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   Abstract 

 

We consider a method for transforming divergent series arising from the Euler - Maclaurin formula into 

convergent ones. Applying it to the Stirling series forlog 𝛤(𝑧)we obtain some new representations of the J. 

Binet function. In the special case when the argument 𝑧 is integer or half-integer number the formulas take an 
elegant form involving colored Euler sums. Note that the obtained equalities are still hypotheses since they are 
derived by formal manipulations on divergent double series. We verify the results numerically, which require a 
computation of the Euler and related sums with high precision. Some old and new algorithms for this purpose 
are commented. 
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1. Introduction and main results 
 

Applying the Euler-Maclaurin summation formula to a certain sum 𝑆𝑛  we arrive at a constant 𝐶(𝑆𝑛), 

which is not calculated automatically unlike the other terms in the asymptotic expansion of 𝑆𝑛 . If the series 𝑆∞ is 

convergent, of course 𝐶(𝑆𝑛) coincides with the sum of the series. The calculation of the constant 𝐶(𝑆𝑛) by the 
Euler-Maclaurin formula is possible with arbitrary precision, but there is still much to be desired in this method. 
Therefore, methods that lead to representations of this constant, other than the definition, are of interest. 

 

Note that the Euler-Maclaurin formula, extended to infinity usually gives a divergent series for 𝐶(𝑆𝑛). In 
this regard, the first purpose of this study is to present two methods for converting this divergent series to a more 
definite expression. The first method gives an integral representation of this constant and the second a convergent 
series composed by simple computable recursive terms multiplied by Dirichlet series. 
We illustrate the both methods by applying them to the Stirling series 

log 𝛤(𝑎) ~  𝑎 −
1

2
 log a − 𝑎 +

1

2
log 2𝜋 +  

𝐵2𝑘

 2𝑘  2𝑘 − 1 
∙

1

𝑎2𝑘−1

∞

𝑘=1

 .               (1) 

 

It is well known that (1) is an asymptotic expansion when 𝑎 → ∞, but we do not use the symbol ' ~ ' in this 

sense. Here  𝑎 is a fixed complex number and (1) means that the Euler-Maclaurin formula (applied to 𝑆𝑛 =
 log⁡(𝑎 + 𝑗)𝑛

𝑗=0 ) associates the constant 𝐶(𝑆𝑛) with the divergent series to the right.  
 

Having (1) we do not need a formal definition of 𝐶(𝑆𝑛), but for completeness let us fix the following: 

For a given 𝑚 𝜖 ℤ let𝑓 𝜖 C∞[𝑚, ∞) and 𝑆𝑛 ≔  𝑓(𝑖)𝑛
𝑖=𝑚 . Recall the Euler-Maclaurin formula, a variant 

from [17]: 
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𝑆𝑛 =  𝑓 𝑥  𝑑𝑥
𝑛

𝑚

+  
𝑓 𝑚 + 𝑓(𝑛)

2
 +  

𝐵2𝑘

 2𝑘 !

 𝑝/2 

𝑘=1

 𝑓 2𝑘−1  𝑛 − 𝑓 2𝑘−1  𝑚  + 𝑅𝑝  , 

where  𝐵𝑖  are the Bernoulli numbers and the remainder term 𝑅𝑝  is expressible with the periodized Bernoulli 

functions 𝑃𝑘 𝑥 = 𝐵𝑘(𝑥 −  𝑥 ), namely𝑅𝑝 =
(−1)𝑝+1

𝑝!
 𝑓 𝑝  𝑥 𝑃𝑝 𝑥 𝑑𝑥
𝑛

𝑚
 . 

Now, letting formally𝑝 → ∞and remove the remainder term we arrive at the following. Assume that𝑓2𝑘−1 𝑛 , 𝑘 =
1, 2, 3,…  form a scale for 𝑛 → ∞ and there exists a constant 𝐶 such that the asymptotic expansion  

𝑆𝑛 ≈  𝑓 𝑥  𝑑𝑥
𝑛

𝑚

+ 𝐶 +  
𝑓(𝑛)

2
 +  

𝐵2𝑘

 2𝑘 !

∞

𝑘=1

𝑓 2𝑘−1  𝑛  

holds true. Then, we can define the constant 𝐶(𝑆𝑛) by 𝐶. Moreover, we get the formal equality 

𝐶(𝑆𝑛) =  
𝑓 𝑚 

2
 −  

𝐵2𝑘

 2𝑘 !

∞

𝑘=1

𝑓 2𝑘−1  𝑚  .                                                (2) 

Note that the concept to define the asymptotic constant as the sum of a series  𝑓(𝑖)∞
𝑖=1 , which 

partialsumhasasymptotics by the Euler-Maclaurin formula is addressed to Ramanujan,see [11, Ch.XIII]. The 

constant 𝐶(𝑆𝑛) is equivalent to the Euler-Maclaurin constant of𝑓(𝐶(𝑓)) introduced in this book. When 𝑚 = 1 the 

two constants differ only in the choice of the origin (zero) 𝑎 of the primitive of 𝑓 used for determination of  𝐶(𝑓) 

and 𝐶(𝑆𝑛) = 𝐶 𝑓 +  𝑓 𝑥 𝑑𝑥
1

𝑎
 

 

In particular, for 𝑆𝑛 =  log⁡(𝑎 + 𝑗)𝑛
𝑗=0  we obtain 𝐶 𝑆𝑛 =

1

2
log 𝑎 − 𝜇(𝑎), where 

𝜇 𝑎 = log 𝛤(𝑎) −  𝑎 −
1

2
 log 𝑎 + 𝑎 −

1

2
log(2𝜋) 

is the Binet's function. 

Remark that the notation 𝐽(𝑎) is often used for this function, which is in honor of its founder Jacques 

Philippe Marie Binet. We avoided this because of its considerable use. With the notation 𝜇 𝑎  we follow [13], 
where the author carefully studied and generalized some results from the Binet's original "book-size treatise". 
 
We are interested in applications of formula (2), or in the case, of the formal representation 

𝜇 𝑎  ~  
𝐵2𝑘

 2𝑘  2𝑘 − 1 
∙

1

𝑎2𝑘−1

∞

𝑘=1

 . 

 

The first transformation of the above divergent series uses the expansion 
𝑥

𝑒𝑥−1
=  

𝐵𝑛

𝑛!
𝑥𝑛∞

𝑛=0  and the integral 

𝑛! =  𝑥𝑛𝑒−𝑥𝑑𝑥
∞

0
. It leads to the formula 

                                                          𝜇 𝑎 =  𝑒−𝑎 𝑥  
𝑥

𝑒𝑥 − 1
− 1 +

𝑥

2
 
𝑑𝑥

𝑥2

∞

0

 .                                             (3) 

We can write "=" in (3), since this relation is known, see [18, 3.6] (which refers to [19, 12.31]) or the equality before 

(13.13.6) in [11] for another proof. Actually, (3) is the Binet's first expression for log 𝛤(𝑎). 
 

The second transformation is more complicated. Starting with replacing 𝐵2𝑘  by 𝜁(2𝑘) in (1) we succeed to 
resumm the obtained double series into a series of certain integrals. Then, rearranging the integrals to such on 
intervals of equal length and expanding the obtained integrals around the both ends and the centers of the intervals, 

we found three new representations of log 𝛤(𝑎). In particular, the second is 

                                            𝜇 𝑎  ~ 
1

𝜋
  𝐽𝑘 𝑎  

𝑆𝑛−1 𝑎 

𝑛𝑘

∞

𝑛=2

 −  𝐼𝑘(𝑎)  
𝐶𝑛−1(𝑎)

𝑛𝑘

∞

𝑛=2

 

∞

𝑘=1

 ,                             (4) 

where   𝐼𝑘 𝑎 =  𝑡𝑘−1 sin(2𝜋𝑎𝑡) 𝑑𝑡
1

0

 , 𝐽𝑘 𝑎 =  𝑡𝑘−1 cos(2𝜋𝑎𝑡) 𝑑𝑡
1

0
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and  𝐶𝑛−1 𝑎 =  
cos(2𝜋𝑎𝑗)

𝑛 − 𝑗

𝑛−1

𝑗=1

,      𝑆𝑛−1 𝑎 =  
sin(2𝜋𝑎𝑗)

𝑛 − 𝑗

𝑛−1

𝑗=1

 . 

Note that the magnitude of the 𝑘-th term of the series in (4) is 𝑂(2−𝑘). 
 

Is the relation (4) an equality for 𝑎 𝜖 (0, ∞)? The way that (4) is obtained does not answer this question, 
since several times formal manipulations on divergent series are performed. Thus, our second goal in the paper is to 
verify numerically the new representations of the Binet's function. In fact,the correctness of (4) imply that of the 
other two – (8) and (9). 
 

Next, if in (4) we set 𝑎 = 𝑛, a positive integer, we obtain the representation 

                                                                  𝜇 𝑛  ~ 
1

𝜋
 𝑆ℎ𝑘

′

∞

𝑘=2

∙ 𝑃𝑘−1  
1

2𝜋𝑛
                                                        (5) 

where𝑺𝒉𝒌
′ ≔  

𝒉𝒊−𝟏

𝒊𝒌
∞
𝒊=𝟐 (with𝒉𝒊 =  

𝟏

𝒋
𝒊
𝒋=𝟏 denoting the i-th harmonic number) and the polynomials  𝑃𝑙 𝑙=1

∞  are 

defined by𝑷𝒌−𝟏  
𝟏

𝟐𝝅𝒏
 = −𝑰𝒌(𝒏). 

 

Note that the constants 𝑆ℎ𝑘
′   are in the class of Euler sums which are expressible by zeta values. Also, the 

polynomials 𝑃𝑙 obey simple recursive relations, for example:  

𝑃1 𝑡 = 𝑡 ,      𝑃2 𝑡 = 𝑡 , 

𝑃3 𝑡 = 𝑡 − 3 ∙ 2𝑡2𝑃1 𝑡 = 𝑡 − 3 2 𝑡3 , 

𝑃4 𝑡 = 𝑡 − 4 ∙ 3𝑡2𝑃2 𝑡 = 𝑡 − 4 2 𝑡3 , 

𝑃5 𝑡 = 𝑡 − 5 ∙ 4𝑡2𝑃3 𝑡 = 𝑡 − 5 2 𝑡3 + 5 4 𝑡5 . 
 

The other five formulas forlog 𝛤(𝑎)obtained by substituting  𝑎 = 𝑛or𝑎 = 𝑛 −
1

2
in (4) and its companions 

(8) and (9) are given in Section 3. They involve colored Euler sums (see e.g. [12]). We summarize the results in this 
direction in the following 

 

Theorem 1.Assume that the series and integral representation (7) of the Binet's function holds true for every 𝑎 > 0. Then 

the formulas (8),(4) and (9) take place for every 𝑎 > 0. In addition, when the argument 𝑎 is an integer or half-integer number, the 
formulas (10),(5),(11) and (13-15) hold too. 

 

Explicit expressions for the general Euler sums (in terms of zeta values) are known roughly speaking in the 
half of the cases. However, for all constants appearing in the formulas, we adopt a computational approach. Some 
algorithms for calculation of Euler sums the reader can find in [1], [10] and [5, §7]. In the last article general multiple 
polylogarithmic values are considered. Fast algorithms for evaluation of Tornheim zeta function (a generalization of 
the Euler sums) can be found in [9] and [15]. 

 

Recently, a common approach to look for new identities about general Euler sums is by using of integer 
relation algorithms ([7]). A reliable check for a relation between the constants of a given set may need their values in 
thousands decimal digits. 

 

That's how we get to the third line of our study, namely effective computation of Euler and related sums 

with high precision. Our specific task considered in Section 4 is to found with 𝑁 digit precision the sequence of 

numbers  𝐶𝑘 1
𝑐𝑁 , where 𝐶𝑘  has the form 𝑆1,𝑘

±± ([12]). For  𝑆1,𝑘
++  we use the explicit expression by zeta values and 

for  𝑆1,𝑘
−−  we use the known connection with  𝑆1,𝑘

+− , as for the latter sequence we develop a new algorithm with 

complexity 𝑂(𝑁2) multiplications.  
 

We applied the above approach to obtain the constants  𝑆ℎ𝑘
′  

𝑘=2

345
 (𝑆ℎ𝑘

′ = 𝑆1,𝑘
++ − 𝜁(𝑘 + 1) ) and 

 𝑆ℎ𝑘
= 𝑘=1

345  (𝑆ℎ𝑘
= = 𝜁 𝑘 + 1 − 𝑆1,𝑘

−−) with 110 decimal digits. Then, using these calculations, we checked formula 

(4) for 𝑎 𝜖  𝑗 𝑗=1
30 ∪  𝑗 − 1/2 𝑗=1

30  with about 100 decimal digits. Details are described in Section 5.  

In the same section, for the case when 2𝑎 − 1 is not an integer,we develop integral representations of the 

coefficients of 𝐽𝑘(𝑎) and 𝐼𝑘(𝑎) in (4) and verify the formula for 𝑎 𝜖   2𝑗 − 1 
𝑗=1

30
. 
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2. Derivation of the formulas for the Binet's function 
In order to obtain (3), by the Stirling's formula we write formally 

𝜇 𝑎  ~  
𝐵2𝑘

 2𝑘  2𝑘 − 1 
∙

1

𝑎2𝑘−1

∞

𝑘=1

=  
𝐵2𝑘𝛤(2𝑘 − 1)

 2𝑘 ! 𝑎2𝑘−1

∞

𝑘=1

=  
𝐵2𝑘

 2𝑘 !
  

𝑥

𝑎
 

2𝑘−2

𝑒−𝑥𝑑  
𝑥

𝑎
 

∞

0

∞

𝑘=1

 

~  𝑒−𝑎 𝑥
∞

0

 
𝐵2𝑘

 2𝑘 !
𝑥2𝑘−2

∞

𝑘=1

𝑑𝑥  ~  𝑒−𝑎 𝑥  
𝑥

𝑒𝑥 − 1
− 1 +

𝑥

2
 
𝑑𝑥

𝑥2

∞

0

 ,                        

where we used the expansion of 
𝑥

𝑒𝑥−1
 outside its radius of convergence.  

 

To derive (4) we use the relation𝐵2𝑘 =  −1 𝑘−1 2𝑘 ! ∙
2𝜁 2𝑘 

 2𝜋 2𝑘 . Then, 

𝜇 𝑎  ~  
 −1 𝑘−1 2𝑘 ! ∙ 2𝜁 2𝑘 

 2𝑘  2𝑘 − 1  2𝜋 2𝑘
∙

1

𝑎2𝑘−1

∞

𝑘=1

~ 2𝑎   
 −1 𝑘−1 2𝑘 − 2 !

(2𝜋𝑎𝑛)2𝑘−1

∞

𝑘=1

∞

𝑛=1

 . 

Thus we arrived at the divergent series 𝐹 𝑡 = 1 − 2! 𝑡2 + 4! 𝑡4 − + ⋯, which can be extracted from the even 

part of the classical series considered by Euler 𝑓 𝑥 = 1 − 1! 𝑥 + 2! 𝑥2 − 3! 𝑥3 + −⋯. This series is summable 

(𝐵∗), i.e by a variation of the Borel's integral method (see [11, §8.11]), to 𝑓 𝑥 =
1

𝑥
𝑒

1

𝑥  𝑒−
1

𝑢
𝑑𝑢

𝑢

𝑥

0
=  

𝑒−𝑤

1+𝑥 𝑤
𝑑𝑤

∞

0
, 

provided 𝑥 is not real and negative. The first equality implies 

𝐹 𝑡 =
1

2
 𝑓 𝑖𝑡 + 𝑓(−𝑖𝑡) =

1

𝑡
 𝑐𝑜𝑠

1

𝑡
 𝑠𝑖𝑛

1

𝑢

𝑑𝑢

𝑢

1

0

−  𝑠𝑖𝑛
1

𝑡
 𝑐𝑜𝑠

1

𝑢

𝑑𝑢

𝑢

1

0

 = : 
1

𝑡
𝐻 𝑡  . 

With this notation, the double sum above takes the form 

                                         𝜇 𝑎  ~ 
1

𝜋
 
1

1
𝐻  

1

2𝜋𝑎
 +

1

2
𝐻  

1

4𝜋𝑎
 +

1

3
𝐻  

1

6𝜋𝑎
 + ⋯   .                                  (6) 

The change of the variable 𝑣 = 1/𝑢 leads to  

𝐻  
1

2𝑛𝜋𝑎
 = cos 2𝑛𝜋𝑎  sin𝑣

𝑑𝑣

𝑣

∞

2𝑛𝜋𝑎

 −  sin 2𝑛𝜋𝑎  cos 𝑣
𝑑𝑣

𝑣

∞

2𝑛𝜋𝑎

  , 

and we see that every such integral includes the next. This suggest the regrouping 

 ∙
∞

2𝜋𝑎

=   ∙
4𝜋𝑎

2𝜋𝑎

 +  ∙
6𝜋𝑎

4𝜋𝑎

 +   ∙
8𝜋𝑎

6𝜋𝑎

 +  ⋯ 

 ∙
∞

4𝜋𝑎

=   ∙
6𝜋𝑎

4𝜋𝑎

 +  ∙
8𝜋𝑎

6𝜋𝑎

 +  ∙
10𝜋𝑎

8𝜋𝑎

 + ⋯ 

and so on. Then, expanding 𝐻 terms in this way and substituting in (6) we get 

           𝜇 𝑎  ~ 
1

𝜋
 

cos 2𝜋𝑎 

1
 sin 𝑣

𝑑𝑣

𝑣

4𝜋𝑎

2𝜋𝑎

 − 
sin 2𝜋𝑎 

1
 cos 𝑣

𝑑𝑣

𝑣

4𝜋𝑎

2𝜋𝑎

+  
cos 2𝜋𝑎 

1
+

cos 4𝜋𝑎 

2
  sin𝑣

𝑑𝑣

𝑣

6𝜋𝑎

4𝜋𝑎

 −   
sin 2𝜋𝑎 

1
+

sin 2𝜋𝑎 

2
  cos 𝑣

𝑑𝑣

𝑣

6𝜋𝑎

4𝜋𝑎

+ ⋯   ,     i. e.  

𝜇 𝑎  ~ 
1

𝜋
   sin𝑣

𝑑𝑣

𝑣

2𝜋(𝑛+1)𝑎

2𝜋𝑛𝑎

 
cos 2𝜋𝑗𝑎 

𝑗

𝑛

𝑗=1

 −   cos 𝑣
𝑑𝑣

𝑣

2𝜋(𝑛+1)𝑎

2𝜋𝑛𝑎

 
sin 2𝜋𝑗𝑎 

𝑗

𝑛

𝑗=1

 

∞

𝑛=1

 . 

With the next transformation we equal the integral supports 

                                           𝜇 𝑎  ~ 
1

𝜋
    

sin 𝑣 − 2𝜋𝑗𝑎 

𝑗

𝑛

𝑗=1

𝑑𝑣

𝑣

2𝜋(𝑛+1)𝑎

2𝜋𝑛𝑎

 

∞

𝑛=1

                                             (7) 

                  =  
1

𝜋
   

sin 𝑤 + 2𝜋(𝑛 − 𝑗)𝑎 

𝑗

𝑛

𝑗=1

𝑑𝑤

𝑤 + 2𝜋𝑛𝑎

2𝜋𝑎

0

∞

𝑛=1

 . 

First we expand the functions under integral sign around the left end of the interval 
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𝜇 𝑎  ~ 
1

𝜋
   

sin𝑤 𝑑𝑤

𝑤 + 2𝜋𝑛𝑎
 

cos 2𝜋(𝑛 − 𝑗)𝑎 

𝑗

𝑛

𝑗=1

2𝜋𝑎

0

+  
cos𝑤 𝑑𝑤

𝑤 + 2𝜋𝑛𝑎
 

sin 2𝜋(𝑛 − 𝑗)𝑎 

𝑗

𝑛

𝑗=1

2𝜋𝑎

0

 

∞

𝑛=1

 

=  
1

𝜋
  

1

2𝜋𝑛𝑎
 sin 𝑤   

−𝑤

2𝜋𝑛𝑎
 
𝑘

∞

𝑘=0

𝑑𝑤 
2𝜋𝑎

0

 𝐶𝑛−1 𝑎 +
1

𝑛
                                              

∞

𝑛=1

+  
1

2𝜋𝑛𝑎
 cos 𝑤   

−𝑤

2𝜋𝑛𝑎
 
𝑘

∞

𝑘=0

𝑑𝑤 
2𝜋𝑎

0

𝑆𝑛−1 𝑎       ⇒ 

                      𝜇 𝑎  ~ 
1

𝜋
 (−1)𝑘−1  𝐼𝑘(𝑎)   

𝐶𝑛−1 𝑎 

𝑛𝑘
+

1

𝑛𝑘+1 

∞

𝑛=1

+ 𝐽𝑘(𝑎)  
𝑆𝑛−1 𝑎 

𝑛𝑘

∞

𝑛=1

 

∞

𝑘=1

 ,                (8) 

where for the last implication we change the variable 𝑤 = 2𝜋𝑎𝑡 in the integrals and shifted the summation index 

𝑘. Recall that 𝐼𝑘(𝑎) and 𝐽𝑘(𝑎) was defined with (4). 
 

Now expand the integrand in (7), precisely the part 1/(𝑤 + 2𝜋𝑛𝑎), around the right end of the interval. Then, 

with𝑤 = 2𝜋𝑎 − 𝑥we have  

𝜇 𝑎  ~ 
1

𝜋
   

sin 2𝜋 𝑛 + 1 − 𝑗 𝑎 − 𝑥 

𝑗

𝑑𝑥

2𝜋 𝑛 + 1 𝑎 − 𝑥

𝑛

𝑗=1

2𝜋𝑎

0

∞

𝑛=1

 

=  
1

𝜋
   

cos 𝑥 𝑑𝑥

2𝜋 𝑛 + 1 𝑎 − 𝑥
 

sin 2𝜋 𝑛 + 1 − 𝑗 𝑎 

𝑗

𝑛

𝑗=1

2𝜋𝑎

0

∞

𝑛=1

−  
sin 𝑥 𝑑𝑥

2𝜋 𝑛 + 1 𝑎 − 𝑥
 

cos 2𝜋 𝑛 + 1 − 𝑗 𝑎 

𝑗

𝑛

𝑗=1

2𝜋𝑎

0
  

=  
1

𝜋
  

1

2𝜋𝑛𝑎
 cos 𝑥   

𝑥

2𝜋𝑛𝑎
 
𝑘

𝑑𝑥 𝑆𝑛−1(𝑎)

∞

𝑘=0

2𝜋𝑎

0

−
1

2𝜋𝑛𝑎
 sin𝑥   

𝑥

2𝜋𝑛𝑎
 
𝑘

𝑑𝑥 𝐶𝑛−1(𝑎)

∞

𝑘=0

2𝜋𝑎

0

 

∞

𝑛=2

 

~ 
1

𝜋
  𝐽𝑘 𝑎  

𝑆𝑛−1 𝑎 

𝑛𝑘

∞

𝑛=2

− 𝐼𝑘 𝑎  
𝐶𝑛−1 𝑎 

𝑛𝑘

∞

𝑛=2

  ,                   

∞

𝑘=1

 

where we shifted appropriately the indices 𝑛 and 𝑘using the change 𝑥 = 2𝜋𝑎𝑡. Thus we obtained (4). 
 
In a very similar way, expanding (7) around the center of the interval, we obtain 

                           𝜇 𝑎  ~ 
1

𝜋
 (−1)𝑘−1  𝐼  𝑘 𝑎  

𝐶 2𝑛−1 𝑎 

(2𝑛 + 1)𝑘

∞

𝑛=1

+  𝐽  𝑘 𝑎  
𝑆 2𝑛−1 𝑎 

(2𝑛 + 1)𝑘

∞

𝑛=1

  ,                      (9)

∞

𝑘=1

 

where   𝐼  𝑘 𝑎 =  𝑡𝑘−1 sin(𝜋𝑎𝑡) 𝑑𝑡
1

−1

 , 𝐽  𝑘 𝑎 =  𝑡𝑘−1 cos(𝜋𝑎𝑡) 𝑑𝑡
1

−1

 

and 𝐶 2𝑛−1 𝑎 =  
cos(2𝑛 + 1 − 2𝑗)𝜋𝑎

𝑗

𝑛

𝑗=1

,      𝑆 2𝑛−1 𝑎 =  
sin(2𝑛 + 1 − 2𝑗)𝜋𝑎

𝑗

𝑛

𝑗=1

 . 

Note that "the half" of the above integrals are zero, and the magnitude of the 𝑘-th term in (9) is 𝑂(3−𝑘). 
3. Cases of integer and half-integer argument 

Substituting the argument 𝑎 in (8) with a positive integer 𝑛 (and the summation index with 𝑖) we see that the all 

terms
𝑆𝑖−1 𝑎 

𝑖𝑘
vanish, as well as the first summand, because of 𝐼1 𝑛 = 0. Thus we come to the formula 

                                                        𝜇 𝑛  ~ 
1

𝜋
 (−1)𝑘𝑆ℎ𝑘 ∙ 𝑃𝑘−1  

1

2𝜋𝑛
 

∞

𝑘=2

 ,                                                 (10) 

where 𝑆ℎ𝑘 ≔  
ℎ𝑖

𝑖𝑘
∞
𝑖=1 and the polynomials  𝑃𝑙(𝑥)  are defined in the introduction. 
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The same argument, applied to (4) gives the relation (5). 
 

Now, if we substitute in (9) 𝑎 with 𝑛 𝜖 ℕ and taking into account the obvious zeros and the symmetry, we obtain 

                                𝜇 𝑛  ~ 
2(−1)𝑛+1

𝜋
   

ℎ𝑖

(2𝑖 + 1)2𝑘
∙

∞

𝑖=1

 𝑡2𝑘−1 sin(𝜋𝑛𝑡) 𝑑𝑡
1

0

  .                             (11)

∞

𝑘=1

 

The constants appearing in (11) are easily expressible by the colored Euler sums 𝑆1,𝑞
±± (see [12, §7] for a 

definition). Indeed, if we denote in this manner 𝑆1,𝑞
𝑒,𝑜 ≔    

1

𝑗
𝑖
𝑒𝑣𝑒𝑛  𝑗≥2  

1

𝑖𝑞
∞
𝑜𝑑𝑑  𝑖≥0  and similarly 𝑆1,𝑞

𝑜,𝑜
, 𝑆1,𝑞

𝑜,𝑒
 and 

𝑆1,𝑞
𝑒,𝑒

, one easily can express the above four sums by these, and in reverse. In particular,  
ℎ𝑖

(2𝑖+1)2𝑘
∞
𝑖=1 = 2𝑆1,2𝑘

𝑒,𝑜 =
1

2
 𝑆1,2𝑘

++ + 𝑆1,2𝑘
+− − 𝑆1,2𝑘

−+ − 𝑆1,2𝑘
−−  . 

Moreover, in [16] these constants are expressed by zeta values (see also [14]). 
 

On the other hand, the integrals in (11) are expressible by the polynomials  𝑃𝑙 . To see this, let us first write some 

more general expressions for the integrals 𝐼𝑘(𝑎) and 𝐽𝑘(𝑎). One easily can check the formulas 

𝐼𝑘+1 𝑎 =
𝑘

2𝜋𝑎
𝐽𝑘 𝑎 − 

cos 2𝜋𝑎

2𝜋𝑎
 ,      𝐽𝑘+1 𝑎 =

sin 2𝜋𝑎

2𝜋𝑎
 − 

𝑘

2𝜋𝑎
𝐼𝑘 𝑎  ,     𝑘 ≥ 1,              (12) 

which imply 

𝐼𝑘+1 𝑎 = 𝑞𝑘  
1

2𝜋𝑎
 

sin 2𝜋𝑎

2𝜋𝑎
 − 𝑝𝑘  

1

2𝜋𝑎
 

cos 2𝜋𝑎

2𝜋𝑎
 +  −1 𝑘/2𝑚𝑜𝑑(𝑘 + 1, 2)

𝑘!

 2𝜋𝑎 𝑘+1
 

and  

𝐽𝑘+1 𝑎 = 𝑝𝑘  
1

2𝜋𝑎
 

sin 2𝜋𝑎

2𝜋𝑎
 +  𝑞𝑘  

1

2𝜋𝑎
 

cos 2𝜋𝑎

2𝜋𝑎
 +  −1 (𝑘+1)/2𝑚𝑜𝑑(𝑘, 2)

𝑘!

 2𝜋𝑎 𝑘+1
 , 

where  

𝑝𝑘 𝑥 = 1 − 𝑘 2 𝑥2 + 𝑘 4 𝑥4 − +⋯     and     𝑞𝑘 𝑥 = 𝑘𝑥 − 𝑘 3 𝑥3 + 𝑘 5 𝑥5 − + ⋯  . 
 

Note that any sequence of polynomials  𝑝𝑙 𝑥  ,  𝑞𝑙 𝑥   or  𝑃𝑙 𝑥   easily express the other two. For example, 
with these notations we have 

 𝑡2𝑘−1 sin(𝜋𝑛𝑡) 𝑑𝑡
1

0

= 𝐼2𝑘  
𝑛

2
 = −𝑝2𝑘−1  

1

𝜋𝑛
 

cos 𝜋𝑛

𝜋𝑛
=  −1 𝑛+1𝑃2𝑘−1  

1

𝜋𝑛
  . 

 

Now, let us consider the three expressions (8), (4) and (9) when the argument is specified to 𝑛 −
1

2
 , 𝑛 𝜖 ℕ. We 

denote 𝒂𝒊 ≔  
(−𝟏)𝒋−𝟏

𝒋
𝒊
𝒋=𝟏  and 𝑺𝒌

= ≔  (−𝟏)𝒊
𝒂𝒊−𝟏

𝒊𝒌
∞
𝒊=𝟐 .  

Clearly,  (−1)𝑖−1 𝑎𝑖

𝑖𝑘
∞
𝑖=1 = 𝑆1,𝑘

−− and 𝑆𝑘
= = 𝜁 𝑘 + 1 − 𝑆1,𝑘

−−. Then, with these notations, in the above manner we 

obtain the three representations 

                                                     𝜇  𝑛 −
1

2
  ~ 

1

𝜋
 (−1)𝑘−1 ∙ 𝐼𝑘  𝑛 −

1

2
 

∞

𝑘=1

,                                                (13) 

                                                          𝜇  𝑛 −
1

2
  ~ 

1

𝜋
 𝑆𝑘

= ∙ 𝐼𝑘  𝑛 −
1

2
 

∞

𝑘=1

,                                                     (14) 

                          𝜇  𝑛 −
1

2
  ~ 

2

 𝑛 −
1

2
 𝜋2

   
(−1)𝑖−1𝑎𝑖

(2𝑖 + 1)2𝑘−1
∙ 𝑝2𝑘−2  

1

 𝑛 −
1

2
 𝜋

 

∞

𝑖=1

 

∞

𝑘=1

.                     (15) 

For the coefficients in (15) it is not seen a relation with other constants. 

Remark 1. Since the integrals in these formulas are expressed by polynomials of 1/𝑎  (𝑎 = 𝑛  or 

𝑎 = 𝑛 − 1/2), they can be considered as rearrangements of the Stirling series (1). Now, if we release 𝑛from the 
constraint of an integer, it turns out that we are back in the field of divergent series. On the other hand, convergent 
rearrangements of (1) are possible, as can be seen from the thorough paper [3]. However, the present formulas can 

provide some good approximations for 𝜇 𝑎 . For example, using (11) we found  
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𝜇 𝑎 ≈  
𝐷𝑘

10𝑘
𝑃2𝑘−1  

1

𝜋𝑎
 

8

𝑘=1

,      𝑎 ≥ 2 , 

where 𝐷𝑘 =  2.50400041, 1.0339124, 0.94827, 0.9972, 1.088, 1.2, 1.4, 1 , as the uniform error is less than 

10−10. For comparison, the similar approximation from (1) has such accuracy for 𝑎 ≥ 3.5. 
 

4. Evaluation of the constants that appeared in the formulas 
 

In what follows we will consider algorithms for calculation of some constants with a precision of 𝑁 
decimal places. However, to this end, the intermediate calculations often need to be performed with higher 

precision. So, we will say briefly that a calculation is performed with 𝑁 digits precision, meaning actually 𝑂(𝑁) 
true decimal digits. With this convention it doesn't matter if we talk about decimal or binary digits. But, when we 
describe a concrete computation, we will be more precise. 

 

For the verification of the true signs in a final result we will use the simple rule of coincidence of the signs 

in two calculations with parameters 𝑁 and 𝑞𝑁 (𝑞 > 1). 
 

Starting with the constants in (5) let us recall the famous Euler's result (e.g. [12]) 

𝑆ℎ𝑘 = 𝑆1,𝑘
++ =

1

2
  𝑘 + 2 𝜁 𝑘 + 1 −  𝜁 𝑗 𝜁 𝑘 + 1 − 𝑗 

𝑘−1

𝑗 =2

 ,     𝑘 ≥ 2 .                   (16) 

Thus, the evaluation of the numbers  𝑆ℎ𝑘 𝑘=2
𝑛  defined to (10), or equivalently 𝑆ℎ𝑘

′ = 𝑆ℎ𝑘 − 𝜁 𝑘 + 1 ,

𝑘 = 2, … , 𝑛, with 𝑁digits precision can be performed through the sequence of numbers  𝜁 𝑗  𝑗=2
𝑛+1 obtained with 

the corresponding precision.  
 

Effective algorithms for calculation of 𝜁 𝑠  the reader can find in [4, 6, 9]. We say that a computational 

algorithm is effective, if it uses 𝑂 𝑁 (log 𝑁)𝑝  multiplications for 𝑁  digits precision of the result. Also a 

computational scheme we call good if it needs 𝑂 𝑁𝑘 (log 𝑁)𝑝  multiplications for the same purpose. Thus, the 

mentioned algorithms are effective if applied to a single zeta value. However, we need 𝑂 𝑁  zeta values for a 
verification of (5), so the total calculation, based on this approach, is a good scheme. 

 

In fact, for the calculation of the constants  𝑆ℎ𝑘
′  

𝑘=2

𝑐 𝑁
 that appeared in (5) we used the Euler identity as the 

zeta values we take for granted from Wolfram Mathematica. 
 

Let us point out some details for the reader who want to perform the calculations. When using long 
arithmetic in the computer algebra system Mathematica we prefer the operator SetPrecision[..]instead of N[..],just to 

know what happens.The computation N[Expr(C1 , C2 , . ..), prec], of an expression that involves only exact constants 

C1 , C2 , … can be modeled by SetPrecision[Expr(SetPrecision[C1,prec'], ... ), prec], but the error estimation is up to 
the user. 

Note about a property of the system when working with floating point numbers. Then it decreases the 
initial precision according to some own assessment of the error, which usually is overestimated. So, to keep the 
aimed precision in a complicated calculation, the user has two options. The first is to start with appropriate larger 
precision and the second is to restore it permanently by the operator SetPrecision[..].  

 

We must be especially careful with the operator Sum[..]. It works properly in the numerical context only 
when the summands are with the same signs and of relatively equal magnitude. It is better to use a cycle by restoring 
precision at every step.Also, although the setting of our numerical problem suggest that the operator SetAccuracy 
will fit better, our experiments show that with this operator the effect of ignoring signs is much stronger (at least for 
these calculations). 

 

Our intended accuracy is 100 decimal digits. Then a verification of (5) needs about 340 summands from the 
series. We increase the aimed precision for the constants in the calculation to 110 digits and take the sum in (5) up to 

𝑘 = 345.  
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We obtained the approximation of  𝑆ℎ𝑘
′  

𝑘=2

345
 by (16) and SetPrecision[.,120] (verified by 

SetPrecision[.,200]). The results for  𝑆ℎ5+10𝑖
′  

𝑖=0

34
, are presented in Table 1, as in the brackets are shown the 

numbers of the digits after the decimal point. All digits are true after rounding, so it is possible that the last one or 
two digits to differ from these in the exact decimal representation of the constants. 

 

Now, let us turn to the constants appearing in (14). The first two can be expressed exactly:𝑆1
= =

1

2
 𝜁 2 − log(2)2  and 𝑆2

= =
13

8
𝜁 3 −

3

2
𝜁 2 log(2) . Next, given an integer 𝑁  (intended accuracy), the 

calculation of the constants𝑆𝑘
= = 𝜁 𝑘 + 1 − 𝑆1,𝑘

−−, 𝑘 = 1, … , 𝑐𝑁 can be reduced to that of  𝑆1,𝑘
+− 

𝑘=1

𝑐𝑁
 via the 

identity (see [12]) 

𝑆1,𝑘
−− + (−1)𝑘𝑆1,𝑘

+− = 𝜁  𝑘 log 2 −   −1 𝑗𝜁  𝑗 

𝑘−1

𝑗 =1

𝜁 𝑘 + 1 − 𝑗  , 

where 𝜁  𝑠 =  
(−1)𝑛−1

𝑛𝑠
∞
𝑛=1 =  1 − 21−𝑠 𝜁 𝑠 . The constants 𝑆1,𝑘

+− =  (−1)𝑛−1 ℎ𝑛

𝑛𝑘
∞
𝑛=1  can be 

expressed by zeta values only for even 𝑘, but we calculate them in a unified way as follows. Introducing the 

notion𝑴𝒌 𝒙 =  
𝒉𝒏

𝒏𝒌 𝒙
𝒏∞

𝒏=𝟏 we have 𝑆1,𝑘
+− = −𝑀𝑘(−1). Then we can use a formula for the Euler transform of the 

function 𝑀𝑘 𝑥 . Namely, it holds the following 
 

Lemma 1. Let𝑥 =
−𝑡

1−𝑡
 and 𝑡 =

−𝑥

1−𝑥
 belong to [−1, 1). Then we have 

 𝑖 𝐿𝑖𝑘 𝑥 = −  𝜎 𝑘−1  
1

1
,
1

2
, … ,

1

𝑛
 
𝑡𝑛

𝑛

∞

𝑛=1

 ;                                       

 𝑖𝑖 𝑀𝑘 𝑥 = 𝐿𝑖1 𝑥 𝐿𝑖𝑘 𝑥 −  1 − 𝑡  ℎ𝑛𝜎 𝑘  
1

1
,
1

2
, … ,

1

𝑛
 𝑡𝑛

∞

𝑛=1

, 

where𝜎 𝑘 𝑎1 , 𝑎2 , … , 𝑎𝑛 =  𝑎𝑖1
⋯𝑎𝑖𝑘1≤𝑖1≤⋯≤𝑖𝑘≤𝑛  is the sum of all the 𝑘 -tuples (as products) from the set  𝑎1 , … , 𝑎𝑛  

allowing repetitions. 
 

Proof. The relation (i) is known, see e.g. [8] and the references therein. So, we need to prove only (ii).To this 

end we use the hypergeometric function, in particular the transformation formula ([2, §2.1,(22)]):  𝐹 𝛼, 𝛽; 𝛾; 𝑧 =

(1 − 𝑧)−𝛼𝐹  𝛼, 𝛾 − 𝛽; 𝛾;
𝑧

𝑧−1
  .We have 

𝐴 =  
1

𝑎

𝜕

𝜕𝑏
𝐹 1, 𝑎; 𝑎 + 𝑏; 𝑥  

𝑏 = 1

 =  
1

𝑎

𝜕

𝜕𝑏
 

(𝑎)𝑛
(𝑎 + 𝑏)𝑛

𝑥𝑛

∞

𝑛=0

 

𝑏 = 1

  

=  
1

𝑎
 

(𝑎)𝑛
(𝑎 + 1)𝑛

 − 
1

𝑎 + 𝑗

𝑛

𝑗=1

 𝑥𝑛

∞

𝑛=1

 

=  −  
𝑥𝑛

 𝑎 + 𝑛 2

∞

𝑛=1

−  
1

𝑎 + 𝑛
  

1

𝑎 + 𝑗

𝑛−1

𝑗=1

 𝑥𝑛

∞

𝑛=2

 

=  −  
𝑥𝑛

 𝑎 + 𝑛 2

∞

𝑛=1

−   
1

𝑛 − 𝑗
 

1

𝑎 + 𝑗
−

1

𝑎 + 𝑛
 

𝑛−1

𝑗=1

𝑥𝑛

∞

𝑛=2

 

                           =  −  
𝑥𝑛

 𝑎 + 𝑛 2

∞

𝑛=1

+  ℎ𝑛−1

𝑥𝑛

𝑎 + 𝑛

∞

𝑛=2

−  
1

𝑎 + 𝑗
 
𝑥𝑗+1

1
+

𝑥𝑗+2

2
+

𝑥𝑗+3

3
+ ⋯ 

∞

𝑗=1

 

=  ℎ𝑛−1

𝑥𝑛

𝑎 + 𝑛

∞

𝑛=2

−  
𝑥𝑛

 𝑎 + 𝑛 2

∞

𝑛=1

− 𝐿𝑖1 𝑥  
𝑥𝑗

𝑎 + 𝑗

∞

𝑗=1

 =: 𝐴1 

On the other hand 
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𝐴 =  
1

𝑎

𝜕

𝜕𝑏
 (1 − 𝑥)−1𝐹  1, 𝑏; 𝑎 + 𝑏;

𝑥

𝑥 − 1
   

𝑏 = 1

  

=  
1

𝑎(1 − 𝑥)

𝜕

𝜕𝑏
 

(𝑏)𝑛
(𝑎 + 𝑏)𝑛

𝑡𝑛
∞

𝑛=0

 

𝑏 = 1

  

=  
1

𝑎(1 − 𝑥)
 

𝑛!

(𝑎 + 1)𝑛
 ℎ𝑛 −  

1

𝑎 + 𝑗

𝑛

𝑗=1

 𝑡𝑛
∞

𝑛=1

 

=  
1

𝑎(1 − 𝑥)
  

𝑛!

(𝑎 + 1)𝑛
ℎ𝑛𝑡

𝑛

∞

𝑛=1

+
𝜕

𝜕𝑎
 

𝑛!

(𝑎 + 1)𝑛
𝑡𝑛

∞

𝑛=1

  =: 𝐴2 

Now, let us take the functional 
𝜕𝑘−1

𝜕𝑎𝑘−1  

𝑎 = 0

  at the both sides of the identity 𝐴1 = 𝐴2 , i.e. compare  𝑘 − 1 ! 

times the coefficients of 𝑎𝑘−1 in the Maclaurin series with respect to 𝑎. Then, using the known expansion
𝑛!

(𝑎+1)𝑛
=

 (−𝑎)𝑗𝜎 𝑗  
1

1
, … ,

1

𝑛
 ∞

𝑗=0 , which is also easily seen by multiplying 𝑛 series of the form
1

𝑎+𝑎𝑖
=

1

𝑎𝑖
 1 −

𝑎

𝑎𝑖
+

𝑎2

𝑎𝑖
2 −

⋯, we obtain 

(−1)𝑘−1 𝑘 − 1 !   ℎ𝑛−1

𝑥𝑛

𝑛𝑘

∞

𝑛=2

− 𝑘  
𝑡𝑛

𝑛𝑘+1

∞

𝑛=1

− 𝐿𝑖1 𝑥 𝐿𝑖𝑘 𝑥  = 

=
 𝑘 − 1 !

1 − 𝑥
𝑐𝑜𝑒𝑓  

𝑎𝑘

    𝑡𝑛  ℎ𝑛 +
𝜕

𝜕𝑎
  (−𝑎)𝑗𝜎 𝑗  

1

1
, … ,

1

𝑛
 

∞

𝑗=0

 

∞

𝑛=1

  

  =
 𝑘 − 1 !

1 − 𝑥
 (−1)𝑘  𝑡𝑛𝜎 𝑘  

1

1
, … ,

1

𝑛
 ℎ𝑛

∞

𝑛=1

+  −1 𝑘+1(𝑘 + 1)  𝑡𝑛𝜎 𝑘+1  
1

1
, … ,

1

𝑛
 

∞

𝑛=1

  . 

As a consequence, we get 

 
ℎ𝑛

𝑛𝑘
𝑥𝑛

∞

𝑛=1

=  𝑘 + 1 𝐿𝑖𝑘+1 𝑥 + 𝐿𝑖1 𝑥 𝐿𝑖𝑘 𝑥                                                         (17) 

                      +    𝑘 + 1 𝜎 𝑘+1  
1

1
, … ,

1

𝑛
 − ℎ𝑛𝜎 𝑘  

1

1
, … ,

1

𝑛
  

𝑡𝑛

1 − 𝑥

∞

𝑛=1

 . 

Now we will use the simple recurrence formula 

𝜎 𝑘+1  
1

1
,
1

2
, … ,

1

𝑛
 = 𝜎 𝑘+1  

1

1
, … ,

1

𝑛 − 1
 +

1

𝑛
𝜎 𝑘  

1

1
, … ,

1

𝑛
  ,                                 18  

which holds for 𝑛 ≥ 1 if we adopt the convention 𝜎 𝑘 ∅ = 0. 
Then we have the alternative record of (i) 

𝐿𝑖𝑘 𝑥 = (𝑡 − 1)  𝜎 𝑘  
1

1
,
1

2
, … ,

1

𝑛
 𝑡𝑛  .

∞

𝑛=1

 

Adding to this formula the equality  1 − 𝑥  1 − 𝑡 = 1 we see a cancellation of the terms with  𝑘 + 1  
in (17) and the lemma is proved. □ 

 

Using the lemma, one can evaluate a single constant 𝑀𝑘 −1  with 𝑁 digits by summing 𝑂 𝑁  terms of 

a series which converges like 2−𝑛 . But, with increasing of 𝑘 the terms in (ii) become more complicated. Then, for 

evaluation of the constants  𝑀𝑘 −1  𝑘=1
𝑐𝑁  with 𝑁 digits precision, we can use (18), reducing the number of 

multiplications to 𝑂 𝑁2 . In addition, 𝑂 𝑁2  more multiplications (of zeta values) are necessary to convert the 

sequence  𝑀𝑘 −1  𝑘=1
𝑐𝑁  to  𝑆𝑘

= 𝑘=1
𝑐𝑁 . 
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Applying such a computational scheme, we obtained the sequence  𝑆𝑘
= 1

345  with 110 decimal digits 
precision. The results are illustrated in Table 2. 

 

Remark 2.We can write even faster converging series for the constants  𝜂(𝑘)  and  𝑆1,𝑘
+−  but with not 

so explicit coefficients. Namely, if 𝑥 =
2𝑧

1+𝑧
, so that 𝑥 = −1 corresponds to 𝑧 = −

1

3
, then we have 

 𝑖 𝐿𝑖𝑘 𝑥 =  𝑐𝑘,𝑛𝑧
𝑛

∞

𝑛=1

,                                                                                          

where𝑐1,2𝑖−1 =
2

2𝑖 − 1
 , 𝑐1,2𝑖 = 0,   i = 1,2,3, . . . ,   and 

𝑐𝑘+1,𝑛 =
𝐶𝑘,𝑛

𝑛
 ,    𝐶𝑘,𝑛 = 𝑐𝑘,𝑛 − 𝐶𝑘,𝑛−1     (𝐶𝑘,0 = 0) ; 

 𝑖𝑖 𝑀𝑘 𝑥 =  𝑑𝑘,𝑛𝑧
𝑛

∞

𝑛=1

,                                                                                          

where𝑑0,2𝑖 = 4  
1

2𝑗 − 1

𝑖

𝑗=1

 , 𝑑0,2𝑖+1 = 𝑑0,2𝑖 +
2

2𝑖 + 1
,   i = 0,1,2, . . . ,   and 

𝑑𝑘+1,𝑛 =
𝐷𝑘,𝑛

𝑛
 ,    𝐷𝑘,𝑛 = 𝑑𝑘,𝑛 − 𝐷𝑘,𝑛−1     (𝐷𝑘,0 = 0) . 

 

5. Verification of the new formulas for 𝐥𝐨𝐠𝜞(𝒂) 
 

First note that the series in the right hand side of (4), (8) and (9) are equal to the series of integrals in (7). So, 
it suffices one to prove the equality sign in (4) and then, as a consequence, (7-9) hold with equality as well. 

 

Verification of (4) for𝑎 𝜖  𝑗 𝑗=1
30 . 

We need to check (5) for 𝑛 ≤ 30. In the previous section we described the computation of the constants 

𝑆ℎ𝑘
′  for 𝑘 = 2, … , 345 with about 110 digits after the decimal point.Next, it turns out that the simpler calculation 

of the integrals 𝑃𝑘  
1

2𝜋𝑛
 = −𝐼𝑘(𝑛) for 𝑘 = 2, … , 345 by the recurrence formulas is unstable. As a result, to 

obtain the aimed precision for these factors we started with precision of 500 digits. This gives the aimed precision 

for 𝑛 = 2, … , 30 and for𝑛 = 1 the absolute error of  2−𝑘𝐼𝑘(𝑛) 𝑘=2
345  is less than 10−110 , too.So, using these 

approximations we checked (5) for 𝑛 = 1,2, … , 30 observing coincidence of 107 decimal digits after the decimal 
point. 

 

Verification of (4) for𝑎 𝜖  𝑗 −
1

2
 
𝑗=1

30
. 

We need to check (14) as an equality for 𝑛 ≤ 30. For the integrals appearing in (14) it holds a similar notion 

as for these in (5). Namely, their evaluation costs 𝑂(𝑁) multiplications, but the working precision has to be 

increased sensibly (5-6 times for 𝑁 = 100). Using the already obtained values of 𝑆𝑘
= for 𝑘 = 2, … , 345with 110 

digits we confirmed (14) as an equality for 𝑛 = 1,2, … , 30 observing coincidence of 106 decimal digits between the 
left and the right hand side. We omit the details.  
 

Verification of (4) for𝑎 𝜖   2𝑗 − 1 
𝑗=1

30
. 

Let us introduce the notations𝝋𝜶,𝜷
(𝒌)

≔  
𝒆𝒊 𝒏𝜶

𝒏𝒌 𝒉𝒏
𝜷∞

𝒏=𝟏 , where𝒉𝒏
𝜷

=  
𝒆𝒊 𝒋𝜷

𝒋
𝒏
𝒋=𝟏 . 

Clearly, with 𝐶𝑛−1 and 𝑆𝑛−1 defined at (4), we have 

𝜑2𝜋𝑧 ,−2𝜋𝑧
(𝑘)

= 𝜁 𝑘 + 1 +  
𝐶𝑛−1(𝑧)

𝑛𝑘

∞

𝑛=2

+ 𝑖  
𝑆𝑛−1(𝑧)

𝑛𝑘

∞

𝑛=2

                                     (19) 

Also, integrating by parts  𝜑𝑥,𝛽
(𝑘)

 𝑑𝑥
𝛼

0
 we obtain for 𝑘 ≥ 1 that 

 
(−𝑖𝛼)𝑗

𝑗!
𝜑𝛼,𝛽

(𝑘+1−𝑗)

𝑘

𝑗=0

=  
ℎ 𝑛

𝛽

𝑛𝑘+1

∞

𝑛=1

+
 −𝑖 𝑘+1

𝑘!
𝐿𝑘 𝛼, 𝛽  ,                                      (20) 
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where 𝑳𝒌 𝜶,𝜷 =  𝒙𝒌 𝐥𝐨𝐠(𝟏−𝒆𝒊 𝒙+𝜷 )

𝟏−𝒆𝒊 𝒙

𝜶

𝟎
𝒅𝒙 . 

Note that the recurrence relation (20) reduces the calculation of   
𝐶𝑛−1(𝑎)

𝑛 𝑗
∞
𝑛=2  

𝑗=2

𝑘
 and   

𝑆𝑛−1(𝑎)

𝑛 𝑗
∞
𝑛=2  

𝑗=2

𝑘
to that 

of the sequences  𝜑0,−𝛼
(𝑗 )

 
𝑗=2

𝑘
 and  𝐿𝑗−1 𝛼, −𝛼  

𝑗=2

𝑘
. 

The initial value 𝜑𝛼,−𝛼
(1)

 can be found in an explicit form. Namely, we have  

 

Lemma 2.Forα ϵ (0, 2π)it holds 

𝜑𝛼,−𝛼
(1)

= 𝐿𝑖1 𝑒
−𝑖𝛼  

1

2
𝐿𝑖1 𝑒

−𝑖𝛼 + 𝑖𝜋 + 𝐿𝑖2 𝑒
𝑖𝛼 − 𝑖𝛼𝐿𝑖1 𝑒

𝑖𝛼  +
𝛼2

2
− 2𝜁 2  . 

 
Sketch of the proof. By a formal series expansion we get 

                                           − 
log 1 − 𝑒𝑖 𝑥+𝛽  

1 − 𝑒𝑖 𝑥

𝛼

𝜀

𝑑𝑥 ~ 
1

𝑖
 

𝑒𝑖𝑛𝛼 − 𝑒𝑖𝑛𝜀

𝑛
ℎ 𝑛

𝛽

∞

𝑛=1

 .                                         (21) 

Denoting 𝑓 𝛼 = − 
log  1−𝑒 𝑖 𝑥−𝛼  

1−𝑒 𝑖 𝑥

𝛼

𝜀
𝑑𝑥 , with certain regularization for 𝑥 → 𝛼 , we obtain 

𝑓′ 𝛼 =
log  1−𝑒 𝑖 𝜀  − 𝑖𝜋

1−𝑒 𝑖 𝛼  −  
log   1−𝑒 𝑖(𝛼−𝜀)  1−𝑒 𝑖 𝛼   

1−𝑒 𝑖 𝛼 , from where 

𝑓 𝛼 = −𝑖 log
1 − 𝑒−𝑖 𝛼

1 − 𝑒−𝑖 𝜀
log 1 − 𝑒𝑖 𝛼 − 𝑖  

𝑦𝑑𝑦

1 − 𝑒𝑖 𝑦

𝛼

𝜀

+ 𝑖 𝜁 2 + 𝑜 1 for 𝜀 → +0 . 

On the other hand, for the sum 𝜑𝜀,𝛽
(1)

 that appears in (21), using summation by parts of its partial sums and 

the limit relation for 𝜀 → +0 and 𝑛 → ∞ 

ℎ𝑛
𝜀 = ℎ𝑛 + 𝑂 𝜀 −  

1 − 𝑒𝑖 𝑥

𝑥
𝑑𝑥

𝑛𝜀

0

= log
1

𝜀
+ 𝑖

𝜋

2
+ 𝑂  𝜀 +

1

𝑛𝜀
  

(with a constant independent of 𝜀 and 𝑛), we find  

𝜑𝜀,𝛽
(1)

=  log
1

𝜀
+ 𝑖

𝜋

2
+ 𝑂 𝜀  𝐿𝑖1 𝑒

𝑖 𝛽 −  ℎ𝑛−1

𝑒𝑖 𝑛𝛽

𝑛

∞

𝑛=2

 ,     𝜀 → +0 . 

Now, in view of of the above limit expressions for 𝜀 → 0, if we equalize the both sides of (21) with 

𝛽 = −𝛼 and represent  
𝑦𝑑𝑦

1−𝑒 𝑖 𝑦  by 𝐿𝑖2, while  ℎ𝑛−1
𝑒 𝑖 𝑛𝛽

𝑛
 by 𝐿𝑖1

2, then we will obtain the assertion of the lemma 

with  ~in place of =, i.e. as a hypothesis. 
We did not investigate the area where (21) holds as an equality but again used numerical experiments to 

confirm the claimed equality for real 𝛼 in (0, 2𝜋). □ 
 

Lemma 3.Let 𝛼 𝜖 (0, 2𝜋)and𝑁be an integer number. Then the integrals𝐿𝑘 ≔ 𝐿𝑘(𝛼, −𝛼), 𝑘 = 1, 2, … , 𝑂(𝑁), can 

be calculated with𝑁digits precision by𝑂(𝑁2)multiplications. 
 

Proof. The integrals have logarithmic singularity at 𝑥 = 𝛼. That is why we write 

𝐿𝑘 =  
𝑥𝑘

1 − 𝑒𝑖 𝑥
log(𝛼 − 𝑥)

𝛼

0

𝑑𝑥 +  
𝑥𝑘

1 − 𝑒𝑖 𝑥
log

1 − 𝑒𝑖(𝑥−𝛼)

𝛼 − 𝑥

𝛼

0

𝑑𝑥 =: 𝑳𝒌
(𝟏)

+ 𝑳𝒌
(𝟐)

 . 

For  𝐿𝑘
(1)

  let us expand 
𝑥

1−𝑒 𝑖 𝑥  in Maclaurin series (involving Bernoulli numbers). Then, we need to 

calculate the values of the integrals 𝑳𝒌,𝒋
(𝟏)

=  𝑥𝑘−1+𝑗 log(𝛼 − 𝑥)
𝛼

0
𝑑𝑥  for 𝑗 = 0,1, … , 𝑂(𝑛) . Indeed, the 

coefficients of the expansion decay like (2𝜋)−𝑗 , while (for a fixed 𝑘) 𝐿𝑘,𝑗
(1)

=
𝛼𝑘+𝑗

𝑘+𝑗
 log 𝛼 − ℎ𝑘+𝑗  = 𝑜 (2𝜋)𝑗  , 

and thus 𝐿𝑘
(1)

=  𝑐𝑗𝐿𝑘,𝑗
(1)

𝑗  converges like a geometric series. We see that these calculations cost 𝑂(𝑁2) operations. 
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For  𝐿𝑘
(2)

  let us expand 
𝑥

1−𝑒 𝑖 𝑥 log
1−𝑒 𝑖(𝑥−𝛼)

𝛼−𝑥
 in Taylor series around 𝑥 = 𝛼/2. This includes standard arithmetic 

operations on power series and one integration, so the expansion up to the 𝑂(𝑁)-th term can be performed with 

𝑂(𝑁2)multiplications (and even faster if one uses fast convolutions). In fact we used the operator Series[..] of 

Mathematica and will not go into details. Note that again this expansion serves for all 𝑘 ≥ 1. 
Next, in view of the singularities of the function, the radius of convergence of the obtained series is 

(2𝜋 − 𝛼/2) . On the other hand, the calculation involves the integrals 𝑳𝒌,𝒋
(𝟐)

=  𝑥𝑘−1  𝑥 −
𝛼

2
 
𝑗𝛼

0
𝑑𝑥 =

 𝑂 (𝛼/2)𝑗   (𝑘 - fixed). Then, the quantities 𝐿𝑘
(2)

 are represented by series converging like a geometric progression 

with ratio 𝑞 =
𝛼

4𝜋−𝛼
< 1, and 𝑂(𝑁) terms are enough for 𝑁 digits precision. 

Finally, note that the integrals  𝐿𝑘
(2)

  obey the simple recurrence relations 

𝐿𝑘+1,𝑗−1
(2)

=
1

𝑗
 𝛼𝑘(𝛼/2)𝑗 − 𝑘𝐿𝑘,𝑗

(2)
 =

𝛼

2
𝐿𝑘,𝑗−1

(2)
+ 𝐿𝑘,𝑗

(2)
 ,     𝑘, 𝑗 ≥ 1 , 

which allow one to compute the necessary values for 𝑘 = 1, … , 𝑂(𝑁), 𝑗 = 0,… , 𝑂(𝑁) by 𝑂(𝑁2) operations. 

(And the memory enough for the calculation is for 𝑂(𝑁)long numbers.)□ 
 

Lemma 4.Let𝛽 𝜖 ℝ\2𝜋ℤ and 𝑁 𝜖 ℕ . Then the quantities 𝜑0,𝛽
(𝑘)

=  
ℎ𝑛
𝛽

𝑛𝑘
∞
𝑛=1  , 𝑘 = 2,… , 𝑂(𝑁)  can be calculated with 

𝑁digits precision by 𝑂(𝑁2)multiplications. 
 
Proof. A summation by parts gives 

 
ℎ𝑛
𝛽

𝑛𝑘

∞

𝑛=1

= 𝜁 𝑘 𝐿𝑖1 𝑒
𝑖 𝛽 −   

1

𝑗𝑘

𝑛−1

𝑗=1

𝑒𝑖 𝑛𝛽

𝑛

∞

𝑛=2

= 𝜁 𝑘 𝐿𝑖1 𝑞 −  
𝐿𝑖𝑘 𝑧 

1 − 𝑧
𝑑𝑧

𝑞

0

 , 

where 𝑞 = 𝑒𝑖 𝛽 . Note that, by the conditions of the lemma, 𝑞 ≠ 1. 

Choosing an appropriate center 𝑐 let us find the Taylor expansion of the function under the integral sign around 

𝑧 = 𝑐 . It can be done easily recursively on 𝑘 . Precisely, if 𝐿𝑖𝑘 𝑧 =  𝑑𝑛,𝑘(𝑧 − 𝑐)𝑛∞
𝑛=0  and 

𝐿𝑖𝑘 𝑧 

𝑧
=

 𝑒𝑛,𝑘(𝑧 − 𝑐)𝑛∞
𝑛=0 , then we have 

𝑒𝑛,𝑘 =
1

𝑐
 𝑑𝑛,𝑘 − 𝑒𝑛−1,𝑘 ,     𝑒−1,𝑘 ≔ 0 ; 

𝑑𝑛,𝑘+1 =
1

𝑛
 𝑒𝑛−1,𝑘 ,     𝑑0,𝑘+1 = 𝐿𝑖𝑘+1 𝑐  , 

as the first relation is just by removing the denominator 𝑧 = 𝑐 + (𝑧 − 𝑐), while the second is from𝐿𝑖𝑘+1
′  𝑧 =

1

𝑧
𝐿𝑖𝑘 𝑧 . 

In this way, we can find every next series expansion of 𝐿𝑖𝑘+1 𝑧  up to  𝑥 − 𝑐 𝑂(𝑁)  by 𝑂(𝑁) 

multiplications. Another 𝑂(𝑁) operations are enough to expand𝐿𝑖𝑘+1 𝑧 /(1 − 𝑧) up to the 𝑂(𝑁)-th term. 

Summarily this amounts to 𝑂(𝑁2) multiplications for finding the all partial sums of the series.  
 

It remains to show that the integrals in [0, 𝑞] of these power series give geometrically convergent number 

series that can be truncated at𝑂(𝑁)-th term. The radius of convergence of the all series is |1 − 𝑐|. Then, the choice 

𝑐 = 𝑞/2 will give a convergence radius bigger than 1/2 (since 𝑐 𝜖   𝑧 = 1/2  but 𝑐 ≠ 1/2, which is the closest 

point of the circle to 𝑧 = 1). On the other hand, the coefficients are combined with  (𝑧 − 𝑐)𝑛𝑑𝑧
𝑞

0
= 𝑂 2−𝑛  and 

indeed this choice is appropriate.□ 
 

Corollary 1.Given 𝛼 = 2𝜋𝑎 𝜖 ℝ  and 𝑁 -an integer,the values of 𝜑𝛼,−𝛼
(𝑘)

, 𝑘 = 2, … , 𝑂(𝑁) ,i.e.of 

  
𝐶𝑛−1 𝑎  + 𝑖𝑆𝑛−1(𝑎)

𝑛𝑘
∞
𝑛=2  

𝑘=2

𝑂(𝑁)
,canbecalculated with𝑁digits precision by𝑂(𝑁2)multiplications. 

 

Proof. It is clear that the reduction of 𝛼 through 2𝜋 is admissible, so we can suppose that 𝛼 𝜖 [0, 2𝜋). Now if 

𝛼 = 0 we obtain the particular case considered in the previous section. If 𝛼 𝜖 (0, 2𝜋) the assertion follows from 
the recurrence relations (20) and Lemmas 2-4.□ 
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Remark also the simple relation allowing us to reduce 𝛼 𝜖 [0, 𝜋]: 

𝜑𝛼,−𝛼
(𝑘)       

= 𝜑−𝛼,𝛼
(𝑘)

 ,     𝛼 𝜖 ℝ                                                                (22) 

and which can accelerate the calculation of the integrals 𝐿𝑘 . 
 

Let us sketch the check of (4) for 𝑎 =  2 − 1. We choose to compare 𝑁 = 100 decimal digits of the both sides of 

(4). To this end we take the sum on 𝑘 up to 𝑚 = 345 and distinguish the following steps: 

 The integrals 𝐼𝑘(𝑎) and 𝐽𝑘(𝑎) for 𝑘 = 1, … , 𝑚 we calculate by the recursive formulas (12). Because of instability 

we used precision 800 decimal digits and observe that the exactness of 𝐼𝑘(𝐽𝑘) gradually decreases with 𝑘 from 800 
to around 230 true digits. Finally we cut all these numbers at the 110-th digit. 

 The calculation of the integrals  𝐿𝑘 𝑘=1
𝑚−1 follows the proof of Lemma 3. The power series needed for  𝐿𝑘

(1)
 
𝑘=1

𝑚−1
 

we expand up to𝑚1 = 300-th term exactly, while that for  𝐿𝑘
(2)

 
𝑘=1

𝑚−1
 we expand up to𝑚2 = 200 -th term with 

precision𝑝𝑟𝑒𝑐2 = 150 digits (introduced by making the parameter 𝛼 = 2𝜋{𝑎} a floating point number). The 
number series induced from integrating the power series are rounded to 120 decimal digits. 

 The evaluation of the quantities  𝜑0,𝛽
(𝑘)

 
𝑘=2

𝑚
 follows the proof of Lemma 4. The series involved are expanded up to 

the 𝑚3 = 𝑚 -th term, as first we make the parameter 𝑞 = 𝑒𝑖𝛽  a floating point number with 𝑝𝑟𝑒𝑐3 = 120 
decimal digits. We updated this precision several times during the calculation. 

 The numbers  𝜑𝛼,−𝛼
(𝑘)

 
𝑘=1

𝑚
 are computed by the recurrence formula (20) while at the same time they are rounded to 

precision 110 decimal digits. 

 The sum in (4) is calculated up to 𝑘 = 𝑚 and compared with the Binet's function. To avoid a fall in precision, we 
used the operator Do[..] instead of Sum[..]. Finally, we observed that the difference between the left and the right 

hand sides of (4) in this case is less than 10−108 . 
 

Remark 3.Let us point out two problems that we had to solve at the last point.  

First we expressed the coefficients 𝐴𝑘 =  
𝐶𝑛−1 𝑎 

𝑛𝑘
∞
𝑛=2  and 𝐵𝑘 =  

𝑆𝑛−1 𝑎 

𝑛𝑘
∞
𝑛=2  by 𝜑𝛼,−𝛼

(𝑘)
 (see (19)) 

directly in the sum on 𝑘. However it turns out that the imaginary parts of the complex numbers  𝜑𝛼,−𝛼
(𝑘)

 , which 

were calculated with precision 110 digits, have significantly smaller precision for large 𝑘 (since they are much 

smaller than the real parts). So, we had to extract 𝐴𝑘  and 𝐵𝑘  separately and to reset the precision before the 
summation. 

 

Another unexpected fall in precision we encountered in the calculation 𝐴𝑘 = 𝑅𝑒  𝜑𝛼,−𝛼
(𝑘)

 − 𝜁(𝑘 + 1). We 

relied on that in the context of 110 digits precision the value of𝜁(𝑘 + 1) also will be computed with about 110 

digits. Indeed, this is the case when 𝑘 + 1 is odd. However, when 𝑘 + 1 is even and 𝑘 - large, the zeta value 
appeared with much smaller precision, as well as the final result. For this case we settled on the solution: prec=110; 

𝐴𝑘=SetPrecision[𝑅𝑒  𝜑𝛼,−𝛼
(𝑘)

 − N[𝜁(𝑘 + 1),prec], prec]. 
 

For the readers who want to perform the calculations, we provide for comparison some values of the 

coefficients 𝐴𝑘  and 𝐵𝑘  in Table 3. 
 

For the check of (4) with 𝑎 = 𝑗 2 − 1 let us introduce ∆𝑗≔ 𝐿𝐻𝑆 4 − 𝑅𝐻𝑆(4). Then, similarly as 

above, but with parameters 𝑚1 = 300, 𝑚2 = 200, 𝑝𝑟𝑒𝑐2 = 210 and 𝑚3 = 400, and using (22) if necessary, we 

verified that |∆𝑗 | < 10−101  for 𝑗 𝜖  2,… ,30 \𝑀 , where 𝑀 =  5, 6, 7, 10, 12, 17, 19, 22, 24, 29  and |∆6| <

10−98. Each of these checks lasted about 150 s on an ordinary machine.  
 

Next, with the same parameters, but 𝑚3 = 800  (and 𝑝𝑟𝑒𝑐2 = 220  for 𝑗 = 10 ), we verified that 

|∆𝑗 | < 10−107 for 𝑗 = 10, 19, 22 and |∆7| < 10−102 . Also, with 𝑚3 = 2000 we obtain |∆5|, |∆24| < 10−107  

and |∆17| < 10−59 , while 𝑚3 = 4000  gives |∆12| < 10−60 . Finally, with 𝑚 = 175 , 𝑚3 = 20000  and 

𝑝𝑟𝑒𝑐3 = 80 we get |∆29| < 10−55, as the last check took 28 min. 
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Table 1.Coefficients of the formula (5), rounded to the (Nth) decimal sign. 

 

𝑘 𝑆ℎ𝑘
′  𝑘 𝑆ℎ𝑘

′  

5 0.04053689...77434322(109) 185 0.00000000...914160464(110) 

15 0.00003062...95664423(109) 195 0.00000000...756875286(110) 

25 0.00000002...25569760(109) 205 0.00000000...442660503(110) 

35 0.00000000...38699109(109) 215 0.00000000...883550122(110) 

45 0.00000000...58728184(109) 225 0.00000000...756684449(110) 

55 0.00000000...262641463(110) 235 0.00000000...558356137(110) 

65 0.00000000...243454175(110) 245 0.00000000...501521832(110) 

75 0.00000000...289615092(110) 255 0.00000000...372560080(110) 

85 0.00000000...866898770(110) 265 0.00000000...771848203(110) 

95 0.00000000...563179927(110) 275 0.00000000...804464696(110) 

105 0.00000000...694477450(110) 285 0.00000000...036918423(110) 

115 0.00000000...168893394(110) 295 0.00000000...272496991(110) 

125 0.00000000...228312514(110) 305 0.00000000...905539548(110) 

135 0.00000000...608212728(110) 315 0.00000000...433501503(110) 

145 0.00000000...661595547(110) 325 0.00000000...023860841(110) 

155 0.00000000...447036104(110) 335 0.00000000...428734239(110) 

165 0.00000000...582459580(110) 345 0.00000000...001395248(110) 

175 0.00000000...078821696(110)   

 
Table 2.Coefficients of the formula (14), rounded to the (Nth) decimal sign. 

 

𝑘 𝑆𝑘
= 𝑘 𝑆𝑘

= 

5 0.029901635...82486286(109) 185 0.00000000...890682575(110) 

15 0.000030483...77811113(109) 195 0.00000000...006362604(110) 

25 0.000000029...42357991(109) 205 0.00000000...790850135(110) 

35 0.000000000...88120060(109) 215 0.00000000...831074183(110) 

45 0.000000000...83904225(109) 225 0.00000000...756683562(110) 

55 0.000000000...099061802(110) 235 0.00000000...558356138(110) 

65 0.000000000...656611598(110) 245 0.00000000...501521834(110) 

75 0.000000000...758577791(110) 255 0.00000000...372560082(110) 

85 0.000000000...082813126(110) 265 0.00000000...771848205(110) 

95 0.000000000...653453795(110) 275 0.00000000...804464697(110) 

105 0.000000000...577450460(110) 285 0.00000000...036918424(110) 

115 0.000000000...540168353(110) 295 0.00000000...272496992(110) 

125 0.000000000...548264596(110) 305 0.00000000...905539549(110) 

135 0.000000000...805155692(110) 315 0.00000000...433501505(110) 

145 0.000000000...725669674(110) 325 0.00000000...023860843(110) 

155 0.000000000...160060835(110) 335 0.00000000...428734241(110) 
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165 0.000000000...122944371(110) 345 0.00000000...001395250(110) 

175 0.000000000...732849460(110)   

 

Table 3.Coefficients to 𝐼𝑘 𝑎 and𝐽𝑘 𝑎  in formula (4) for 𝑎 =  2 − 1. 
 

𝑘 −𝐴𝑘(𝑎) 𝐵𝑘(𝑎) 

5 0.02679148...66547461(109) 0.01405728...60347350(109) 

15 0.00002618...25613628(109) 0.00001562...59930575(109) 

25 0.00000002...21658852(109) 0.00000001...58689605(109) 

45 0.00000000...83292562(109) 0.00000000...703494287(110) 

65 0.00000000...670311529(110) 0.00000000...864466641(110) 

85 0.00000000...370496073(110) 0.00000000...755404021(110) 

105 0.00000000...633729965(110) 0.00000000...762870820(110) 

125 0.00000000...683326225(110) 0.00000000...993276954(110) 

145 0.00000000...858667117(110) 0.00000000...759693562(110) 

165 0.00000000...020090985(110) 0.00000000...797375261(110) 

185 0.00000000...095683026(110) 0.00000000...039906345(110) 

205 0.00000000...922868855(110) 0.00000000...358613184(110) 

225 0.00000000...238557829(110) 0.00000000...845282971(110) 

245 0.00000000...852504004(110) 0.00000000...363817067(110) 

265 0.00000000...168858387(110) 0.00000000...327664722(110) 

285 0.00000000...481962365(110) 0.00000000...143269851(110) 

305 0.00000000...024854166(110) 0.00000000...842773574(110) 

325 0.00000000...590757394(110) 0.00000000...953172534(110) 

345 0.00000000...001197425(110) 0.00000000...000716165(110) 
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