝑥| =  𝜆[(𝑥|𝑦)𝑓 −  (𝑥|𝑦)𝑓] 
                            =  0 

Then 𝐴 is flexible.                                                                                  

 
Remark 4.5. In [4], we constructed an example of four-dimensional absolute valued algebra containing a nonzero 
central idempotent of degree four which is not flexible. The last imply that the condition algebraic algebra of degree two 

is necessary for 𝐴 to be flexible. 
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In the rest of this section, we prove that, if 𝐴 is a real pre-Hilbert algebra, without divisors of zero and contains 

a nonzero central idempotent 𝑓  such that  𝑓𝑎 =  𝑎  and  𝑎2 ≤  𝑎 2  for all 𝑎 ∈ 𝐴.  Then the following 
statements are equivalent: 

1. 𝐴 is power commutative. 

2. 𝐴 is third power associative. 

3. 𝐴 is algebraic of degree two. 
 

We need the following preliminary result. 
 

Lemma 4.6. Let 𝐴 be a real third power associative pre-Hilbert algebra, without divisors of zero and contains a 

nonzero central idempotent 𝑓 such that  𝑓𝑎 =  𝑎  and  𝑎2 ≤  𝑎 2 for all 𝑎 ∈ 𝐴, then 𝐴(𝑣) is isomorphic 

to ℂ or ℂ
∗

 for every 𝑣 ∈  𝑉. 

Proof. It suffices to prove that 𝑒𝑣 =  𝑣 or 𝑒𝑣 =  −𝑣 for every 𝑣 ∈ 𝑉, without loss of generality we will assume that 

𝑣 ≠  0. According to remark 4.2 (i), 𝑣2 = −  𝑣 2𝑓  as 𝐴 is a third-power associative algebra. Then a linearization of 

the identity (𝑥, 𝑥, 𝑥)  =  0 gives 

                                  [𝑥2 , 𝑦]  + [𝑥𝑦 +  𝑦𝑥, 𝑥]  =  0                                            (5)  

where [𝑥, 𝑦] denotes the quantity 𝑥𝑦 – 𝑦𝑥. 

By putting 𝑦 =  𝑥2 in the equality (5), we get the well-known identity (𝑥, 𝑥2 , 𝑥)  =  0. So (𝑎𝑎2)𝑎 =  𝑎(𝑎2𝑎) for 

any element 𝑎 in 𝐴, hence 

𝑣 𝑣2𝑣 =  − 𝑣 2𝑣 𝑓𝑣  𝑎𝑛𝑑 (𝑣2𝑣)𝑣 =  − 𝑣 2(𝑓𝑣)𝑣 
So 𝑣(𝑓𝑣) =  (𝑣𝑓)𝑣 =  (𝑓𝑣)𝑣, on the other hand  𝑣𝑓 =  𝑓𝑣 =  𝑣  and (𝑓𝑣|𝑓) = (𝑣𝑓|𝑓) = (𝑣|𝑓) =  0. Then  

(𝑣𝑓)2 = 𝑣2 =  − 𝑣 2 𝑓. This imply 𝑓𝑣 =  𝑣 𝑜𝑟 𝑓𝑣 =  −𝑣, thus 𝐴(𝑣) is isomorphic to ℂ or ℂ
∗

. 
 

Note that in the general case, if the algebra 𝐴  is power commutative. We have for every 𝑎 ∈  𝐴  the 

sub-algebra 𝐴(𝑎)  is commutative, so 𝑎2𝑎 =  𝑎𝑎2  which means that (𝑎, 𝑎, 𝑎)  =  0 , then 𝐴  is third power 

associative.             
 

In the next theorem we have the reciprocally case. 
 

Theorem 4.7. Let 𝐴 is a real pre-Hilbert algebra, without divisors of zero and containing a nonzero central idempotent 

𝑓 such that  𝑓𝑎 =  𝑎  𝑎𝑛𝑑   𝑎2 ≤  𝑎 2 for all 𝑎 ∈ 𝐴. Then the following statements are equivalent:  

1. 𝐴 is power commutative; 

2. 𝐴 is third power associative; 

3. 𝐴 is algebraic of degree two. 

Proof. (1)  ⇒ (2) By definition. 

(2) ⇒ (3) Assume that 𝐴 is third power associative and let 𝑣 ∈  𝑉, we have 𝑣2 =  − 𝑣 2 𝑓 (proposition 4.1 (i)). By 

lemma 4.6, 𝐴(𝑎) is isomorphic  to ℂ or ℂ
∗

, and consequently 𝐴 is algebraic of degree two. 

(3) ⇒ (1) Using lemma 4.3.                                                                           
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