American Review of Mathematics and Statistics June 2022, Vol. 10, No. 1, pp. 5-11 ISSN: 2374-2348 (Print), 2374-2356 (Online) Copyright © The Author(s).All Rights Reserved. Published by American Research Institute for Policy Development DOI: 10.15640/arms.v10n1a5 URL: https://doi.org/10.15640/arms.v10n1a5

On Pre-Hilbert Algebras Containing a nonzero Central Idempotent f such that ||fa|| = ||a|| and $||a^2|| \le ||a||^2$

Noureddine Motya¹, Hakima Mouanis² & Abdelhadi Moutassim³

Abstract

Let A be a real pre-Hilbert algebra without divisors of zero, we prove that if A has dimension two and satisfying $||a^2|| = ||a||^2$, for all $a \in A$, Then A is isomorphic to a new classes of two dimensional pre-Hilbert algebras. We also characterize the pre-Hilbert algebraic algebras without divisors of zero and containing a nonzero central idempotent f such that ||fa|| = ||a|| and $||a^2|| \le ||a||^2$, to be flexible algebras. Furthermore, we prove that if A contains a nonzero central idempotent f such that ||fa|| = ||a|| and $||a^2|| \le ||a||^2$, to be flexible algebras. Furthermore, we prove that if A contains a nonzero central idempotent f such that ||fa|| = ||a|| and $||a^2|| \le ||a||^2$ for all a in A, then the following statements are equivalent:

- 1. *A* is power commutative
- 2. *A* is third power associative
- 3. *A* is algebraic of degree two.

Key Words: Pre-Hilbert algebras, flexible, central idempotent, third power associative algebras.

1 - Introduction

Let *A* be a non-necessarily associative real algebra which is normed as real vector space. We say that a real algebra is a pre-Hilbert algebra, if it's norm $\|.\|$ come from an inner product (.|.), and it's said to be absolute valued algebras, if it's norm satisfy the equality ||ab|| = ||a|| ||b||, for all $a, b \in A$. We recall that the set of pre-Hilbert absolute valued algebras is contained in the set of pre-Hilbert algebras satisfying the identity $||a^2|| = ||a||^2$ for all $a \in A$. Note that, the norm of any absolute valued algebras containing a nonzero central idempotent (or finite dimensional) come from an inner product [2] and [3]. We assume that *A* is pre-Hilbert algebra, without divisors of zero and satisfying $||a^2|| = ||a||^2$ for all $a \in A$. An interesting Rodriguez's theorem [6] assert that every two-dimensional real absolute valued algebra is isomorphic to $\mathbb{C}, \mathbb{C}^*, *\mathbb{C}$ or \mathbb{C} (the real algebras obtained by endowing the space \mathbb{C} with the product $x * y = \bar{x}y, x * y = x\bar{y}$, and $x * y = \bar{x}\bar{y}$ respectively). We extend the above mentioned theorem to more general situation, indeed, we prove that if *A* has dimension two, then *A* is isomorphic to a new classes of two-dimensional pre-Hilbert algebras (section 3). Also we show, in section 4, that if *A* is algebraic algebra and contains a nonzero central idempotent *f* such that ||fa|| = ||a|| and $||a^2|| \leq ||a||^2$ for all $a \in A$, then the following assertion are equivalent:

i) A is flexible.

ii) A has degree two and if $\{f, u, v\}$ is an orthogonal family, then $\{f, u, v, uv\}$ is too, where $u, v \in V := \{w \in A | (w|f) = 0\}$.

E-mail : noureddine.motya@usmba.ac.ma

¹ Laboratoire des Sciences Mathématique et Application (LASMA), Faculté des Sciences Dhar El Mahraz Fès, Maroc.

² Laboratoire des Sciences Mathématique et Application (LASMA), Faculté des Sciences Dhar El Mahraz Fès, Maroc. E-mail : hmouanis@yahoo.com

³ Centre Régional des Métier de l'Education et de la Formation, Casablanca-Settat Annexe Provinciale Settat, Maroc E-mail : moutassim-1972@hotmail.fr

And the counter example is given. Moreover, we prove that if A contains a nonzero central idempotent f such that ||fa|| = ||a|| and $||a^2|| \le ||a||^2$ for all $a \in A$, then the following statements are equivalent:

- 1.*A* is power commutative
- 2.A is third power associative
- 3. *A* is algebraic of degree two.

2 - Notation and preliminaries results

In this paper all the algebras are considered over the real numbers field \mathbb{R} .

Definition 2.1 Let *B* be an arbitrary algebra.

i - B is called flexible, if it's satisfy the identity (x, y, x) = 0 for all $x, y \in B$ (where (.,.,.) = 0 denote the associatore).

ii - We say that B is third power associative, if it's satisfy the identity (x, x, x) = 0 for all $x \in B$.

iii - B is said power commutative if any sub-algebras generated by a single element is commutative.

iv - B is called a division algebra if the operators L_x and R_x of left and right multiplication by x are bijective for all $x \in B \setminus \{0\}$.

v - An element a in B is said to be algebraic (of degree n) if the sub-algebra B(a) generated by a is finite dimensional (of dimension n). We say that B is algebraic if all its elements are algebraic. B is said to be algebraic of bounded degree if there exist a non-negative integer number n such that $\dim B \leq m$ for any element a in B. If this is the case, then the small such number m is called the degree of B. Clearly every finite-dimensional algebra is algebraic of bounded degree. The (1, 2, 4, 8) theorem show that the degree of every finite-dimensional real division algebra is 1, 2, 4 or 8.

We need the following relevant results:

Proposition 2.2 [1] If $\{x_i\}$ si a set of commuting element in a flexible algebra A over a field characteristic not two. Then the sub-algebra generated by the $\{x_i\}$ is commutative.

Theorem 2.3 [5]. Let A be a real commutative algebraic algebra without divisors of zero, then $\dim A \leq 2$. Lemma 2.4 [7]. Every algebra in which $x^2 = 0$ only if x = 0, contains a nonzero idempotent.

3 – Two dimensional pre-Hilbert algebras, satisfying $||a^2|| = ||a||^2$

Firstly, we would like to consider the general situation of a two-dimensional real algebra A. let $\{e_1, e_2\}$ be a basis of A and α , β , λ , μ , α' , β' , λ' , $\mu' \in \mathbb{R}$. The product in A is determined by the multiplication table

	e_1	<i>e</i> ₂	
e_1	$\alpha e_1 + \beta e_2$	$\lambda e_1 + \mu e_2$	
<i>e</i> ₂	$\alpha' e_1 + \beta' e_2$	$\lambda' e_1 + \mu' e_2$	
(1)			

(1) **Theorem 3.1.** The algebra A determined by the table (1) is division algebra if and only if

1) $4(\alpha\mu - \beta\lambda) (\alpha'\mu' - \beta'\lambda') > (\alpha'\mu + \alpha\mu' - \beta'\lambda - \beta\lambda')^2.$

2) $4(\alpha\beta'-\beta\alpha')(\lambda\mu'-\mu\lambda') > (\alpha'\mu-\alpha\mu'-\beta'\lambda+\beta\lambda')^2.$

Proof. Let $\{e_1, e_2\}$ be a basis of A such that the multiplication of A is given by the table (1). Then for an arbitrary element $a = xe_1 + ye_2$ in A, we have

 $L_a(e_1) = (x\alpha + y\alpha')e_1 + (x\beta + y\beta')e_2$ and $L_a(e_2) = (x\lambda + y\lambda')e_1 + (x\mu + y\mu')e_2$

So the matrix of L_a in the above basis can be expressed as follow

$$M_{L_{\alpha}} = \begin{pmatrix} x\alpha + y\alpha' & x\lambda + y\lambda' \\ x\beta + y\beta' & x\mu + y\mu' \end{pmatrix}$$

We have

$$det(M_{L_a}) = x^2(\alpha\mu - \beta\lambda) + xy(\alpha'\mu + \alpha\mu' - \beta'\lambda - \beta\lambda') + y^2(\alpha'\mu' - \beta'\lambda')$$

So A is a division algebra if and only if $det(M_{L_a}) \neq 0$, which is equivalent to

$$4(\alpha\mu - \beta\lambda) (\alpha'\mu' - \beta'\lambda') > (\alpha'\mu + \alpha\mu' - \beta'\lambda - \beta\lambda')^2$$

By the same way we have the right multiplication of a, R_a is invertible if and only if $det(M_{R_a}) \neq 0$, which is

equivalent to
$$4(\alpha\beta' - \beta\alpha')(\lambda\mu' - \mu\lambda') > (\alpha'\mu - \alpha\mu' - \beta'\lambda + \beta\lambda')^2.$$

Let $A_1(\gamma, \delta), A_2(\gamma, \delta)$, and $A_3(\gamma, \delta)$, be the real pre-Hilbert algebras defined by the multiplication tables (2), (3) and (4) respectively, with $(\gamma, \delta) \in \mathbb{R} \times \mathbb{R}^*$ (\mathbb{R}^* : the set of nonzero real numbers). And let $\{e, u\}$ be an orthonormal basis (where e is a nonzero idempotent)

	е	и	
е	е	$\gamma e + \delta u$	
и	–γe – δu	е	
		(2)	
	$A_1(\gamma,\delta)$		
	е	u	
е	е	γe + δu	
и	$-\gamma e + (2 - \delta)u$	-е	
(3)			
	$A_2(\gamma, \delta)$		
	е	и	
е	е	γe + δu	
и	$-\gamma e - (2 + \delta)u$	- e	
(4)			
$A_3(\gamma,\delta)$			

Remark 3.2

- i) The real algebra given by table (2) is a division algebra for all $(\gamma, \delta) \in \mathbb{R} \times \mathbb{R}^*$
- ii) The real algebra given by table (3) is a division algebra, if and only if, $\gamma^2 + \delta^2 < 2\delta$
- iii) The real algebra given by table (4) is a division algebra, if and only if $\gamma^2 + \delta^2 < -2\delta$

Proof. Consequence of the theorem 3.1

Lemma 3.3 The algebras $A_1(\gamma, \delta), A_2(\gamma, \delta)$, and $A_3(\gamma, \delta)$ satisfies the identity $||a^2|| = ||a||^2$ for all $a \in A$ and $(\gamma, \delta) \in \mathbb{R} \times \mathbb{R}^*$.

Proof. According to remark 3.2, $A_1(\gamma, \delta)$, with $\gamma, \delta \in \mathbb{R}^*$, is a two-dimensional real division algebra. And let $a \in A_1(\gamma, \delta)$, can be written as $a = \varepsilon e + \zeta u$ (where $\{e, u\}$ is an orthonormal basis of $A_1(\gamma, \delta)$). So by a simple calculation we have $||a^2|| = ||a||^2$, similarly proof for the others cases $A_2(\gamma, \delta)$, and $A_3(\gamma, \delta)$.

Lemma 3.4 Let *A* be a real pre-Hilbert algebra, without divisors of zero, and satisfying $||a^2|| = ||a||^2$ for all $a \in A$. Then the following equalities hold for all orthogonal elements $x, y \in A$:

1)
$$(x^2|xy + yx) = 0$$

2) $||xy + yx||^2 + 2(x^2|y^2) = 2||x||^2||y||^2$ **Proof.** The equality $||x^2||^2 = (||x||^2)^2$ gives meaning to a polynomial *P* with real coefficients of degree ≤ 3 in λ , identically null, such that:

 $P(\lambda) = 2(x^2|xy + yx)\lambda^3 + (||xy + yx||^2 + 2(x^2|y^2) - 2||x||^2||y||^2)\lambda^2 + 2(y^2|xy + yx)\lambda.$

1) $(x^2|xy + yx) = 0$

Thus

2) $||xy + yx||^2 + 2(x^2|y^2) = 2||x||^2||y||^2$.

Now we can state our main result in this section

Theorem 3.5 Let A be a two-dimensional real pre-Hilbert algebra, without divisors of zero, and satisfying $||a^2|| = ||a||^2$ for all $a \in A$. Then, A is isomorphic to $A_1(\gamma, \delta), A_2(\gamma, \delta)$, or $A_3(\gamma, \delta)$ for all $(\gamma, \delta) \in \mathbb{R} \times \mathbb{R}^*$, such that $\gamma^2 + \delta^2 < \pm 2\delta$.

Proof. According to lemma 2.4, A is a two-dimensional real division algebra, containing a nonzero idempotent e. And let $\{e, u\}$ be an orthonormal basis of A. Then there exists $\gamma, \gamma' \in \mathbb{R}$ and $\delta, \delta' \in \mathbb{R}^*$, such that

 $eu = \gamma e + \delta u$ and $ue = \gamma' e + \delta' u$.

We have

 $eu + ue = (\gamma + \gamma')e + (\delta + \delta')u$, which means by lemma 3.4 (1) That $\gamma = -\gamma'$ and $eu + ue = (\delta + \delta')u$. Since

$$0 = (u^{2}|eu + ue) = (\delta + \delta')(u^{2}|u),$$

Then eu + ue = 0 or $u^2 = \pm e$, we distinguish the following cases. **case 1:** If ue + eu = 0, then by lemma 3.4 (2) we have $(e|u^2) = 1$, so $||u^2 - e||^2 = 2 - 2 = 0$. Consequently $u^2 = e$, thus A is isomorphic to $A_1(\gamma, \delta)$. **case 2:** If $u^2 = -e$, then $(\delta + \delta')^2 = 4$ (lemma 3.4 (2)). That is $\delta + \delta' = 2 \text{ or } \delta + \delta' = -2$ i) If $\delta + \delta' = 2$ then $\delta' = 2 - \delta$. So A is isomorphic to $A_2(\gamma, \delta)$. ii) If $\delta + \delta' = -2$ then $\delta' = -2 - \delta$. So A is isomorphic to $A_3(\gamma, \delta)$.

We get the following results.

Corollary 3.6 Let A be a two-dimensional real pre-Hilbert algebra, containing a nonzero central idempotent e, without

divisors of zero and satisfying $||a^2|| = ||a||^2$ for all $a \in A$. Then A is isomorphic to \mathbb{C} or $\stackrel{\circ}{\mathbb{C}}$.

Proof. According to theorem 3.5, the algebra A is isomorphic to $A_1(\gamma, \delta), A_2(\gamma, \delta)$, or $A_3(\gamma, \delta)$ for all $(\gamma, \delta) \in \mathbb{R} \times \mathbb{R}^*$, such that $\gamma^2 + \delta^2 < \pm 2\delta$. Since e is a central idempotent, then we have the following cases: i) If A is isomorphic to $A_1(\gamma, \delta)$, then eu = -ue which is absurd.

ii) If A is isomorphic to $A_2(\gamma, \delta)$, then $\gamma = 0$ and $\delta = 1$. So A is isomorphic to C

iii) If A is isomorphic to $A_3(\gamma, \delta)$, then $\gamma = 0$ and $\delta = -1$. So A is isomorphic to \mathbb{C} .

Corollary 3.7 Let A be a two-dimensional real third power associative pre-Hilbert algebra, without divisors of zero and

satisfying $||a^2|| = ||a||^2$ for all $a \in A$. Then A is isomorphic to \mathbb{C} or \mathbb{C} .

Proof. According to theorem 3.5, the algebra A is isomorphic to $A_1(\gamma, \delta), A_2(\gamma, \delta)$, or $A_3(\gamma, \delta)$ for all $(\gamma, \delta) \in \mathbb{R} \times \mathbb{R}^*$, such that $\gamma^2 + \delta^2 < \pm 2\delta$. The identity (u, u, u) = 0 imply that eu = ue, so e is a nonzero central idempotent. We conclude that A is isomorphic to \mathbb{C} or \mathbb{C} (Corollary 3.6).

Now we conclude the theorem of A. Rodriguez

Corollary 3.8 Let A be a two-dimensional real absolute valued algebra. Then A is isomorphic to \mathbb{C} , \mathbb{C}^* , $*\mathbb{C}$ or \mathbb{C} . **Proof.** Since A is a finite-dimensional real absolute valued algebra, then A satisfying $||a^2|| = ||a||^2$ for all $a \in A$ and it's norm comes from an inner product [2]. Using theorem 3.5, the algebra A is isomorphic to $A_1(\gamma, \delta), A_2(\gamma, \delta)$, or $A_3(\gamma, \delta)$ for all $(\gamma, \delta) \in \mathbb{R} \times \mathbb{R}^*$, such that $\gamma^2 + \delta^2 < \pm 2$. We have

 $(ue|e) = \pm (ue|u^2) = \pm (u|e) = 0$ and $(eu|e) = \pm (eu|u^2) = \pm (u|e) = 0$

This imply that the two elements ue and u (respectively eu and u) are linearly dependent, thus $\gamma = 0$. Therefore i) If A is isomorphic to $A_1(\gamma, \delta)$, then the identity $eu = -ue = \pm u$ imply that A is isomorphic to \mathbb{C}^* or $*\mathbb{C}$ ii) If A is isomorphic to $A_2(\gamma, \delta)$, then the identity ||eu|| = ||ue|| = ||u|| ||e|| = 1, imply that, $\delta = 1$ which means that A is isomorphic to \mathbb{C} .

iii) If A is isomorphic to $A_3(\gamma, \delta)$, then the identity ||eu|| = ||ue|| = ||u|| ||e|| = 1, imply that, $\delta = -1$ which means that A is isomorphic to \mathbb{C} .

4 - Pre-Hilbert algebras containing a nonzero central idempotent f such that ||fa|| = ||a|| and $||a^2|| \le ||a||^2$

We begin with the following preliminary results.

Proposition 4.1 Let A be real pre-Hilbert algebra containing a nonzero central idempotent f such that ||fa|| = ||a||and $||a^2|| \le ||a||^2$ for all $a \in A$. Then the following equalities hold: i) $||a^2|| = ||a||^2$ ii) $a^2 - 2(a|f)fa + ||a||^2 = 0$

Proof. i) Let $a \in A$, having an orthogonal sum decomposition $\lambda f + u$, the equality $||a^2||^2 \le (||a||^2)^2$ can be written $||\lambda^2 + 2\lambda f + u^2||^2 \le (\lambda^2 + ||u||^2)^2$ (1) As ||fx|| = ||x||, then (fx|f) = (f|x) for all $x \in A$. The development of (1) gives

$$\|\chi\| = \|\chi\|, \text{ then } (|\chi||) = (|\chi|) \text{ for all } \chi \in A. \text{ The development of (1) gives}$$
$$2\lambda^2 ((f|u^2) + \|u\|^2) + 4\lambda (fu|u^2) + \|u^2\|^2 - \|u\|^4 \le 0 \quad ((f|u) = 0) \tag{2}$$

We replace λ by $-\lambda$ we get $2\lambda^2((f|u^2) + ||u||^2) - 4\lambda(fu|u^2) + ||u^2||^2 - ||u||^4 \le 0$ (3) We add (2) and (3), we have $2\lambda^2((f|u^2) + ||u||^2) + ||u^2||^2 - ||u||^4 \le 0$ (4) Since (4) hold for all $\lambda \in \mathbb{R}$ and $||u^2||^2 - ||u||^2 \le 0$, then $(f|u^2) \le -||u||^2$. According to the Cauchy-Schwarz inequality, we have $|(f|u^2)| \le ||f|| ||u^2|| \le ||u||^2$. Then $(f|u^2) = -||u||^2$ also $||u^2|| = ||u||^2$, thus $||u^2 + ||u||^2 f||^2 = ||u||^2 + 2||u||^2(u^2|f) + ||u||^2||f||^2$ $= ||u||^4 - 2||u||^4 + ||u||^4$ = 0hence $u^2 = -||u||^2 f$. On the other hand $a^2 = \lambda^2 f + 2\lambda f u + u^2$, then $||a^2||^2 = ||(\lambda^2 - ||u||^2)f + 2\lambda f u||^2$ $= (\lambda^2 - ||u||^2)^2 + 4\lambda^2||u||^2$ ((fu|f) = (f|u) = 0) $= (\lambda^2 + ||u||^2)^2$ $= ||a||^4$ Therefore $||a^2|| = ||a||^2$ i) We have $a^2 = \lambda^2 f + 2\lambda f (u + u^2)$ $= -\lambda^2 f + 2\lambda f (\lambda f + u) - ||u||^2 f$

$$= -\lambda^{2}f + 2\lambda f(\lambda f + u) - ||u||^{2} f$$

= $2\lambda f(\lambda f + u) - (\lambda^{2} + ||u||^{2})f$
= $2(f|a)fa - ||a||^{2} f.$

Remark 4.2 Let $V = \{u \in A \mid (u|f) = 0\}$, then the following equalities hold: i) $V = \{u \in A \mid u^2 = -||u||^2 f\}$

i) uv + vu = -2(u|v)f for all $u, v \in V$.

iii) The product $x \wedge y = xy - (xy|f)f$ for all $x, y \in V$ endows V of an anti-commutative algebra structure **Proof.**

i) According to proposition 4.1 (i).

ii) Let $x, y \in V$, we have $x + y \in V$. Then $(x + y)^2 = -||x + y||^2 f$ thus xy + yx = -2(x|y)f. iii) Let $x, y \in V$, we have

$$x \wedge y + y \wedge x = xy - (xy|f)f + yx - (yx|f)f = xy + yx - (xy + yx|f)f = -2(x|y)f + 2(x|y)f = 0$$

Lemma 4.3. Let *A* be a real pre-Hilbert algebraic algebra of degree two, without divisors of zero and containing a nonzero central idempotent *f* such that ||fa|| = ||a|| and $||a^2|| \le ||a||^2$ for all $a \in A$. Then A(f, v) = A(v) is isomorphic to \mathbb{C} or \mathbb{C} , for every $v \in V$.

Proof. It suffices to prove that fv = v or fv = -v for every $v \in V$, without loss of generality we will assume that $v \neq 0$, according to remark 4.2 (i), $v^2 = -\|v\|^2 f$. since A is algebraic algebra of degree two and satisfying $\|a^2\| = \|a\|^2$ for all $a \in A$ (proposition 4.1 (i)), then by corollary 3.6 A is power-commutative algebra. It is well known that $(aa^2)a = a(a^2a)$ for any element a in A, hence

$$v(v^{2}v) = -\|v\|^{2}v(fv) \text{ and } (v^{2}v)v = -\|v\|^{2}(fv)v.$$

So $v(fv) = (vf)v$, as $\|vf\| = \|fv\| = \|v\|$ and $(fv|f) = (vf|f) = (v|f) = 0$, then $(vf)^{2} = v^{2} = -\|v\|^{2} f$. So $fv = v$ or $fv = -v$, thus $A(v)$ is isomorphic to \mathbb{C} or $\overset{*}{\mathbb{C}}$.

In the next theorem we give some conditions implying that the real pre-Hilbert algebra to be flexible algebra.

Theorem 4.4. Let A be a real pre-Hilbert algebraic algebra, without divisors of zero and containing a nonzero central idempotent f such that ||fa|| = ||a|| and $||a^2|| \le ||a||^2$ for all $a \in A$. Then the following assertions are equivalent:

i) A is flexible;

ii) A has degree two and if $\{f, u, v\}$ is an orthogonal family, then $\{f, u, v, uv\}$ is too, where $u, v \in V$. **Proof.** $i \ge ii$) Assume that A is flexible algebra, according to proposition 2.2 and theorem 2.3, A has degree two. Let w := uv - (uv|f)f - (uv|u)u - (uv|v)v, where $u, v \in V$, without loss of generality we assume that $w \neq 0$. We have

$$w + 0.$$
 We have

$$w|f) = (w|u) = (w|v) = 0$$
Since A is flexible and $uv + vu = 0$ (remark 4.2 (ii)), then

$$0 = uw + wu = 2(uv|u)f + 2(uv|f)u$$
This gives us $(uv|u) = (uv|f) = 0$, similarly $(uv|v) = 0$. Thus $\{f, u, v, uv\}$ is an orthogonal family.
 $ii) \Rightarrow i$) Let $x, y \in V$ such that $||x|| = ||y|| = 1$ and $z := y - (y|x)x$, without loss of generality we can assume
that $z \neq 0$, we have $(z|f) = (z|x) = 0$. Then

$$0 = (xz|x)$$

$$= (x(y - (y|x)x)|x)$$

$$= (xy + (y|x)f|x) \quad (x^2 = -f, (remark 4.2 (i)))$$

$$= (xy|x)$$
The equality $||fa|| = ||a||$ imply that $(fa|f) = (f|a)$, for all $a \in A$. On the other hand

$$0 = (xz|f)$$

$$= (x(y - (y|x)x)|f)$$

$$= (xy + (y|x)f|f)$$

$$= (xy + (y|x)f|f)$$

$$= (xy|f) + (x|y)$$
This means that $(xy|f) = -(x|y)$, in the same way, we get $(yx|f) = -(x|y)$. Moreover, we have
 $(xy)x - x(yx) = (x \land y + (xy|f)f)x - x(y \land x + (yx|f)f)$

$$= (x \land y)x + x(x \land y) + ((xy|f)f - (yx|f)f)x$$

$$= -2(x|x \land y)f + ((xy|f)f - (yx|f)f)x$$

$$= 0$$

Since A is algebraic algebra of degree two, then the sub-algebras A(f, x) and A(f, y) are of dimension two and isomorphic to \mathbb{C} or \mathbb{C} (lemma 4.3). We have the following cases:

1) If f is the only idempotent of A, then xf = fx = x for all $x \in A$. Which means that A is a unit algebra, hence for all $a = \lambda f + x$ and $b = \gamma f + y$ in A, we have

$$(ab)a - a(ba) = [(\lambda f + x)(\gamma f + y)](\lambda f + x) - (\lambda f + x)[(\gamma f + y)(\lambda f + x)] = (xy)x - x(yx) = 0$$

Then A is flexible.

2) If f is not unique, then xf = fx = -x for all $x \in V$. Otherwise, if there exist a nonzero element $y \in V$ such that yf = fy = y. Then

$$f(x + y) = \pm (x + y)$$
 (Lemma 4.3)
 $-x + y = \pm (x + y)$

This imply that x = 0 or y = 0, which is absurd. Therefore for all $a = \lambda f + x$ and $b = \gamma f + y$ in A, we have $(a, b, a) = (\lambda f + x, \gamma f + y, \lambda f + x)$

$$= (\lambda f, \gamma f, x) + (\lambda f, y, x) + (x, \gamma f, \lambda f) + (x, y, \lambda f) + (x, y, x)$$

Or $(x, y, x) = 0$ and $(\lambda f, \gamma f, x) + (x, \gamma f, \lambda f) = 0$. Then
 $(a, b, a) = (\lambda f, y, x) + (x, y, \lambda f)$
 $= \lambda[(fy)x - f(yx) + (xy)f - x(yf)]$
 $= \lambda[-yx - f(y \land x + (xy|f)f) + (x \land y + (xy|f)f)f + xy]$
 $= \lambda[-yx + y \land x - x \land y + xy]$ $((xy|f) = (yx|f) = -(x| = \lambda[(x|y)f - (x|y)f]]$
 $= 0$
Then A is flexible.

Then A is flexible.

Remark 4.5. In [4], we constructed an example of four-dimensional absolute valued algebra containing a nonzero central idempotent of degree four which is not flexible. The last imply that the condition algebraic algebra of degree two is necessary for A to be flexible.

In the rest of this section, we prove that, if A is a real pre-Hilbert algebra, without divisors of zero and contains a nonzero central idempotent f such that ||fa|| = ||a|| and $||a^2|| \le ||a||^2$ for all $a \in A$. Then the following statements are equivalent:

- 1. A is power commutative.
- 2. A is third power associative.
- 3. A is algebraic of degree two.

We need the following preliminary result.

Lemma 4.6. Let A be a real third power associative pre-Hilbert algebra, without divisors of zero and contains a nonzero central idempotent f such that ||fa|| = ||a|| and $||a^2|| \le ||a||^2$ for all $a \in A$, then A(v) is isomorphic to \mathbb{C} or \mathbb{C} for every $\nu \in V$.

Proof. It suffices to prove that ev = v or ev = -v for every $v \in V$, without loss of generality we will assume that $v \neq 0$. According to remark 4.2 (i), $v^2 = - ||v||^2 f$ as A is a third-power associative algebra. Then a linearization of the identity (x, x, x) = 0 gives

$$[x^{2}, y] + [xy + yx, x] = 0$$
(5)

where [x, y] denotes the quantity xy - yx.

By putting $y = x^2$ in the equality (5), we get the well-known identity $(x, x^2, x) = 0$. So $(aa^2)a = a(a^2a)$ for any element a in A, hence

$$v(v^2v) = -||v||^2v(fv)$$
 and $(v^2v)v = -||v||^2(fv)v$

So v(fv) = (vf)v = (fv)v, on the other hand ||vf|| = ||fv|| = ||v|| and (fv|f) = (vf|f) = (v|f) = 0. Then $(vf)^2 = v^2 = -||v||^2 f$. This imply fv = v or fv = -v, thus A(v) is isomorphic to \mathbb{C} or $\stackrel{\circ}{\mathbb{C}}$.

Note that in the general case, if the algebra A is power commutative. We have for every $a \in A$ the sub-algebra A(a) is commutative, so $a^2a = aa^2$ which means that (a, a, a) = 0, then A is third power associative.

In the next theorem we have the reciprocally case.

Theorem 4.7. Let A is a real pre-Hilbert algebra, without divisors of zero and containing a nonzero central idempotent f such that ||fa|| = ||a|| and $||a^2|| \le ||a||^2$ for all $a \in A$. Then the following statements are equivalent:

- 1. A is power commutative;
- 2. A is third power associative;
- 3. A is algebraic of degree two.
- **Proof.** (1) \Rightarrow (2) By definition.

(2) \Rightarrow (3) Assume that A is third power associative and let $v \in V$, we have $v^2 = -\|v\|^2 f$ (proposition 4.1 (i)). By lemma 4.6, A(a) is isomorphic to \mathbb{C} or \mathbb{C} , and consequently A is algebraic of degree two.

(3) \Rightarrow (1) Using lemma 4.3.

References

- G.M. Benkart, D. J. Britten and J. M. Osborn, Real Flexible Division Algebras, Can. J. Math. Vol. XXXIV, No. 3 (1982), 550-588.
- M. L. El-Mallah, on finite dimensional absolute valued algebras satisfying (x, x, x) = 0, Arch Math. 49 (1987), 16–22.
- M. L. EL-Mallah, Absolute valued algebras containing a central idempotent, J. Algebra. 128 (1990), 180–187.
- A. Moutassim and M. Benslimane, Four Dimensional Absolute Valued Algebras Containing a Nonzero Central Idempotent or with Left Unit, International Journal of Algebra, Vol. 10 (2016), no. 11, 513–524.
- A. Moutassim and M. Benslimane, Generalization of the Hopf commutative theorem, Commun Algebra. 45 (2) (2017), 883-888.
- A. Rodriguez, Absolute valued algebras of degree two. In Non-associative Algebra and its applications (Ed. S. González), Kluwer Academic Publishers, Dordrecht-Boston London (1994), 350–356.
- B. Segre, La teoria delle algebre ed alcune questione di realta, Univ. Roma, Ist. Naz. Alta. Mat., Rend. Mat. E Appl. Serie 5.13 (1954), 157–188.